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SUPPLEMENTARY INFORMATION 

Derivation of Relationship between Crown Length and Capillary Number 

The crown length is the cumulative length of blood vessels of all branching levels within the 

network, namely: 

𝐿𝑐 =∑𝑛𝑖𝐿𝑖
(1) 

Based on the average branching ratio (𝑛𝑖+1 𝑛𝑖 = 𝐵𝑟⁄  , i=0,…,m; where n and i are number of

vessels and branching level respectively) and the average length ratio ((𝐿𝑖+1 𝐿𝑖 = Brγ⁄ , where L

is the average length of vessel in each branching level and γ is an empirical parameter, the average 

length in each branching level is written as: 

Li = (Brγ)𝑚−𝑖Lcp (2) 

 where m and Lcp are the maximum branching level and the length of vessels corresponding to 

capillaries. A combination of Eq.  (1) and Eq.  (2) results in: 

𝐿𝑐 = (∑𝐵𝑟(𝑖−𝑚)(1−𝛾))𝐿𝑐𝑎𝑝𝑁𝑐

𝑚

𝑖=𝑜

(3) 

where 𝑁𝑐  is the number of capillaries in the stem-crown system. Since the geometric series 

converges to a constant value, the above equation can be written as: 

𝐿𝑐 = 𝐾𝐿𝑁𝑁𝑐 (4)

Similarly, crown volume is the cumulative volume of blood vessels of all branching levels within 

the network, namely: 

𝑉𝑐 = ∑𝑛𝑖(
𝜋

4
∗ 𝐿𝑖𝐷𝑖

2) (5) 

Based on the assumption that vessel length and diameter scales at each branching level ( 

𝐿𝑖+1 𝐿𝑖 = 𝐵𝑟𝛾⁄  and 𝐷𝑖+1 𝐷𝑖 = 𝐵𝑟𝛼⁄ ), and using branching ratio and number of capillaries (𝑁𝑐 =

𝐵𝑟𝑚, where m is maximum number of branching levels), a relationship between crown volume

and number of capillary is derived as follows: 

𝑉𝑐 =
𝜋

4
∗ 𝑉𝑐𝑎𝑝∑𝑁𝑐

(i+(m−i)(2α+𝛾)) 𝑚⁄

𝑚

𝑖=𝑜
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Hence, we hypothesize a power law relationship between crown volume and capillary number in 

as follows: 

𝑽𝒄 = 𝑲𝑽𝑵(𝑵𝒄)
𝝀 (6) 

where 𝐾𝐿𝑁 is an approximately constant value.

Existing Database on Morphometry of Vascular Trees.  Based on available morphometric data 

of vascular trees in various organs and species, the transit time scaling laws are quantitatively 

assessed. The analysis considers a formulation for tree structures of various species and organs 

from the most distal vessels to the only first segment of capillary vessels, but excluding the 

capillary network which is not a tree-like structure. The following morphometric data bases were 

used to validate the scaling law formulations for transit time: coronary arterial trees of pig hearts 

by Kassab et al. (46), pulmonary arterial tree of rats from the study of Jiang et al. (24), pulmonary 

arterial/venous trees of cats from Yen et al. (15, 16), pulmonary arterial trees of humans from 

Singhal et al. (12, 13) and Huang et al. (23), pulmonary venous trees of humans from Horsfield 

and Gordon (14) and Huang et al. (23), retractor muscle arterial tree of hamsters from Ellsworth 

et al. (18), mesentery arterial tree of rats from Ley et al. (20), sartorius muscle arterial tree of cats 

from Koller et al. (17), and bulbular conjunctiva arterial/venous trees of humans and the omentum 

arterial tree of rabbits from Fenton and Zweifach (21). The entire arterial network was 

reconstructed down to the first capillaries (<8µm). Missing data from the cast were reconstructed 

based on histological data (<40µm) using a computational algorithm. Details of reconstruction 

algorithm can be found in ref. (11). 

