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Supplementary Fig. 1 Characterization of Phf2 histone demethylase activity. a Biochemical identification of new
transcriptional co-regulators for the transcription factor ChREBP from primary cultured hepatocytes incubated with 100 nM
insulin and 25 mM glucose for 24 h. ChREBP was immunoprecipitated from nuclear fractions and ChREBP-purified complexes
were analyzed by using GC-MS analysis. b Phf2 tissue distribution in C57BL/6] mice by immunoblotting. ¢ Co-
immunoprecipitation experiments between ChREBP and Phf2. (Left) FLAG-tagged ChREBP and HA-tagged Phf2 were
overexpressed in 293T cells. ColP experiments were performed using indicated antibodies (n = 3). (Right) In vivo ColP
experiments were performed using indicated antibodies and liver nuclear extracts from fed C57BI/6) mice (n = 3). d
Demethylase activity of FLAG-tagged Phf2 immunoprecipitated from 293T cell lysates was assessed using recombinant
methylated histones as substrates (n = 3).
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Supplementary Fig. 2 Characterization of Phf2 transcriptional network. GFP or Phf2 were overexpressed for 3 weeks in
the liver of C57BL/6J mice through adenoviral-gene delivery and microarray analysis was conducted. Phf2 overexpression
resulted in the differential regulation of a significant proportion of genes (921, fold = 1.5 and P < 0.05) involved in several
metabolic processes compared to GFP mice. a,b Genes that were differentially regulated in the liver of Phf2 mice were
subjected to gene ontology enrichment analysis. Pie charts represent step-wise hierarchical tree drill down of
significantly enriched terms under the heading biological process and metabolic process sub-category. All enrichment P
values < 0.05 are indicated in parentheses. ¢,d Heat map visualization of glucose and lipid metabolism between GFP and

