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1. The systems design space methodology for characterizing the 43 

phenotypic repertoire of biochemical circuits 44 

1.1. Basic framework 45 

 The analysis of the dynamic properties of the PTTRS is based on the systems design 46 

space methodology [1–6], with the modifications described below relative to the published 47 

technique.  These modifications aim to improve the handling of cycles and moiety conservation 48 

relationships.  49 

The model in Figure 1 translates into the following system of ordinary differential equations: 50 
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In order to apply the system design space methodology we must recast this system to a 52 

canonical form, called a Generalized Mass Action (GMA) system [7], such that each term in the 53 

right hand side of the equations becomes a product of power laws.  In the present case, this can 54 

be straightforwardly accomplished by defining a new ancillary variable -MX K Trx SS  .  55 

Further, we note that  56 
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  57 

This shows that 2- - - - TPrx S Prx SO Prx SO Prx SS Prx       is a conserved quantity, 58 

corresponding to the total concentration of peroxiredoxin. Likewise, 59 
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- - ( - - )
0

d Trx S d Trx SS d Trx S Trx SS

dt dt dt

  
   , showing that - - TTrx S Trx SS Trx    is also a 60 

conserved quantity, corresponding to the total concentration of thioredoxin.  We can simplify 61 

the ordinary differential equations (ODE) system (1) by replacing two of the differential 62 

equations by these conservation relationships.  Upon recasting and simplification, the equations 63 

are transformed to the equivalent form: 64 
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Although not necessary for application of the system design space methodology, one can reduce 66 

the dimensionality of the parameters space by scaling all parameters and variables.  We used 67 

the following scaling, which makes all variables and parameters dimensionless:  68 
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Scaled variables x , y , w  and z  represent the fractions of the peroxiredoxin pool in each 70 

form, and scaled variables r , s   represent the fractions of the thioredoxin pool in each form. 71 

Upon this scaling, equations (2) become: 72 
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The parameters space is thereby reduced from 11 sup( , , , , , , , ,Alt Ox Cond Sulf Red Srx Mv k k k k k k K  74 

, , )
App

T TMaxV Prx Trx  to 9 dimensions, of which one (corresponding to ) is immaterial for steady 75 

state analysis.  76 

The parentheses in equations (4) highlight that the right-hand parts of these equations are 77 

differences between two positive-coefficient linear combinations of non-negative terms.  Under 78 

most conditions the value of each of these linear combinations is dominated by one of its terms. 79 

Henceforth we will denote by dominant positive term and dominant negative term the dominant 80 

terms in the positive and negative linear combinations (respectively) in an equation.  For 81 

instance, if 20, 0.9, 0.05, 0.001, 0.01, 0.05, 0.1x h w y         , then xh  is the 82 

dominant positive term and y  is the dominant negative term for the second equation in (4).  83 

We will denote by dominant subsystem any subsystem of (4) that retains only the dominant 84 

terms of the whole system. For instance, in the case where the second consumption term for h  85 

and all the first terms in all other linear combinations are the dominant ones we obtain the 86 

dominant subsystem: 87 
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Each system can generate 
1

e

i i

i

S PN


  dominant subsystems, where e  stands for the number 89 

of equations, and iP , iN  stand for the number of positive and negative terms (respectively) in 90 

equation i.  For instance, the present system can generate S  (1×3)(2×2)(1×1)(1×1)(1×1)(2×1) 91 

(4×1)(2×1) = 192 dominant subsystems. 92 

Importantly, all dominant subsystems share a canonical nonlinear form such that the right-hand 93 

side of the differential equations is a difference between products of power laws.  Systems 94 

exhibiting this canonical form are known as S systems [8–10] and have many desirable 95 

mathematical properties [7].  Most relevant of these, closed form analytical steady state 96 

solutions can be straightforwardly obtained upon a logarithmic transformation of all variables 97 

and parameters.  For dominant subsystem (5), defining * ( )a Log a , we obtain: 98 
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which yields the solution: 100 
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  (7) 101 

Each dominant subsystem approximates the behavior of the system in the region where the 102 

respective dominance conditions are valid.  These conditions are the inequalities that define 103 

where each dominant term is higher than every other one in the respective positive or negative 104 

linear combination.  For instance, the dominant subsystem (5) holds where the following set of 105 

dominance conditions is valid: 106 
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The dominance conditions define a dominance region in the phase space, which depends on 108 

parameters.  A dominant subsystem may or may not be able to reach a steady state within its 109 

dominance region.  In order to define the region of the parameters space where a dominant 110 

subsystem can attain a steady state within its dominance region, we replace its steady state 111 

solution into the dominance conditions.  Again, we can transform these nonlinear inequalities 112 

to linear ones by applying the logarithmic transformation.  The replaced inequalities thus 113 

become: 114 
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We will call these the boundary conditions for the dominant subsystem, and we will call the 116 

dominant subsystem valid if its boundary conditions are feasible.  117 

The boundary conditions for all the valid dominant subsystems pave the parameters space into 118 

up to S  discrete regions whose topology and geometry is determined by the system’s 119 

interaction structure (design).  We call this partitioned space the system design space. 120 

 121 

Some dominant subsystems can be sub-determinate.  This happens in systems where a fast 122 

(quasi-equilibrium) subsystem establishes under some conditions.  These cases require special 123 

consideration, and can be handled in a more expedite way through the matrix formulation 124 

presented below. 125 

System (4) can be represented in matrix form as: 126 

 .X Tf ,  (10) 127 

where X  is the vector of time derivatives (possibly 0 for constant quantities), T  is the E T , 128 

with T  the number of different terms, is term coefficients matrix, and f  is the terms vector.  129 

Here, 130 
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The upper left 5×8 submatrix of T  is the reduced stoichiometric matrix of the system, and the 133 

remaining rows account for the ancillary variable and for the conservation relationships.  Term 134 

coefficients matrices for dominant subsystems are obtained by selecting from each row in T  135 

one positive and one negative element and setting all other elements to 0.  We identify each 136 

dominant subsystem by a signature in the form 1 1 2 2( , , , ,..., , )e ep n p n p n  where ip  and in  are 137 

the indexes of the selected positive and negative elements in the ith row of T . Thus,  138 
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is the term coefficients matrix for the dominant subsystem (5).  The rows of this matrix are 140 

linearly independent, and therefore this dominant subsystem has a unique steady state solution 141 

as seen above.  However, this is not the case for, say, the dominant subsystem 142 