Network Hemodynamic Analysis.  To validate scaling laws, we carried out a network flow 

analysis based on two different models: 1) Asymmetric full model and 2) Simplified symmetric 

model.  For the first model, the asymmetric coronary arterial tree has been reconstructed in pig 

hearts by using the growth algorithm introduced by Mittal et al. (22) based on measured 

morphometric data of Kassab et al. (46). Briefly, under laminar and steady flow, the Poiseuille’s 

law for a fluid can be stated as: 

(7) 

where Qij is the volumetric flow, in a vessel between any two nodes, represented by i and j.  Pij 

is the pressure differential given by Pij = Pi-Pj, and vessel conductance, Gij, is given by

 where Dij, Lij, and ij are the diameter, length, and viscosity, respectively, between 

nodes i and j.  The variation of apparent viscosity with vessel diameter is given by Pries et al. (47).  

Two or more vessels emanate from the jth node anywhere in the tree with the number of vessels 

converging at the jth node being mj. If we combine conservation of mass with above equation, we 

obtain a set of linear algebraic equations in pressure for M nodes in the network, namely: 

(8) 
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The system of equations reduce to a set of simultaneous linear algebraic terms for the nodal 

pressures once the conductances are evaluated from the geometry, and suitable boundary 

conditions are specified.  This system is based on the assumption that each blood vessel can be 

modeled as a resistor while the resistance is a function of vessel’s geometry. The apparent viscosity 

is also a function of the vessel diameter that models the Fåhræus–Lindqvist effect. Boundary 

conditions were prescribed by assigning an inlet pressure of 120 mmHg and a uniform pressure of 

25 mmHg at the outlet of the first capillary segment. This system of equations was then solved 

using a General Mean Residual algorithm (48) to determine the pressure values at all internal nodes 

of the arterial tree.  The pressure drops as well as the corresponding flows were subsequently 

calculated.    

For the second model, we adapted a simple symmetric model that simulates the average 

statistical data of the trees.  Physically, the symmetric model is equivalent to assuming that all the 

vessel elements in any order or generation are of equal diameter and length, and are arranged in 

parallel, and the blood pressures at all of the junctions between specific orders of vessels are equal

(49). In this simplified circuit, the flow rate in each element of order n is Qmax/Nn where Qmax is 

the total flow rate into the coronary arterial tree and Nn is the total number of vessels at order n.  

The Qmax is determined as the ratio of pressure drop and the equivalent resistance of the entire tree 

(49). The resistance, R, is computed using Poiseuille’s equation ( , where represents 

the viscosity of blood; and l and D represent the length and diameter of a vessel segment, 

respectively).  The equivalent resistance of a crown or the entire tree is then determined by the 

summation of the vessel segments either in series or in a parallel arrangement.   

Bootstrapped Method. The bootstrap is a powerful tool to check statistical inferences where the 

significance tests of regressions are questionable due to the fact that the error may not be normally 

distributed (50). This method is based on the resampling with the replacement of the original data 

to obtain the distribution of the desired statistics. Hence, in cases where the error might be heavy-

tailed, it would provide to compare results with standard parametric assumptions. Specifically, we 

used this technique to test if the confidence intervals obtained for the asymmetric data sets are 

valid as the regressions visually seem better for the larger vessels. Since the morphometric data 

span several orders of magnitude,  this method enables us to obtain the distribution of the scaling 

exponents, the standard error and the confidence interval of resampled data. We used 1,000 

bootstrapped data sets resampled based on the bootstrap technique to calculate the confidence 

intervals, the standard error and the mean scaling exponents (please see Fig. S1). Further, the 

Pearson correlation coefficients for the flow-capillary, length-capillary and transit time-length and 

volume relations were presented, where linear relationships were hypothesized, to compare with 

the r-squared obtained from the least-square method for nonlinear regression (please see Fig. S2). 
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Figure S1. The histograms of the bootstrapped scaling exponents (𝜆) for the asymmetric 

data of pig. a,b,c) flow-capillary relation d,e,f) length-capillary relation g,h,i) volume-capillary 

relation j,k,l) transit time relationship with length and volume. The dashed lines show the mean 

scaling exponents, SE is the standard error shown in each panel, RCA, LCX, and LAD stand for 

right coronary artery, left circumflex artery, and left anterior descending artery respectively. 
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Figure S2. The histograms of the bootstrapped Pearson correlation coefficient for the 

asymmetric data of pig coronary arterial tree. a,b,c) linear flow-capillary relation d,e,f) linear 

length-capillary relation g,h,i) linear transit time relationship with length and volume. The dashed 

lines show the mean scaling exponents, SE is the standard error shown in each panel, RCA, LCX, 

and LAD stand for right coronary artery, left circumflex artery, and left anterior descending artery 

respectively. 