Phf2 mice (n = 10 per group).
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Supplementary Fig. 3 Molecular basis of Phf2-driven hepatosteatosis development. (a-h) Mice, injected with either GFP or
Phf2 overexpressing adenovirus, were studied 3 weeks later in the fed state. a Expression of genes involved in FA
metabolism (n = 20 per group). b Western blot analysis of liver lysates against proteins involved in FA metabolism (n = 10
per group). ¢ Hepatic TG secretion rates evaluated by measuring plasma TG concentrations in a time course after blocking its
turnover with tyloxapol (n = 6 per group). d Results from the PKCe activation assay (n = 8 per group). m/c, membrane
compared to cytosolic PKCe protein concentration. e Visualization of macrophage infiltration by immunostaining of liver
sections with F4/80 antibody. Magnification x200 (n = 5 per group). f Oral pyruvate tolerance test (n = 10 per group). g
Western blot analysis of the PI3K/Akt signaling pathway in white adipose tissue and skeletal muscle (n = 10 per group). h
MUFA/SFA ratio reflecting SCD1 activity in liver samples (n = 10 per group). (i-j) Isolated primary cultured hepatocytes
overexpressing Phf2 and in which SCD1 expression was inhibited were incubated in the presence of palmitate (480 uM) for
24 h. i Hepatocyte DAG and TG content (n = 3). j Relative expression of Tnfa and IL6 (n = 3). All error bars represent mean =
SEM. Statistical analyses were made using unpaired t-test (a,c,d,f,h,i) or Anova, followed by Bonferonni’s test (j,k). *P <
0.01 GFP compared to Phf2, **P < 0.05 GFP compared to Phf2, *** P < 0.01 GFP compared to Phf2, £ P < 0.01 GFP/USi BSA
compared to GFP/USi palmitate, # P < 0.01 GFP/USi palmitate compared to Phf2/USi palmitate, $ P < 0.01 Phf2/USi
palmitate compared to Phf2/SCD1i palmitate.
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Supplementary Fig. 4. Phf2 diverts glucose fluxes to protect liver from oxidative stress. a Measurement of the proteasome
activity (n = 12 mice per group). b Schematic representation of the role of mitochondrial oxidative capacity and glucose
metabolism in the regulation of oxidative stress. Increased mitochondrial glucose and fatty acid oxidation is able to
generate the superoxide anion radical, due to electron leakage from complexes | and Il of the mitochondrial respiration
chain. This radical is dismutated by superoxide dismutase (SOD) into hydrogen peroxide (H,0,), which is finally detoxified
into water by glutathione peroxidase (GPx) and reduced glutathione (GSH). In addition, enhanced glucose flux into the
pentose phosphate pathway is able to generate NADPH, which is required to increase GPx activity for H,0, detoxification. c
Contribution of Phf2 overexpression to liver metabolic reprogramming based on gene expression data set and metabolomic
analysis. Genes that are increased in response to Phf2 overerexpression are indicated in green. Metabolic intermediates
that accumulate in the liver of Phf2 mice are indicated in red and the ones that are decreased are indicated in blue. All error
bars represent mean + SEM. Statistical analyses were made using unpaired t-test (a).
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Supplementary Fig. 5. Phf2 acts as a new ChREBP transcriptional co-activator. a Venn diagram showing the overlap between
genes that are up regulated by Phf2 or ChREBP overexpression in the liver of C57BL/6J mice (fold + 1.5 and P < 0.05). b Heat
map of known ChREBP upregulated genes from GFP and Phf2 mice (n = 5 per group). ¢ UCSC genome browser image
illustrating normalized tag counts for Phf2, ChREBP, H3K9me2, H3K4me3 and RNA polll at the promoter of known ChREBP-
regulated genes (LPK and SCD1) from cultured hepatocytes. (d,e) Primary cultured hepatocytes, in which Phf2 expression
was inhibited, were incubated 24h with either 5 or 25 mM glucose. d Western blot analysis of glycolytic and lipogenic
enzymes shown (n = 5). e De novo lipogenic rate, measured by tracing newly synthesized lipids from 14C-glucose for 2 h and
total TG contents shown (n = 5). (f,g) ChREBP expression was inhibited in primary cultured hepatocytes overexpressing Phf2.
After ChREBP silencing, hepatocytes were incubated 24 h with either 5 or 25 mM glucose. f Representative western blot
analysis of glycolytic and lipogenic enzymes (n = 3). g De novo lipogenic rate measured in vitro by tracing newly FA from 14C-
glucose for 2 h and hepatocyte TG content (n = 3). All error bars represent mean = SEM. Statistical analyses were made using
Anova, followed by Bonferonni’s test. *P < 0.05 USi 25 mM compared to USi 5 mM, **P < 0.01 Phf2i 25 mM compared to USi