(1,3,5,4,4,5,6,7,8,7,9,11, 12,16,15,16): 143 



9 
 

 

(1,3,5,4,4,5,6,7,8,7,9,11,12,16,15,16)

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



 
 


 
 
 

 
 
 

 
 


 

T





,  (14) 144 

Here, the second and third rows, corresponding to the differential equations for y  and w , are 145 

linearly dependent. This sub-determinate dominant subsystem thus does not permit the 146 

simultaneous determination of both y  and w , but yields instead an algebraic relationship 147 

among these variables: 148 
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This translates the fact that under the conditions where this dominant subsystem holds a quasi-150 

equilibrium establishes between Prx-SO- and Prx-SO2
- owing to rapid recycling between the 151 

sulfinylation and the sulfiredoxin-catalyzed reduction of the sulfinic acid (physiologically 152 
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- thus form an aggregated pool whose total 153 

concentration moves in a slower time scale and is determined by subdominant processes in the 154 
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corresponding to a fully determinate dominant subsystem. [In this notation, the indexes in 161 

(…,(…,i),(…,j),…) express the selected subdominant terms.  We will call a system generated in this 162 

way by choosing a set of subdominant terms a subdominant subsystem.]  Note that 163 

(1,3,(5,2),(4,6),4,5,6,7,8,7,9,11,12,16,15,16) T (1,3,2,6,4,5,6,7,8,7,9,11,12,16,15,16)T , and therefore the dominant 164 

subsystem (1,3,5,4,4,5,6,7,8,7,9,11,12,16,15,16) has the same steady state as the dominant 165 

subsystem (1,3,2,6,4,5,6,7,8,7,9,11,12,16,15,16).  However, it holds in its own dominance 166 

region: 167 
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with ensuing boundary conditions 169 
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For purposes of steady state analysis one may thus merge boundary conditions (9) and (18) into 171 

a single region. 172 

The present example illustrates a relatively straightforward case of sub-determined dominant 173 

subsystem.  However, there may be multiple quasi-equilibrium subsystems, the corresponding 174 

slow aggregated variables may not be straightforwardly identifiable, subdominant systems may 175 

have multiple subdominant subsystems, and some of the latter may be sub-determinate.  176 

Therefore, a general algorithm is necessary that handles all these possibilities.  This is presented 177 

below. 178 

1.2. Finding all the quasi-equilibrium subsystems 179 

 As illustrated in the example above, the problem of finding these quasi-equilibrium 180 

subsystems has similarities to that of finding moiety conservation relationships from the 181 

stoichiometric matrix of a reaction system.  One can thus apply algorithms that were developed 182 

for the latter purpose [11] to find the (...)( )D E rank  T  slow aggregated variables in a sub-183 
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determinate dominant subsystem with term coefficients matrix (...)T .  In order to do this and 184 

generate the term coefficients matrices for the subdominant subsystems we proceed as follows: 185 

1. We first compute the left null space of (...)T , i.e., the D E  matrix U  such that 186 

(...). U T 0   We then apply to (...)T  the algorithm for finding all extreme semi-positive 187 

conservation relations developed by Schuster and Höfer [11].  This algorithm returns a  188 

, ( 1)F E F D    matrix V  of non-negative elements whose rows are the generating 189 

vectors of the convex polyhedral cone describing all the semi-190 

positive conservation relations admissible by (...)T .  If F D  or 191 

all the rows of U  are linearly dependent from those of V  we 192 

select the first D  rows from V , and call the resulting matrix B193 

.  If U  rows from U  cannot be expressed as a linear 194 

combination of those of V  one picks those U  rows from U  195 

and D U  rows from V  to form B .  The D T  matrix 196 

.Q B T  carries the coefficients of the potentially 197 

subdominant terms establishing the dynamics of each quasi-198 

equilibrium pool. 199 

2. From each row of B  we select the index of a positive 200 

coordinate such that all selected indices are distinct: set 201 

1 2{ , ,..., }DC c c c .   202 

3. Then, for each ic C   we replace row ic  of (...)T  by row i  of Q . 203 

This procedure can be illustrated by the example circuit in Supplementary Figure 1.  The 204 

dynamics can be expressed by the system of equations: 205 

 

1
1 3 2 2 1

2
2 1 3 5 4 3 2 4 2 5

4 2 5 5 4 6 4

5
5 4 6 4 7

3

4 2 8

6

4

5 5

2 3 40

d X
k k X k X X

d t

d X
k X X k X k X k X X

d t

d X
k X X k X k X

d t

d X
k X k X k k X X k X

d t

X X X X

 

   

  

    





  

  (19) 206 

The steady state equations for this system can be expressed as . Tf 0  term coefficients matrix: 207 

 

Supplementary Figure 1 
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1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

 
 

 
 
   
 

  
  

T  . (20) 208 

and terms vector 209 

 

1

3 2

2 1 3

5 4

4 2 5

6 4

7

8 5

2

3

4

6

k

k X

k X X

k X

k X X

k X

k

k X

X

X

X

X

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

f   (21) 210 

Focusing on dominant subsystem (2,3,3,2,5,4,4,5,10,12), whose dominance region is defined by211 

  2 1 3 4 4 6 4 7 10 9 10 11 2 5 5 82,3,3,2,5,4,4,5,10,12  R f f f f f f f f f f f f f f f f               212 

we find: 213 

 2,3,3,2,5,4,4,5,10,12( )

0 1 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

 
 


 
  
 

 
  

T  . (22) 214 

This matrix has rank deficiency 2D  , and accordingly we find 215 

 
0 0 1 1 0

1 1 0 0 0

 
  
 

B  , (23) 216 

identifying 1 2X X  and 4 5X X  as slow aggregated variables. Matrix Q  is then 217 

 
0 0 0 0 0 0 1 1 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0

 
  

 
Q  . (24) 218 
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The third element in the first row and the first element in the second row of Q  are non-zero. 219 

Thus, we can replace the third rows of both T  and 2,3,3,2,5,4,4,5,( )10,12T  by the first row of Q  and 220 

the first row in the former matrices by the second row of the latter to obtain: 221 

 

1 0 0 1 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0

' 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

 
 

 
 
