SUPPLEMENTARY INFORMATION

Derivation of Relationship between Crown Length and Capillary Number

The crown length is the cumulative length of blood vessels of all branching levels within the

network, namely:
Le = Z L, (1)

Based on the average branching ratio (n;,,/n; = Br, i=0,...,m; where n and i are number of
vessels and branching level respectively) and the average length ratio ((L;;,/L; = BrY, where L
is the average length of vessel in each branching level and y is an empirical parameter, the average
length in each branching level is written as:

L = (Bry)m_i]-‘cp (2)

where m and Lp are the maximum branching level and the length of vessels corresponding to
capillaries. A combination of Eq. (1) and Eq. (2) results in:

m
L, = (2 Bri=ma-myL N )
i=o0
where N, is the number of capillaries in the stem-crown system. Since the geometric series
converges to a constant value, the above equation can be written as:

L. = K yN. 4)

Similarly, crown volume is the cumulative volume of blood vessels of all branching levels within
the network, namely:

Ve =Zni(%*LiDi2) ®)

Based on the assumption that vessel length and diameter scales at each branching level (
Liy1/L; = BrY and D;,,/D; = Br%), and using branching ratio and number of capillaries (N, =
Br™, where m is maximum number of branching levels), a relationship between crown volume
and number of capillary is derived as follows:

m
Vo =V Z N, (+Hm=D@a+y)/m

i=o0



Hence, we hypothesize a power law relationship between crown volume and capillary number in
as follows:

Vc = KVN (IVC)/1 (6)

where K, , is an approximately constant value.

Existing Database on Morphometry of Vascular Trees. Based on available morphometric data
of vascular trees in various organs and species, the transit time scaling laws are quantitatively
assessed. The analysis considers a formulation for tree structures of various species and organs
from the most distal vessels to the only first segment of capillary vessels, but excluding the
capillary network which is not a tree-like structure. The following morphometric data bases were
used to validate the scaling law formulations for transit time: coronary arterial trees of pig hearts
by Kassab et al. (46), pulmonary arterial tree of rats from the study of Jiang et al. (24), pulmonary
arterial/venous trees of cats from Yen et al. (15, 16), pulmonary arterial trees of humans from
Singhal et al. (12, 13) and Huang et al. (23), pulmonary venous trees of humans from Horsfield
and Gordon (14) and Huang et al. (23), retractor muscle arterial tree of hamsters from Ellsworth
et al. (18), mesentery arterial tree of rats from Ley et al. (20), sartorius muscle arterial tree of cats
from Koller et al. (17), and bulbular conjunctiva arterial/venous trees of humans and the omentum
arterial tree of rabbits from Fenton and Zweifach (21). The entire arterial network was
reconstructed down to the first capillaries (<8um). Missing data from the cast were reconstructed
based on histological data (<40um) using a computational algorithm. Details of reconstruction
algorithm can be found in ref. (11).

Network Hemodynamic Analysis. To validate scaling laws, we carried out a network flow
analysis based on two different models: 1) Asymmetric full model and 2) Simplified symmetric
model. For the first model, the asymmetric coronary arterial tree has been reconstructed in pig
hearts by using the growth algorithm introduced by Mittal et al. (22) based on measured
morphometric data of Kassab et al. (46). Briefly, under laminar and steady flow, the Poiseuille’s
law for a fluid can be stated as:
7 ()
0= 18 "i%

where Qjj is the volumetric flow, in a vessel between any two nodes, represented by i and j. APj;

is the pressure differential given by APjj = Pj-Pj, and vessel conductance, Gij, is given by
4
G, = m IU_ where Djj, Ljj, and pjj are the diameter, length, and viscosity, respectively, between
ij —ij
nodes i and j. The variation of apparent viscosity with vessel diameter is given by Pries et al. (47).
Two or more vessels emanate from the jth node anywhere in the tree with the number of vessels
converging at the jth node being mj. If we combine conservation of mass with above equation, we

obtain a set of linear algebraic equations in pressure for M nodes in the network, namely:

i[Pi — Pjpij =0

(8)



The system of equations reduce to a set of simultaneous linear algebraic terms for the nodal
pressures once the conductances are evaluated from the geometry, and suitable boundary
conditions are specified. This system is based on the assumption that each blood vessel can be
modeled as a resistor while the resistance is a function of vessel’s geometry. The apparent viscosity
is also a function of the vessel diameter that models the Fahreeus—Lindqvist effect. Boundary
conditions were prescribed by assigning an inlet pressure of 120 mmHg and a uniform pressure of
25 mmHg at the outlet of the first capillary segment. This system of equations was then solved
using a General Mean Residual algorithm (48) to determine the pressure values at all internal nodes
of the arterial tree. The pressure drops as well as the corresponding flows were subsequently
calculated.