25 mM, #P < 0.01 USi 25 mM compared to USi 5 mM, $ P < 0.01 Phf2/USi 25 mM compared to USi 25 mM, £ P < 0.01 Phf2/
ChREBPi 25 mM compared to Phf2/USi 25 mM.
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Supplementary Fig. 6 Phf2 H3K9me2 histone demethylase activity is essential to regulate ChREBP function. (a-d) FLAG-
tagged wild-type (wt) or W29A mutant of Phf2 were overexpressed in primary cultured hepatocytes. After Phf2
overexpression, hepatocytes were incubated in the presence of 5 or 25 mM glucose for 24 h. a ChIP experiments showing
the recruitment of FLAG-tagged Phf2 (WT or W29A) at the ChoRE-containing region of glycolytic and lipogenic gene
promoter (n = 3). b ChIP experiments for H3K9me2 at the SCD1 promoter (n = 3). ¢ Chromatin accessibility at the SCD1
promoter (n = 3). d ChIP experiments showing the recruitment of ChREBP at the SCD1 promoter (n = 3). e Expression of
glycolytic and lipogenic genes (n = 3). f TG contents (n = 3). g Demethylase activity of either FLAG-tagged wild-type (wt) or
W29A mutant of Phf2, immunoprecipitated (IP) from 293T cell lysates, was assessed using recombinant H3K9me2
methylated histone as substrate (n=2). (h-j) FLAG-tagged wild-type (wt) or H248A mutant of Phf2 were overexpressed in
primary cultured hepatocytes for 24 h. h Western blot analysis against glycolytic and lipogenic enzymes (n = 3). i
Expression of glycolytic and lipogenic genes (n = 3). j ChIP experiments showing the recruitment of FLAG-tagged Phf2 (WT
or H248A) at the ChoRE-containing region of glycolytic and lipogenic gene promoter (n = 3). All error bars represent mean
+ SEM. Statistical analyses were made using unpaired Anova, followed by Bonferonni’s test. *P < 0.01 Phf2 (wt)
compared to GFP, **P < 0.01 Phf2 (wt) compared to Phf2 (W29A or H248A), #P < 0.01 Phf2 (wt) 25 mM glucose compared
to GFP 25 mM glucose, £P < 0.01 Phf2 (wt) 25 mM glucose compared to Phf2 (W29A) 25 mM glucose.
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Supplementary Fig. 7 Phf2 H3K9me2 histone demethylase activity is essential to mediate its effects against oxidative stress.
(A) In vivo imaging measurement of Nrf2 activity on the ARE-luciferase (ARE-luc) construct after liver-specific Phf2
overexpression (n = 10 mice per group). (B-D) FLAG-tagged wild-type (wt) or H248A mutant of Phf2 were overexpressed in
primary cultured hepatocytes. After Phf2 overexpression, hepatocytes were incubated in the presence of palmitate (480 uM)
for 24 h. B, Representative western blots showing proteins involved in the defense against oxidative stress (n = 3). C, Relative
expression of anti-oxidative genes (n = 3). D, Relative ROS levels and measurement of hepatocyte apoptosis (n = 3). (E-G)
FLAG-tagged wild-type (wt) or W29A mutant of Phf2 were overexpressed in primary cultured hepatocytes. After Phf2
overexpression, hepatocytes were incubated in the presence of palmitate (480 uM) for 24 h. E, Representative western blots
showing proteins involved in the defense against oxidative stress (n = 3). F, Relative expression of anti-oxidative genes (n =
3). G, Relative ROS levels and measurement of hepatocyte apoptosis (n = 3). All error bars represent mean + SEM. Statistical
analyses were made Anova, followed by Bonferonni’s test. *P < 0.01 Phf2 (wt) compared to GFP, **P < 0.01 Phf2 (wt)
compared to Phf2 (W29A or H248A), #P < 0.01 GFP palmitate compared to GFP BSA, SP < 0.01 Phf2 (wt) palmitate compared
to GFP palmitate, £P < 0.01 Phf2 (wt) palmitate compared to Phf2 (H248A or W29A) palmitate.
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Supplementary Fig. 8 Phf2-driven Nrf2 activation protects the liver from the pro-fibrogenic response during NAFLD
development. Wild Type (WT) and Nrf2 knockout (Nrf2-KO) mice were injected with adenovirus overexpressing either GFP
or Phf2 and were studied 3 weeks later in the fed state. a MUFA/SFA ratio reflecting SCD1 activity (n = 10 per group). b
Relative expression of liver pro-inflammatory genes (n = 10 per group). c (left) Liver sections, stained with hematoxylin and
eosin (H&E), trichrome masson, a-SMA and collagen | are shown. (right) Representative western blot analysis of a-SMA
and collagen | in the liver (n = 10 per group). d Relative expression of liver TKT, GGPDH, GSS and Gpx4 (n = 10 per group). All
error bars represent mean + SEM. Statistical analyses were made using Anova, followed by Bonferonni’s test. *P < 0.01 WT/
GFP compared to WT/Phf2, **P < 0.01 Nrf2KO/GFP compared to Nrf2KO/Phf2, S P < 0.01 Nrf2KO/Phf2 compared to WT/