  
 

  
  

T  , (25) 222 

 ( )2,3,3,2,5,4,4,5,10,12

1 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

' 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

 
 


 
  
 

 
  

T  . (26) 223 

1.3. Handling multiple alternative subdominant terms 224 

 The first row of 2,3,3,2,5,4,4,5,10( 2),1'T  contains two positive elements reflecting the 225 

contributions of both reactions 1 and 4 to the aggregated pool 1 2X X , and therefore there 226 

are two subdominant subsystems: ((2,1),(3,5),3,2,(5,7),(4,8),4,5,10,12) and 227 

((2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12).  228 

In general, each sub-determinate dominant subsystem 1 1( , ,..., , ,..., , )k k E Ep n p n p n  can generate 229 

A B  subdominant subsystems: 
1 11 1( , ,...,( , ),( , ),..., , )k i k j E Ep n p p n n p n , …, 230 

1 1( , ,...,( , ),( , ),..., , )
A Bk i k j E Ep n p p n n p n , where A  and B  are the numbers of potentially 231 

subdominant production and consumption terms, respectively. Each of these subdominant 232 

subsystems in turn corresponds to a different dominant subsystem — 233 

1 11 1( , ,..., , ,..., , )i j E Ep n p n p n , …, 1 1( , ,..., , ,..., , )
A Bi j E Ep n p n p n , respectively — which may be 234 

valid or invalid. The dominance region of a subdominant subsystem 235 

1 1( , ,...,( , ),( , ),..., , )
l mk i k j E Ep n p p n n p n  is the intersection between that for its originating 236 

dominant subsystem 1 1( , ,..., , ,..., , )k k E Ep n p n p n  and the sub-dominance region defining where 237 

the subdominant terms 
il

pf  and 
jm

nf  are higher than every other potentially subdominant 238 

term. More precisely, 
, , , , ,

i i i i j j j jl l c c m m d d
k p p k p p k n n k n nt f t f t f t f    239 

{1,2,..., }\{ }, {1,2,..., }\{ }.c A c d B m   The boundary conditions for the subdominant subsystem 240 

1 1( , ,...,( , ),( , ),..., , )
l mk i k j E Ep n p p n n p n  are obtained by replacing into the conditions defining its 241 
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dominance region the steady state solution for the dominant subsystem 242 

1 1( , ,..., , ,..., , )
l mi j E Ep n p n p n . 243 

Thus, the subdominance region for the subdominant subsystem ((2,4),(3,5),3,2,(5,7),(4,8),4,5, 244 

10,12) in the present example is defined by 4 1f f , and its dominance region is defined by 245 

    4 1(2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12 2,3,3,2,5,4,4,5,10,12R R f f    .  246 

1.4. Handling subdeterminate subdominant subsystems 247 

 Simple inspection of 2,3,3,2,5,4,4,5,10( 2),1'T  shows that 
 (2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12T  is 248 

again subdeterminate, with 1D  . In general, the subdetermination of 249 

1 1( , ,...,( , ),( , ),..., , )k i k j E El m
p n p p n n p nT  can be dealt with by iterating the steps above — treating 'T  as 250 

if it was T  and 
1 1( , ,...,( , ),( , ),..., , )k i k j E El m

p n p p n n p nT  as if it was 
1 1( , ,..., , ,..., , )k k E Ep n p n p nT  — until no more 251 

sub-determinate dominant subsystems are generated. 252 

In the present example, applying the procedure in point 1 we find that in this case it is not 253 

possible to express the slow aggregated variable as a positive linear combination of 254 

concentrations. We have instead: 255 

  1 0 0 1 0 B , (27) 256 

Identifying 1 2 4X X X   as the new slow variable. [Note that the first row of 257 

2,4),(3,5),3,2,(5,7),(4,8),4,5,10(( ),12T  contains the term coefficients for 1 2( )d X X

dt


 .] Multiplying B  258 

by T  yields 259 

  1 0 0 0 0 1 1 1 0 0 0 0  Q ,  (28) 260 

which can replace the first row of 2,4),(3,5),3,2,(5,7),(4,8),4,5,10(( ),12T  to give 261 

 2,4),(3,5),3,2,(5,7),(4,8(( )),4,5,10,12

1 0 0 0 1 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

' 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1

  
 


 
  
 

 
  

T  . (29) 262 

There are now four sub-sub-dominant subsystems. Namely 263 

((2,4,1),(3,5,5),3,2,(5,7,7),(4,8,8),4,5,10,12), with  264 

(( ) (2,4,1),(3,5,5),3,2,(5,7,7),(4,8,8),4,5,10,12 2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12( ) 1 7 6 5R R f f f f     , 265 
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((2,4,1),(3,5,6),3,2,(5,7,7),(4,8,8),4,5,10,12), with 266 

(( ) (2,4,1),(3,5,6),3,2,(5,7,7),(4,8,8),4,5,10,12 2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12( ) 1 7 5 6R R f f f f     , 267 

((2,4,7),(3,5,5),3,2,(5,7,7),(4,8,8),4,5,10,12), with 268 

(( ) (2,4,7),(3,5,5),3,2,(5,7,7),(4,8,8),4,5,10,12 2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12( ) 7 1 6 5R R f f f f     , and 269 

((2,4,7),(3,5,6),3,2,(5,7,7),(4,8,8),4,5,10,12), with 270 

(( ) (2,4,7),(3,5,6),3,2,(5,7,7),(4,8,8),4,5,10,12 2,4),(3,5),3,2,(5,7),(4,8),4,5,10,12( ) 7 1 5 6R R f f f f      .  271 

All these subsystems are fully determinate, but only subsystem 272 

((2,4,1),(3,5,6),3,2,(5,7,7),(4,8,8),4,5,10,12) has a steady state solution within its boundaries. 273 

Namely, 274 

 

1 1 2 3 4 5 6 7 8 6

2 1 4 5 6 7 8

3 6

4 1 6

5 7

* * * * * * * * * *

* * * * * * *

8

* *

* * *

* * *

X k k k k k k k k X

X k k k k k k

X X

X k k

X k k

        

     



 

 

  (30) 275 

with boundaries  276 

 

1 7

5 6

3 4 7 8

1 6 6

1 4 5 6

* *

* *

* *

7 8

*

6

*

* * *

* * * * * * *

0

0

0

0

0.

