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Supplemental Material and Methods
Data-Pre-Processing
According to Pfefferbaum et al.1, the macro-structural scores were the result of processing structural MRIs via a pipeline that
included skull stripping based on majority voting2 across multiple maps generated by publicly available software packages
and a label map based on the SRI24 atlas3. This yielded intracranial volume, supratentorial volume, pons, corpus callosum,
subcortical white matter (including the centrum semiovale), and lateral ventricular volume. Furthermore, FreeSurfer4 was
applied to the skull-stripped MRIs to create bilateral surface area, volume, and thickness of frontal, temporal, parietal, occipital,
cingulate cortices derived from the Desikan-Killiany atlas5.

According to Pohl et al.6, the micro-structural scores were generated by excluding bad single shots from DTI scans,
correcting those scans for echo-planar distortion7, and performing motion correction. All DTI scans were skull-stripped and
applied to CAMINO’s linear single tensor model approach8 to infer fractional anisotropy, mean diffusivity, axial diffusivity, and
radial diffusivity maps. The four maps were non-rigidly aligned to the SRI24 atlas3 and corrected for scanner differences based
on human phantom data6. The fractional anisotropy-corrected maps of all subjects were transformed into fractional anisotropy
skeletons via Tract-Based Spatial Statistics9 and the template of the fractional anisotropy skeleton was mapped to generate
mean diffusivity, axial diffusivity, and radial diffusivity skeletons. Finally, the pipeline computed 112 DTI scores by reducing
each skeleton to the mean values of 28 regions, which were defined according to the Johns Hopkins University atlas and its
mask10 aligned to the SRI24 atlas6.

Cross-Validation
The accuracy of each implementation was measured via cross-validation. Cross-validation is a popular approach in the machine
learning community as it minimizes the risk of reporting overly optimistic accuracy scores by repeatedly training and testing an
implementation on separate subsets of the data. Specifically, the data set was divided into two non-overlapping subsets so that
each subset preserved most of the characteristics of the complete data set (e.g., for each subset, the ratio of samples between the
two cohorts was consistent and the two cohorts were matched with respect to ethnicity, sex, scanner type, and supratentorial
volume). For both subsets, the cohorts were not matched with respect to age (p < 0.0001). With respect to socioeconomic
status11, one subset matched (p = 0.138) and one did not (p = 0.013). Due to the relatively large p-value of socioeconomic
status (p = 0.0036) and the small number of regular drinkers (N = 34) of the entire data set, having to match both subsets with
respect to socioeconomic status would have required omitting samples from the study, which would have compromised the
integrity of this analysis.

Each implementation was then trained on the first subset using a variety of algorithmic parameter settings. Specifically, the
search space for the sparsity setting ‘NK’ of the logistic classifier was bounded by the smallest pattern (consisting of more than
one element) and half of the imaging scores, which for JoiST R-GAM-Class was NK ∈ {2,4, . . . ,16}, for JoiDT I-GAM-Class
was NK ∈ {2,4, . . . ,56}, and for all other implementation was NK ∈ {2,4, . . . ,72}. In addition, the robust regression of
Seq-GAMRob-Class required setting the optimal ‘scaling’ parameter, for which the search range was {0,0.5, . . . ,6}. Note, the
classification accuracy of Seq-GAMRob-Class on the training data varied by almost 5% depending on the specific setting of that
parameter. Finally, the joint implementations (i.e., JoiST R-GAM-Class, JoiDT I-GAM-Class, and Joi-GAM-Class) weighted the
importance of the GAM model over the logistic classifier through the weight ‘γ’, which varied between {0.1,0.2, . . . ,0.9} with
γ = 0.1 focusing mostly on improving classification accuracy and with γ = 0.9 aiming to determine the optimal GAM model.

For each implementation and parameter setting, the training determined the optimal values for the GAM variables
αi,0, . . . ,αi,3 for each image score ‘i’ and selected the corresponding residual image scores (i.e., patterns) that lead to the highest
normalized-accuracy of the classifier on the training data. Computing the normalized-accuracy required first recording the
accuracy of the classifier in correctly labeling subjects of the minimal alcohol exposed cohort and the accuracy of correctly
labeling the regular drinkers, and then computing the average across the two resulting (cohort-specific) accuracy scores. For
each implementation, the classifiers (and corresponding pattern) across all training runs (i.e., setting) were then combined into a
single ensemble of classifiers12, which computed the weighted average across the decisions of all classifier with the weight of a
classifier being defined by its training accuracy.

To ‘test’ the ensemble of classifiers of each implementation, it was applied to the second subset and the labeling decisions
were recorded with respect to assigning a sample to the minimal alcohol exposed cohort or regular drinking cohort. The process
of training and testing was repeated a second time using the second subset for training and the first subset for testing. The testing
accuracy of each implementation was then summarized by computing a number of variables (i.e., sensitivity, specificity, Area
Under the receiver operating characteristic Curve (AUC), normalized-accuracy, matched-accuracy, age-test, and socioeconomic
status test) with respect to the cohort assignment of the testing data. To compute the matched-accuracy, 34 minimal alcohol
exposed adolescents were matched to the 34 regular drinking subjects with respect to all confounding factors (age: p=0.12;
socioeconomic status: p = 0.2; supratentorial volume: p = 0.61; sex: p = 1.0; ethnicity: p = 1.0; scanner: p = 1.0). Then
the normalized-accuracy was computed with the respect to the matched-set. Normalized-accuracy on the entire data set and
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Table S1: Variables used in the mathematical models of the sequential and joint approach