Phf2.
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Supplementary Fig. 9 Phf2 protects the liver from HFHSD-induced fibrogenesis. GFP or Phf2 were overexpressed through
AAV strategy in the liver of C57BI/6) mice fed with either a normal chow diet (NCD) or with a high fat and high sucrose
diet (HFHSD) for 16 weeks. Mice were then studied in the fed state. a Relative expression of liver pro-inflammatory genes
(n = 15 mice per group). b Western blot analysis of the PI3K/Akt signaling pathway in white adipose tissue and skeletal
muscle (n = 10 per group). ¢ Expression of pro-fibrogenic genes (n = 15 mice per group). All error bars represent mean =
SEM. Statistical analyses were made using Anova, followed by Bonferonni’s test. *P < 0.01 HFHSD/GFP compared to
NCD/GFP, **P < 0.01 HFHSD/Phf2 compared to HFHSD/GFP.
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Supplementary Tables

Supplementary Table 1

Metabolic characteristics of liver-specific Phf2 overexpressing mice
Mice, injected with either GFP or Phf2 overexpressing adenovirus, were studied 3 weeks later in the fed state.
(n=15 per group). Statistical analyses were made using unpaired t-test.

* P < 0.05 Phf2 compared to GFP

Food intake (g/day)

Body weight (g)

Body weight gain (g)

Liver weight (g)

Epididimal white adipose tissue weight (g)
Post prandial glycemia (mg/dl)

Post prandial insulinema (ng/ml)

Plasma Alanine aminotransferase (units/I)
Plasma Aspartate aminotransferase (units/I)
Plasma triglycerides (mg/dl)

Plasma free fatty acids (mmol/I)

Liver Triglycerides (mg /g of liver)

Liver DAG (mg /g of liver)

Liver ceramides (mmol / mg of liver)
Liver cholesterol esters (mg /g of liver)
FA uptake (nmol/h/mg liver)

FA esterification (nmol/h/mg liver)
Lipogenesis (nmol/h/mg liver)

Liver Glycogen (mg/g of liver)

Liver Reduced glutathione (GSH)

Liver Oxidized glutathione (GSSR)

Liver GSH/GSSR ratio

Skeletal muscle glycogen (mg / g)

Supplementary Table 2

GFP Phf2
1.74 £ 0.11 2.37 £ 0.08*
28.1 £ 1.04 23.4 £ 1.18%*
7.4 +1.12 1.3 £ 1.56*
0.81 + 0.04 1.87 £ 0.07*
0.523 + 0.07 0.294 + 0.05*
155+ 5.4 122 +£ 2.7*
12.32 £ 0.7 10.02 +£ 0.5*%

30+ 5.4 28.5 £ 3.5
12.9 + 3.1 10.7 £ 5.7
0.98 + 0.04 1.74 + 0.05%
1.45 £ 0.18 1.28 £ 0.08

30.25 +£ 1.74 165.23 + 3.85%
0.58 + 0.04 1.25 + 0.08*
17.51 £ 2.78 15.23 + 1.56
0.22 + 0.02 0.97 £+ 0.05*
155.75 £ 6.12  315.21 + 8.37*%
13.42 £ 1.02 25.01 £+ 2.24*
18.14 + 3.29 27.98 + 2.18%*
7.51 £1.14 3.87 £ 1.07*
0.78 £ 0.02 1.57 + 0.05*
0.87 £ 0.17 1.01 £ 0.14
0.89 = 0.03 1.55 £ 0.04*
7.5+0.2 7.8+04

Metabolic characteristics of WT and Nrf2-KO mice overexpressing Phf2
GFP or Phf2 were overexpressed in the liver of Wild Type (WT) and Nrf2 knockout (Nrf2-KO) mice.
Mice were studied 3 weeks later in the fed state.

(n=12 per group). Statistical analyses were made using Anova followed by Bonferonni’s test.
* P < 0.05 Phf2 (WT or Nrf2-KO) compared to GFP (WT or NRF2-KO)

Glycemia (mg/dl)

Body weight (g)

Body weight gain (g)

Liver weight (g)

Epididimal white adipose tissue weight (g)
Plasma Alanine aminotransferase (units/I)
Plasma Aspartate aminotransferase (units/I)
Plasma triglycerides (mg/dl)

Plasma free fatty acids (mmol/I)

Liver triglycerides (mg/g)

WT Nrf2-KO
GFP Phf2 GFP Phf2

145.24 + 4.12 107.18 £ 1.36 158.66 £ 7.89 128.10 + 6.33

29 £ 0.94 25.3 £1.01 25.6 £ 1.14 24.6 £ 0.87

6.3 = 1.23 1.1 £ 1.47%* 6.4 £1.24 1.4 £ 1.26%
1.47 £ 0.10 2.37 £ 0.06%* 1.03 + 0.02 2.25 £ 0.04
0.471 £+ 0.02 0.238 + 0.02*  0.466 + 0.05 0.266 + 0.03*
42.25 £ 2.72 55.78 + 3.38 47.56 £ 7.19 127.84 + 6.47*
10.13 £ 1.43 18.74 £ 2.77 14.72 £ 4.31 33.98 £ 4.11%*
0.88 £+ 0.09 1.52 £ 0.11%* 1.12 £ 0.07 1.77 £ 0.14%*
1.24 £ 0.14 1.38 = 0.45 1.25 £ 0.27 1.36 £ 0.17
45.20 £ 5.19 300.14 + 10.28* 45.75 + 7.37 320.48 + 17.34%*
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Supplementary Table 3

Characteristics of liver-specific GFP and Phf2 overexpressing mice fed on NCD or HFHSD diets for 16 weeks

GFP or Phf2 were overexpressed through AAV strategy in the liver of seven-week-old male C57Bl/6] mice.
Mice were then fed with either a chow diet (NCD) or with a high fat and high sucrose diet (HFHSD) for 16 weeks.

Mice were studied in the fed state.

(n=15 per group). Statistical analyses were made using Anova followed by Bonferonni’s test.