k k

k k

k k k k

k k X

k k k k k k X

  

  

    

    

       

  (31) 277 
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2. Design space analysis of the PTTRS model 278 

2.1. Characterization of phenotypic regions and determination of region 279 

borders 280 

 The approach described in Section 1 yields the 13 valid dominant subsystems whose 281 

steady state properties and boundary conditions are listed in Supplementary Table 1 and 282 

Supplementary Table 2, respectively. Not all of these are representative of the phenotypes of 283 

real cells, though. To select the biologically plausible regions, one must consider the ranges of 284 

kinetic parameters and protein concentrations found in real cells. We consider the following 285 

three plausibility criteria cumulatively, which are justified in the main text. 286 

First, reduction of sulfinylated form of peroxiredoxin is the least active process the system: 287 

App App
Max Max

Srx Alt Ox Sulf Cond Redmin( , , , , , , ) T
T T T

T T M

V V Trx
k k k Prx k Prx k k Trx

Prx Prx K
 288 

Second, the pseudo-first order-rate constant for Prx-S- oxidation by H2O2 strongly exceeds the 289 

rate constant for Prx-SO- condensation: 290 

Ox CondTk Prx k  291 

Third, Prx sulfinylation is the slowest among all H2O2-consuming processes in the model: 292 

Sulf Alt Oxmin( , )T Tk Prx k k Prx   293 

The steady state properties of the eight regions that satisfy these plausibility conditions are 294 

listed in Supplementary Table 1 in mathematical form in terms of unscaled variables and 295 

parameters. The boundary conditions defining each region within the parameters space are 296 

shown in Supplementary Table 2. 297 
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Supplementary Table 1. Steady state concentrations for the biologically relevant phenotypic regions. Color code is as for Figure 2. 298 

Region H2O2 Prx-S- Prx-SO- Prx-SS Prx-SO2
- Trx-S- Trx-SS 

HTPU 
Cond Srx T

Sulf sup

k k Prx

k v
 

2
Sulf sup

Cond Ox Srx T

k v

k k k Prx
 

sup

Cond

v

k
 

sup

Red T

v

k Trx
 TPrx  TTrx  

supM

App
Max

K v

V
 

TTPU 
sup

Ox T

v

k Prx
 TPrx  

sup

Cond

v

k
 

sup

Red T

v

k Trx
 

2
Sulf sup

Cond Ox Srx T

k v

k k k Prx
 TTrx  

supM

App
Max

K v

V
 

STAU 
sup

Alt

v

k
 

Alt Cond T

Ox sup

k k Prx

k v
 

TPrx  
Cond T

Red T

k Prx

k Trx
 Sulf T sup

Alt Srx

k Prx v

k k
 TTrx  

Cond TM

App
Max

k K Prx

V
 

HTAU 
sup

Alt

v

k
 

2
Alt Cond Srx T

2
Ox Sulf sup

k k k Prx

k k v
 Alt Srx T

Sulf sup

k k Prx

k v
 

Alt Cond Srx T

Red Sulf sup T

k k k Prx

k k v Trx
 TPrx  TTrx  

Alt Cond Srx T

Sulf sup

M

App
Max

k k k Prx K

k V v
 

TTAU 
sup

Alt

v

k
 TPrx  

Ox T sup

Alt Cond

k Prx v

k k
 

Ox T sup

Alt Red T

k Prx v

k k Trx
 

2
Ox Sulf T sup

2
Alt Cond Srx

k k Prx v

k k k
 TTrx  

Ox T sup

Alt

M

App
Max

k K Prx v

k V
 

DTAU 
sup

Alt

v

k
 

Alt Red T T

Ox sup

k k Prx Trx

k v
 Red T T

Cond

k Prx Trx

k
 

TPrx  
Red Sulf T sup T

Alt Cond Srx

k k Prx v Trx

k k k
 TTrx  

Red T TM

App
Max

k K Prx Trx

V
 

DDAU 
sup

Alt

v

k
 

Alt T

Ox sup

App
Max

M

k V Trx

k K v
 T

Cond

App
Max

M

V Trx

k K
 TPrx  Sulf sup

Alt Cond Srx

App
T Max

M

k Trx v V

k k k K
 T

Red T

App
Max

M

V Trx

k K Prx
 TTrx  

DDAS 
sup

Alt

v

k
 Alt

Ox sup

App
Maxk V

k v
 

Cond

App
MaxV

k
 TPrx  Sulf sup

Alt Cond Srx

App
Maxk V v

k k k
 

Red T

App
MaxV

k Prx
 TTrx  

  299 
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Supplementary Table 2. Boundary conditions for the biologically relevant phenotypic regions. 300 

Region Boundary conditions 

HTPU 
Alt Cond Srx T

Srx T sup
Sulf

Cond Ox Srx
Cond T T Red T T T

Sulf

max ,

min , , , ,

 
  

 
 

 
 
 
 

App
App Max

Max
M

k k k Prx
k Prx v

k

Vk k k
k Prx Prx k Prx rx V rx

k
T

K
T

 

TTPU 
Cond Ox Srx Cond Ox

Cond T T T
Sulf Sulf

sup Alt Ox T

Red T T T

, , ,

min

, ,

App
App Max

Max
M

k k k k k
k Prx Prx Prx

k k
v k k Prx

V
k Prx Trx V Trx

K

 
 
 

   
 
 
 

 

STAU 
Cond

Cond T T Alt Sulf T
T Red

Alt Alt Srx
Cond T sup

Ox Sulf

max 1,

max ,

App M
Max

kK
V k Prx Trx k k Prx

Trx k

k k k
k Prx v

k k

 
      

 

 
   

 

 

HTAU 
Alt Srx Cond Sulf Cond Cond T Cond T

sup
Sulf Ox Srx Red T T

max 1, , , , M
App App

Max Max

k k k k k k Prx k Prx K
v

k k k k Trx TrxV V

 
  

 
 

Alt Cond Srx T Alt Cond Alt Cond
sup sup Srx T

Sulf Sulf Sulf

max ,
k k k Prx k k k k

v v k Prx
k k k

  
       

  

 

TTAU 
Cond Cond Ox

Cond T Alt Srx T
Sulf SulfAlt

sup Alt Ox T
Ox T

Red T T T

, , ,

min

, ,

 
 