N the number of all subjects

NF the number of measurements

ND the number of demographic scores

s a subject

is image scores of s

I image scores of all subjects

ds confounding scores of s

D confounding scores of all subjects

rs residual scores of s

R residual scores of all subjects

zs label of s

Z group labels of all subjects

Φ parameters of GAM

σs subject specific covariance of residual

σ uniform covariance of residual across all subjects

ω sparsity constrained weight vector of the logistic regression function

NK
the upper bound on the number of non-zero elements in ω according
to the sparsity constrain

C Set of indices of the control subjects

SNK sparse search space

S non-sparse search space

ν label offset for logistic function

ψ unconstrained weight vector for optimizing logistic function

ρ parameter for penalty decomposition optimization

γ weight between GAM and logistic function in joint model

c constant representing the uninformative, uniform distribution of regular drinkers

matched-accuracy were labeled significant if the two-tailed Fisher’s exact test13 applied to classifications of the corresponding
test data returned p <0.002.

To compute the age-test, the minimal alcohol exposed adolescents of the NCANDA data set were divided into an older
(i.e., above the age of 15.4 years) and younger (i.e., below the age of 15.5 years) cohort, so that the cohorts were almost
equal in size (older cohort: N=335; younger cohort: N=336) and matched with respect to all confounding factors but age
(supratentorial volume : p= 0.4410, socioeconomic status: p=0.1277, sex: p=0.2026, race: p=0.1685, scanner: p=0.1334). The
two-tailed Fisher’s exact test was then applied to the earlier recorded labelings in order to see if that labeling was significantly
better than chance in correctly assigning minimal alcohol exposed individuals to one of those two cohorts. Implementations
passed the age-test if their p > 0.01, i.e., the effect of age was magnitudes smaller than the effect of regular drinking for those
implementations that reported significant normalized-accuracy and significant matched-accuracy.

Similar to the age-test, an implementation passed the socioeconomic status test if the two-tailed Fisher’s exact test returned
p > 0.01 with respect to the classification results correctly assigning minimal alcohol exposed individuals to the cohort with
higher socioeconomic status (≥ 17) or lower socioeconomic status (< 17). These two cohorts, however, were only matched
with respect to age (p=0.26), sex (p=0.18), and scanner (p=0.24) as socioeconomic status was highly correlated with ethnicity
and supratentorial volume in minimal alcohol exposed individuals (p < 0.001 according to Pearson’s correlation).

For each implementation, we also recorded the frequency of patterns appearing across all training runs. The frequency of a
pattern of size ‘NK’ was defined by the number of times it appeared as part of a pattern selected by a training run divided by the
number of training runs that searched for patterns of at least size ‘NK’. This computation thus account for larger patterns not
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Table S2: Acronyms

MRI Magnetic resonance imaging

GAM Generalized additive model

NCANDA National Consortium on Alcohol and NeuroDevelopment in Adolescence

AUD Alcohol use disorder

DTI Diffusion tensor imaging

HIV Human immunodeficiency virus

AUC Area under the receiver operating characteristic curve

GE 3T General Electric Discovery MR750 scanner

Siemens 3T Siemens Tim Trio scanner

age-test Test if classifier is impacted by the confounding factor age

No-GAM-Class Sparsity constrained classification on the raw scores

Seq-GAM-Class Sequential approach with ordinary GAM and sparsity-constrained classification

Seq-GAMRob-Class Sequential approach with robust GAM and sparsity-constrained classification

JoiST R-GAM-Class Joint model confined to the structural measurements.

JoiDT I-GAM-Class Joint model confined to the DTI measurements.

JoiOPT -GAM-Class Joint model only optimizing for the group separation

Joi-GAM-Class Joint model optimizing for regressing out confounding factors and the group separation

being able to be part of patterns selected by training runs searching for smaller ones. Patterns of an implementation were then
labeled as highly informative for separating the two cohorts if their frequency was higher than 50%, i.e., they appeared in a
majority of patterns (of the same size or larger) selected by training runs.

Notes on Training of Sequential and Joint Methods
The computational time associated with convergence (i.e., the training of the Matlab implementation of Joi-GAM-Class) was
up to 5 minutes on a single core PC. One way of speeding up the training of the method is to replace Penalty Decomposition
with a more commonly used sparse solver14 that determined a sparse solution by relaxing the l0-‘norm’ with the l1-norm ‖ · ‖1.
The corresponding joint implementation again outperformed the corresponding sequential one (i.e., sparse logistic classification
based on the l1-norm). However, this implementation was significantly less accurate than Joi-GAM-Class so that the results
were omitted from Table 1 for clarity.

Once the joint method converged, one can readily show that applying the resulting optimal parameter setting (Φ̂,ν̂ , ω̂) to
the joint or sequential approach results in the same classification. In other words, measuring the testing accuracy of the joint
approach can be performed by first regressing out the effect of confounding factors from the raw imaging scores before applying
a logistic classifier solely to the residual image scores, i.e., the classifiers decision is done without knowing the confounding
factors.
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