* P < 0.05 GFP NCD compared to GFP HFHSD, * P < 0.05 GFP HFHSD compared to Phf2 HFHSD, # P < 0.05 GFP NCD compared to Phf2 NCD

Food intake (g/day)

Body weight gain (g)

Epididimal white adipose tissue weight (g)
Serum insulin (ng/ml)

Glycemia (mg/dl)

Plasma Aspartate aminotransferase (units/I)
Plasma Alanine aminotransferase (units/I)
Plasma free fatty acids (mmol/I)

Plasma triglycerides (mg/dl)

Reduced glutathione (nmol/mg protein)
Oxidized glutathione (nmol/mg protein)

GFP Phf2
NCD HFHSD NCD HFHSD
1.86 + 0.05 2.21 £ 0.02 2.28 £ 0.03#  2.90 + 0.09**
7.16 £ 1.05 2491 + 2.32*% 4,28 £ 1.11#  6.50 £ 1.76**
1.24 £ 0.12 2.53 £ 0.20%* 0.61 + 0.08# 1.52 £+ 0.23**
0.51 £ 0.10 4.41 + 1.54% 0.31 £ 0.21 0.76 £ 0.45**
139.76 £ 15.03 180.38 + 17.44* 124.54 + 8.14 129.76 + 15.72**
10.22 £ 1.15 48.79 £ 2.88* 10.72 £ 3.32 12.90  2.08**
39.67 + 1.48 141.71 £ 3.72* 33.57 £ 2.64 44.24 + 3.51**
0.77 £ 0.04 0.67 £ 0.13 1.985 + 0.14 0.81 £ 0.05
0.56 £ 0.09 0.86 + 0.14* 0.54 + 0.08 0.76 £ 0.22
25.12 £ 1.02 15.08 + 2.05*% 45.26 + 1.47# 48.75 £ 4,35%*
0.85 £ 0.05 2.11 + 0.31* 0.77 £ 0.02 0.81 £+ 0.07**

Supplementary Table 4

Clinical and biochemical characteristics of lean and obese patients
(n=10 per group). Statistical analyses were made using Anova followed by Bonferonni’s test.

* P < 0.05 compared to control NoFL Steatosis NASH
Age 47.3 +12.87 38.1 + 10.04 53.4 + 8.94
BMI Kg/m?> 23.8 + 1.78 48.5 + 5.75% 44,7 + 4,35%
Fasted glycemia (mmol/I) 4.4 + 0.61 4.7 £ 0.26 10.8 £ 2.97*
Glycemia at 120 min after HPO (mmol/I) 5.2 £ 0.84 5.7 £ 0.97 18.6 £ 3.75%*
Fasted insulinemia (IU/I) 5.9 £ 1.68 12.6 £ 5.04* 50.8 £ 10.72%*
HbAlc (%) 5.51 £ 0.73 5.40 £ 0.12 9.58 + 0.42%*
HOMA-IR 0.7 £ 0.33 1.5 £ 0.63 6.6 £ 1.43%
Alanine aminotransferase (IU/I) 22.1 £ 5.17 28.6 = 3.55 55.8 £ 10.11%*
Aspartate aminotransferase (IU/l1) 23.4 £ 12.69 32.2 + 18.56 112.2 £ 8.77*
ASAT/ALAT ratio 1.05 £ 0.17 1.12 £0.72 2.01 +£0.38%*
v-GT (IU/l) 48.1 + 5.04 25.4 + 7.14 98.8 +10.06*
Plasma triglycerides (mg/dl) 1.2 £ 0.40 1.69 £ 0.65 2.43 £ 1.03%*
% of hepatocytes with steatosis 4.4 £ 0.61 62 £ 9.18%* 65 + 16.74*
NAS score 0.4 = 0.53 2.5 £ 0.11%* 6.4 = 0.32%
Supplementary Table 5:
Histological scoring used for NAS and fibrosis determination
(n=10 per group)
NoFL Steatosis NASH
Steatosis
0 (n) 6 0 0
1(n) 4 0 0
2 (n) 0 5 4
3 (n) 0 5 6
Hepatocyte ballooning
0 (n) 10 10 0
1(n) 0 0 3
2 (n) 0 0 7
Lobular inflammation
0 (n) 10 10 0
1(n) 0 0 3
2 (n) 0 0 7
3 (n) 0 0 0
Fibrosis Stage
0 (n) 10 6 0
1(n) 0 3 0
la (n) 0 1 0
ib (n) 0 0 0
1c (n) 0 0 0
2 (n) 0 0 4
3 (n) 0 0 6
4 (n) 0 0 0
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