 

   
 
 
 

App
App Max

Max
M

k k k
k Prx k k Prx

k kk
v k k Prx

k Prx V
k Prx Trx V Trx

K

 
DTAU 

Alt Alt Cond Srx
Red T T sup

Ox Red Sulf T

Cond Alt
Red T T

Red Sulf T Cond T

max ,

min 1, ,

App
App Max

MMax

k k k k
k Trx Prx v

k k k Trx

Vk k
V k K Prx Trx

k k Prx k Prx

 
   

 

 
    
 
 

 

DDAU 
Alt Alt Cond Srx T

T sup
Ox T Sulf T

Alt Cond Cond T Red T T
T

Sulf

max 1,

min 1, , ,

 
   

 

 
  
 
 

App
Max M

App
M Max

M App App App
Max Max Max

V k k k k K Prx
Trx v

K k Prx k V Trx

k k k Prx k Prx Trx
Trx K

k V V V

 

DDAS 
Alt Alt Cond Srx T

sup
Ox T Sulf

Alt Cond
Cond T Red T T T

Sulf

max 1,

min , ,

App
Max App

Max

App
MMax

k k k k Prx
V v

k Prx k V

k k
V k Prx k Prx Trx Trx K

k

 
   

 

 
    

 
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2.2. Inventory of the qualitatively distinct arrangements of phenotypic 301 

regions and responses 302 

 The qualitatively distinct arrangements (relative positions) of the phenotypic regions in 303 

the various slices of the  sup ,
App

Maxv V   plane [or similarly, in the  *, *   plane, in logarithmic 304 

scaled coordinates, as per Section 1] determines a set of qualitatively different responses to supv  305 

and to TrxR inhibition. In what follows we are only interested in generic arrangements; that is in 306 

those that do not hold just for a specific pointwise condition. In order to enumerate all the 307 

qualitatively distinct arrangements we proceeded as follows. These relative positions are 308 

 

Supplementary Figure 2. The generic qualitatively different arrangements of phenotypic regions for 

slices in the  sup , App
Maxv V  plane. The gray dashed lines illustrate the ten generic qualitatively different 

responses to supv .  
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determined by the set of relationships in Supplementary Table 2. More concretely, by the 309 

relative values of the various sub-expressions entering the inequalities. Expressed in terms of 310 

the logarithms of the scaled parameters introduced in Section 1, these inequalities can be 311 

written as function of the following 9 quantities: 312 

* * * * * * * *
*, *,0, * *, * * *, * * *, , ,

2 2 2

       
         

    
       (32) 313 

There can be 9!= 362 880 distinct orderings of these quantities, (e.g., * * 0 * *         314 

* * * * * * * *
* * * * * *

2 2 2

       
     

    
        ), each of which 315 

corresponding to one subsector of the full-dimensional design space. However, only 1152 of 316 

these orderings (subsectors) satisfy the plausibility constraints introduced in Section 2.1. Each 317 

ordering is consistent with one and only one arrangement of the phenotypic regions in the 318 

 *, *   plane. After examining all the 1152 biologically plausible orderings, we find that only 319 

the 12 arrangements shown in Supplementary Figure 2 are possible. Combining this analysis 320 

with that of the properties that characterize each region (as per Supplementary Table 1 and 321 

Table 1) these 12 arrangements can be grouped by similarity of the responses at high App
MaxV  into 322 

three major families (A, B, C) as follows. In family A (Supplementary Figure 2A), increasing supv  323 

leads directly from a region where Prx-S- is the dominant Prx form (TTPU or TTAU) to region 324 

HTAU, where Prx-SO2
- is the dominant Prx form. In turn, families B (Supplementary Figure 2B) 325 

and C (Supplementary Figure 2C) are characterized by regions at intermediate supv  where Prx 326 

accumulates in Prx-SO- or Prx-SS forms, respectively. Each of these families has four variants 327 

(i-iv), characterized by the nature of the basal (i.e., low supv ) state and by TrxR saturation at 328 

intermediate supv and low App
MaxV .  329 

The necessary and sufficient conditions for each arrangement to hold are straightforwardly 330 

derived as the reunion of all subsectors that are consistent with it (i.e., ORing all the consistent 331 

ordering conditions). The conditions for the four arrangements that are represented in our 332 

sample of cell types are presented in Figure 2. 333 

One can recognize 10 qualitatively different generic responses to supv (Supplementary Figure 2, 334 

Figure 2), defined by as many different region sequences. The conditions for occurrence of each 335 

of these responses are shown in Supplementary Table 3.  336 
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Supplementary Table 3. Generic qualitatively different responses of the PTTRS to supv  and the conditions for their occurrence. 337 

Response* Sequence Condition 

A TTAU  HTAU  Cond Ox T
Srx

Ox Ox
Srx

Cond Sulf Al
Red T

ult S f

1 ,min ,
 

   
 


App App

T Max Max
M

T
T

k k Trx
k Prx k Trx V V

k k Prx
k Pr

k K
x

k kk
  

P TTPU  (HTPU)  HTAU  
Cond Cond Ox

Srx T Srx Alt Cond T Srx Red T T T
Sulf Sulf

max , min , , , ,
  
  

   
   

App
App Max

T T Max
M

Vk k k
k Prx k k Prx k Prx k Prx k Prx rx V rx

k k
T

K
T   

AS TTAU  STAU  HTAU  Ox Srx T
Cond T Red T Alt Ox Sulf T

Sulf

min , , max ,,
 

  
 


App App

T Max
M

T Max

k
Pr

k Trx
k Prx k Trx Prx V V k k k

K
x Prx

k
  

PS TTPU  STAU  HTAU 
Srx T

Cond T Red T Sulf T Alt Ox T
Sul

Alt

f

min , ,,
 

  






Ap

T
p App

Max Max
M

kk
Pr

Trx
k Prx k Trx V V k Prx k k Prx

k K
x   

AD TTAU  DTAU  HTAU 
Cond Cond Ox

Red T Cond Alt Srx Alt Ox
Sulf Sulf

min , , , ,
 

  
 
 


App App T

T T TMax Max
M

T

k k k Trx
k Trx kPr Prx k k Prx V V k k Prx

k K
x

k
  

PD TTPU  DTAU  HTAU 
Cond Cond

Red T Cond Alt Srx Alt Alt Ox
Sulf Sulf

min , , , ,
 

  
 