For the second model, we adapted a simple symmetric model that simulates the average
statistical data of the trees. Physically, the symmetric model is equivalent to assuming that all the
vessel elements in any order or generation are of equal diameter and length, and are arranged in
parallel, and the blood pressures at all of the junctions between specific orders of vessels are equal
(49). In this simplified circuit, the flow rate in each element of order n is Qmax/Nn Where Qmax is
the total flow rate into the coronary arterial tree and N is the total number of vessels at order n.
The Qmax is determined as the ratio of pressure drop and the equivalent resistance of the entire tree

128l
(49). The resistance, R, is computed using Poiseuille’s equation (R = ﬂDﬁl , Where u represents

the viscosity of blood; and | and D represent the length and diameter of a vessel segment,
respectively). The equivalent resistance of a crown or the entire tree is then determined by the
summation of the vessel segments either in series or in a parallel arrangement.

Bootstrapped Method. The bootstrap is a powerful tool to check statistical inferences where the
significance tests of regressions are questionable due to the fact that the error may not be normally
distributed (50). This method is based on the resampling with the replacement of the original data
to obtain the distribution of the desired statistics. Hence, in cases where the error might be heavy-
tailed, it would provide to compare results with standard parametric assumptions. Specifically, we
used this technique to test if the confidence intervals obtained for the asymmetric data sets are
valid as the regressions visually seem better for the larger vessels. Since the morphometric data
span several orders of magnitude, this method enables us to obtain the distribution of the scaling
exponents, the standard error and the confidence interval of resampled data. We used 1,000
bootstrapped data sets resampled based on the bootstrap technique to calculate the confidence
intervals, the standard error and the mean scaling exponents (please see Fig. S1). Further, the
Pearson correlation coefficients for the flow-capillary, length-capillary and transit time-length and
volume relations were presented, where linear relationships were hypothesized, to compare with
the r-squared obtained from the least-square method for nonlinear regression (please see Fig. S2).



Histograms of the bootsrapped scaling exponet (1) distribution
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Figure S1. The histograms of the bootstrapped scaling exponents (1) for the asymmetric
data of pig. a,b,c) flow-capillary relation d,e,f) length-capillary relation g,h,i) volume-capillary
relation j,k,1) transit time relationship with length and volume. The dashed lines show the mean
scaling exponents, SE is the standard error shown in each panel, RCA, LCX, and LAD stand for
right coronary artery, left circumflex artery, and left anterior descending artery respectively.

Histograms of the bootsrapped Pearson correlation coefficients

Flow o« (number of capillaries)

150

RCA  semaemedt]

Length o« (number of capillaries)

Transit Time = Crown Length « (Crown Length)

[Hse=2.0845¢-08| 1
'

[Hse=1.5037e-07

[) 0
0.536002 0.000084 0.080896 0.800908 099997 0999975 099998  0.999985 0.99999  0.999999.9999982 0.9999986 0.999999 0.9999994
250 250
LAD :SEILWWGQT LAD 1 :SEM.U?Z@&-‘J‘.’
i I
\ I
200 | 2000 h \
e) . )
150 150
100 100
50 50
0 0
0.099994 0.999995 0,999996 0.999997 0.099998 0.999990 1  0.999995 0.099996 0.999997 0.099998  (0.999999 1
180 0679008 180 160 ' T
Dse=s.6720.05] s 4
1e0} LCX 0 LCX Bsesstisearl| 1 LCX
1 ) 140 f) 120
120 120 100
100 100
80
B0 80
80 60 &0
20 40 40
20 20 20
0 0

0.999965 0.99997 0.999975 0.99998 0.999985 0.99999 0.999995

0
0.999995 0.999996 0.999997 0.999998 0.999989

1

0.999994 0.999996 0.999998 1



Figure S2. The histograms of the bootstrapped Pearson correlation coefficient for the
asymmetric data of pig coronary arterial tree. a,b,c) linear flow-capillary relation d,e,f) linear
length-capillary relation g,h,i) linear transit time relationship with length and volume. The dashed
lines show the mean scaling exponents, SE is the standard error shown in each panel, RCA, LCX,

and LAD stand for right coronary artery, left circumflex artery, and left anterior descending artery
respectively.