 

App App T
T T TMax Max

M
T

k k Trx
k T Prrx k Prx k k k Prx V V k k Prx

k k K
x   

ADU TTAU  DDAU  HTAU 
Cond Cond Ox

Cond Red T Alt Srx Alt Ox
Sulf Sulf

,min , ,
 

    
 
 


App

T T T T MMax
T

M
T

k k k
V k Prx k Trx k k Prx k

K
Prx k Prx Trx K

Trx k k
  

PDU TTPU  DDAU  HTAU 
Cond Cond

Cond Red T Alt Srx Alt Alt Ox
Sulf Sulf

min , ,,
 

    
 
 


App

T T T T MMa
T

Tx
M k k

V k Prx k Trx k k k Prx k k Prx Trx K
Tr

x
x k

P
k

K
r   

ADS TTAU  DDAS  HTAU 
Cond Cond Ox

Cond Red T Alt Srx Alt Ox
Sulf Sulf

min , ,,
 

    
 
 

App
T TT T T MMax

k k k
V k Prx k Trx k k Prx k k Prx TrPr xx K

k k
  

PDS TTPU  DDAS  HTAU 
Cond Cond

Cond Red T Alt Srx Alt Alt Ox
Sulf Sulf

,min , ,
 

    





 

App
T T T T MTMax

k k
V k Prx k Trx k k k Prx k k Prx Trx K

k k
Prx   

*Responses are named as follows: 1st character: basal (low supv ) state:  A = TTAU, P = TTPU. 2nd character: dominant Prx form in the intermediate supv  region 338 

if one exists: S = Prx-SO-, D = Prx-SS. 3rd character: TrxR saturation if Trx-SS is the dominant Trx form in the intermediate region: S = saturated, U = unsaturated. 339 
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3. Parameter Estimations 340 

3.1. Estimation of protein concentrations in human cells from proteomic 341 

datasets 342 

 Where more reliable determinations were lacking, we estimated protein concentrations 343 

in human cell lines based on the proteomic dataset from Geiger et al. [12] as reported in the 344 

Proteomaps database (http://www.proteomaps.net/) [13].  Geiger et al. [12] report the 345 

absolute protein abundance estimates for eleven human cell lines.  The data for all these cell 346 

types was obtained through the same methods in a single lab, and applying the most accurate 347 

approach for proteome-scale absolute protein quantification.  Furthermore, most proteins of 348 

the PTTRS are very abundant and can thus be more precisely quantified than most other 349 

proteins.  350 

The estimates follow the method of Milo et al. [14].  They are based on the observation that 351 

most mammalian cells have a mean protein density of 0.2 g/mL cell volume [15,16].  For 352 

instance, Jurkat T cells contain 0.14 mg protein/10⁶ cells [17], which translates into Cp= 0.21 353 

g/mL, considering a mean Jurkat T cell volume of 6.6±0.46×10-13 dm3 [18].  Then, considering 354 

that an average human protein contains 375 aminoacyl residues ( Laa  below) [19], and a mean 355 

molecular weight of 110 Da per aminoacid, and that only about 0.7waterf   of the cell volume 356 

is occupied by water [20] we obtain the following average concentration of total protein in a 357 

human cell: 358 

 
0.21(g/mL)

7.0 mM
0.7 110 (Da) 375 (aa)

totC  
 

  (33) 359 

Knowing the mass fraction ( Prot , expressed as “size weighted abundance” in the Proteomaps 360 

database) and its primary sequence length ( ProtLaa ) one can then calculate its concentration 361 

by applying the following formula: 362 

 Prot
Prot

Prot

totC
C

Laa

Laa


    (34) 363 

Wiśniewski et al. [21] performed a quantitative proteomic analysis of human hepatocytes and 364 

of HepG2 cells and expressed their results ( Protc ) as nmol/mg total protein. In order to refer 365 

these concentrations to cell water volume we apply the following conversion: 366 

http://www.proteomaps.net/
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2 -3 9 -1

Prot Prot Prot2.9 10 (g dm ) 10 (mol nmol )
p

water

C
C c c

f

     .  367 

Many of the proteins of interest in this study are confined to the cytoplasm. Their cytoplasmic 368 

concentration can be readily estimated by dividing ProtC  by the cytoplasm volume fraction, 369 

cytoplasmf . A few other proteins are distributed by other compartments as well, and in these 370 

cases we assume that their concentration is identical in the various compartments. Therefore, 371 

unless otherwise stated we estimate their cytoplasmic concentration by dividing ProtC  by the 372 

sum of the volumes of the compartments where the protein is present. Subcellular localizations 373 

were obtained from the Uniprot database (http://www.uniprot.org/) [22], neglecting those that 374 

were just electronically inferred and not confirmed experimentally. Compartment volume 375 

fractions were estimated from the literature, or 0.5cytoplasm nucleusf f   was assumed when no 376 

data was available (Supplementary Table 4). 377 

Supplementary Table 4. Cell volume fractions of nucleus and cytoplasm for human cells. 378 

Cell type nucleusf   cytoplasmf   Ref. 

Jurkat T Acute T-Cell leukemia 0.6 0.3 [18] a 

A549 Lung carcinoma 0.28 0.72 [23] 

GaMG Glioblastoma 0.5 0.5 b 

HEK293 Embryonic kidney cells 0.56 0.44 [24] 

HeLa Cervical carcinoma 0.18 0.78 [25] 

HepG2 Hepatoma 0.25 0.63 [21] c,d 

K562 Chronic myeloid leukemia 0.5 0.5 [26] e 

LnCap Prostate carcinoma 0.44 0.56 [27] f 

MCF-7 Mammary carcinoma 0.53 0.47 [28] 

RKO Colon carcinoma 0.5 0.5 b 

U2-OS Osteosarcoma 0.5 0.5 [29] f 

Hepatocyte  0.10 0.53 [21] c,g 

a Mitochondria account for 5% of cell volume. 379 
b Assumed. 380 
c Estimate based on relative protein masses in each compartment. 381 
d Mitochondria account for 12% of cell volume, as inferred from protein mass. 382 
e Estimated by visual inspection of microscopy images. 383 
f Estimated using 2D-area data to approximate the partition of the intracellular space in cytoplasm and nucleus. 384 
g Mitochondria and endoplasmic reticulum + Golgi account for 25% and 12% of cell volume, respectively, as inferred 385 
from protein mass. 386 

http://www.uniprot.org/
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3.2. Estimations for Jurkat T Cells 387 

 Jurkat T are arguably the nucleated human cells where the PTTRS has been most 388 

thoroughly characterized. For this reason, we used them as a reference for the estimation of the 389 

parameters for other nucleated human cell types. In the sections below we also discuss 390 

information for these other cells, where available. 391 

3.2.1. H2O2 Permeability 392 

 Cells’ permeability to H2O2 can be determined from the experimentally observable 393 

decay exponent of extracellular H2O2 provided that the internal H2O2 consumption activity is 394 

either known or sufficient to outcompete the H2O2 efflux and the morphometric parameters are 395 

available (see eg. [30]). Based on the diagram in Supplementary Figure 3, the dynamics of 396 

permeation can be described by the following model: 397 

 

2 2,
2 2, 2 2,

2 2,
2 2, 2 2, 2 2,

( )

( ) .

cells pout
in out

medium

pin
out in sink in

in

n Sd H O
H O H O

dt V

Sd H O
H O H O k H O

dt V





 

  

  (35) 398 

Here, cellsn  stands for the number of cells per 399 

medium volume mediumV , p  stands for the 400 

permeability constant, S  and inV  stand for the 401 

permeant surface area and cytoplasmic water 402 

volume, and sinkk  stands for the pseudo-first 403 

order rate constant for H2O2 consumption in the 404 

cytoplasm. After a short time period in the order 405 

of 1/
p

sink
in

S
k

V

 
 

 
 , 2 2,inH O  approaches a quasi-steady state 406 

 
2 2,

2 2,

( )
( )

1

out
in

sink in

p

H O t
H O t

k V

S





 . 407 

Replacing this equation into equation (35) and integrating yields 408 

 2 2, 2 2,( ) (0) cellsk t
out outH O t H O e


  ,  (36) 409 

with  410 

 
Supplementary Figure 3. Model for cell permea-
tion by H2O2. 
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1

pcells
cells

pmedium

sink in

Sn
k

SV

k V








   (37) 411 

being the decay exponent. It follows from this equation that under experimental conditions 412 

where cells retain sufficient cytoplasmic H2O2 clearance activity to strongly outcompete the H2O2 413 

efflux (i.e., sink
p

in

S
k

V


) the permeability per cell — p S   — and the pseudo-first order rate 414 

constant for H2O2 influx ( infk  ) can be straightforwardly computed  from cellsk :  415 

 ,   medium
p cells

cells

V
S k

n
  (38) 416 

 inf
p

in

S
k

V


  . (39) 417 

These conditions are met in experiments where H2O2 concentrations in the medium are kept 418 

low enough to avoid extensive oxidation of the Prx and other peroxidases, or where cells have 419 

a high cytoplasmic catalase activity. A -1100 ssinkk   would warrant accurate determinations. 420 

This is achieved if the Prx are no more than 70% oxidized or inhibited, or if cells contain abundant 421 

cytoplasmic Cat activity. The latter is the case for human erythrocytes, which permitted 422 

estimating 5 15.8 10 dms   p  and -1
inf 11. sk  [31]. 423 

However, the following observations indicate that the conditions above are not met in most 424 

determinations of cellsk  published so far [e.g. ,32–35]. Determinations of cellsk  for a variety of 425 

cell lines strongly correlate with cells’ Cat activity [35], and inhibition of Cat with 3-aminotriazole 426 

decreases the value of cellsk  by 1.2 to 4.6-fold, for determinations based on high H2O2 doses per 427 

cell [34,35]. Should these values of cellsk  be determined by the cells’ permeability they would 428 

be virtually independent of the Cat activity.  429 

Likewise, all the determinations of cellsk  of HEK293 in ref. [33] were done under conditions 430 

where PrxII (and presumably also PrxI) was mostly oxidized. Because in HEK293 cells, as in most 431 

other human cells, Cat is confined within peroxisomes, it cannot effectively compete with the 432 

H2O2 efflux. The value of cellsk  should thus reflect not the permeability of the cell membrane 433 

but the activity of Cat (limited by permeation of the peroxisomal membrane) plus some residual 434 

peroxidase activity.  435 
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In lack of information about the value of sinkk  that applies under these conditions, the value of 436 

cellsk  can provide just lower bounds for the permeability and influx rate constant ( infk ). Such a 437 

lower bound for infk  in HEK293 cells can be obtained based on the observation [33] that 1.5×106 438 

cells grown on 2.5 mL of medium consume H2O2 with 3 -11.35 10 s cellsk , considering a 439 

13 38.22 10 dmcytoplasmV   [24] and a water content of 0.7 mL water/mL cell: 440 

3 3
3 -1 -1

inf 6 13 3

2.5 10 dm
1.35 10 s 3.9 s .

(1.5 10 cells) 0.7 (8.22 10 dm )

medium
cells

cells water cytoplasm

V
k k

n f V







   

   
441 

 442 

On the other hand, if the H2O2 efflux cannot be neglected but sinkk  is known, equation (37) 443 

yields: 444 

 
1

.
1p

cells

cells medium sink in

S
n

k V k V

 



   (40) 445 

Under the assumption that at the high extracellular H2O2 used sinkk  is determined by the joint 446 

activities of GPx and Cat, Antunes and Cadenas [30] determined the permeability of the Jurkat 447 

T cell membrane as 5 -12 10 dmsp
  . Considering a mean Jurkat T cell volume 448 

V   6.6×10-13 dm3, a surface area  S  3.7±1.7×10-8 dm2, a cytoplasmic to cell volume fraction 449 

0.3Cytoplasmf   [18] and a water content of 0.7 mL water/mL cell, one obtains a first order rate 450 

constant for H2O2 influx from the extracellular medium into the cytoplasm of: 451 

 
5 1 8 2

-1
inf 13 3

2 10 (dms ) 3.7 10 (dm )
5.2 s

0.7 0.3 6.6 10 (dm )

   



   
  

    

p

water cytoplasm cell

S
k

f f V
. (41) 452 

The values of p  and infk  for HeLa and MCF-7 cells can also be estimated under the same 453 

assumption about sinkk  from data provided by references [36] and [37]. For HeLa cells, replacing 454 

6 12 3 -1 -1(0.50 0.017)mL/10 cells/min=(8.3 0.28) 10 dm cell smedium
cells

cells

V
k

n

     [36],  455 

-186. ssink GPx Catk k k    (Sections 3.2.2.1 and 3.2.2.4) and456 

13 3 13 30.7 9.4 10 dm 6.6 10 dmin water cytoplasmV f V          [25] into equations (40) and (39) 457 

yields 458 

 

12 3 -1 -1

-1

9.7 10 dm cell s ,

15. s .

p

inf

S

k

  


  459 
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Considering a surface area 8 23.7 10 dmS    [25] one obtains 4 -12.6 10 dm s .p
    460 

Huang & Sikes [32] performed similar experiments for HeLa cells, which through similar 461 

calculations yield values in good agreement: 12 3 -1 -15.1 10 dm cell spS   , -19.9 sinfk  , 462 

4 -11.4 10 dm s .p
   We will thus consider the geometric mean -112.0 sinfk   as reference for 463 

these cells.  464 

For MCF-7 cells, from the values 6(0.43 0.015)mL/10 cells/min=medium
cells

cells

V
k

n
 465 

12 3 -1 -1(7.1 0.25) 10 dm cell s    [37],  -114. ssink GPx Catk k k    (Sections 3.2.2.1 and 3.2.2.4) 466 

and 12 3 13 30.7 1.0 10 dm 7.3 10 dmin water cytoplasmV f V         , 8 27.6 10 dmS    [28] we 467 

obtain: 468 

 

11 3 -1 -1

-1

4 -1

1.4 10 dm cell s ,

14. s ,

1.9 10 dm s .

p

inf

p

S

k









 



 

  469 

As we are unaware of infk  estimations for any other human cells and the results above suggest 470 

that this parameter does not vary widely among cell types, we assume a -110. sinfk  , the 471 

geometric mean of the values for the four cell types discussed above, for all other human cells 472 

in this work. 473 

3.2.2. Alternative H2O2 sinks 474 

 The capacity of Jurkat T cells to clear cytoplasmic H2O2 through processes other than 475 

reduction by PrxI and PrxII is arguably the most uncertain parameter in the model.  However, 476 

despite all the uncertainties one can ascertain that at low oxidative loads their aggregated 477 

contribution is much lower than the pseudo-first order rate constant for H2O2 reduction by Prx:  478 

7 -1 -1 4 5 3 -14. 10 M s (1.2 10 4.6 10 )M 6.6 10 sPrxk          . (This calculation is based on the 479 

PrxI and PrxII concentrations estimated in Section 3.2.3.)  At least five other processes that will 480 

be discussed in the subsections below may contribute for H2O2 clearance.  481 

3.2.2.1. Reduction by glutathione peroxidase 482 

 At low to moderate H2O2 supply rates the kinetics of glutathione peroxidase 1 (GPx1) is 483 

well approximated by a simple mass action rate expression, as demonstrated by the following 484 

considerations. GPx1 follows ping-pong kinetics with rate expression [38] 485 

 1
1 2

GPx

2 2

GPx1
v

H O GSH


 



. 486 
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This rate expression can be rearranged as  487 

 
2 2

2
1

1
2 2

2

GPx

GPx1
GSH H O

v

GSH H O










 , 488 

highlighting that the apparent Michaelis constant for H2O2 is given by 1
2 2

2

( ) .
App
MK H O GSH





  489 

Considering the value 3
1 2/ 5.6 10     determined for human GPx1 [39] and 3 mM GSH, one 490 

obtains 2 2( ) 17. μM
App
MK H O  . Such a high intracellular H2O2 concentration is unlikely to be 491 

approached except under strong oxidative stress.  492 

Antunes and Cadenas [30] determined the pseudo-first-order rate constant for this process in 493 

Jurkat T cells as 4.1 s-1. From the activity per cell determinations for HeLa [36] and MCF-7 [37] 494 

— 3.18±0.45 mL/min/106 cells and 0.41±0.063 mL/min/106 cells, respectively — we estimate the 495 

pseudo-first-order rate constants 80. s-1 and 6.8 s-1, considering the respective cell volumes 496 

9.4×10-13 dm3 [25] and 1.1×10-12 dm3 [28], the cytoplasm volume fractions in Supplementary 497 

Table 4 and a cell water volume fraction of 0.7. Huang & Sikes [32] made similar determinations 498 

for HeLa cells, which through similar calculations yield a pseudo-first order rate constant of 499 

67. s-1. We will thus consider the geometric mean of these determinations — 73. s-1 — as 500 

reference for this parameter in HeLa cells. 501 

3.2.2.2. Reduction by peroxiredoxin VI 502 

 Recent proteomic studies [12] point to a substantial concentration of the 1-Cys 503 

peroxiredoxin PrxVI in Jurkat T cells. Using the estimation method described in Section 3.1 we 504 

obtain: 505 

 
4 3

PrxVI

PrxVI

6.4 10 7.0 10 (M)
25.μM

224
0.3

375

Jurkat
tot

cytoplasm

C
PrxVI

Laa
f

Laa

    
     506 

Considering a rate constant for H2O2 reduction of Ox,PrxVIk   3×106 M-1s-1 [40], this translates 507 

into a pseudo-first-order rate constant of 6 -1 -1 6 -1
Pr 3.0 10 (M s ) 25. 10 (M) 75. sxVIk       508 

when all the protein is in thiolate form. 509 

Upon reaction with H2O2 the active site thiolate is oxidized to a sulfenate whose reduction is 510 

dependent on glutathionylation by GSH-loaded glutathione S-transferase  [41,42], which is also 511 

abundant in Jurkat T cells [13].  At high H2O2 concentrations the rate-limiting step in the catalytic 512 

cycle is quite likely the reduction of the glutathionylated PrxVI molecule by another GSH 513 
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molecule [41]. Therefore, the contribution of PrxVI for H2O2 reduction will decrease when GSH 514 

is depleted. 515 

3.2.2.3. Reduction by other thiol proteins 516 

  Hansen et al. [43] showed that the concentration of oxidizable protein thiols in human 517 

cell lines is in the order of 10 mM, which is comparable or higher than GSH concentrations. 518 

However, the use of diamide as oxidizing agent in this study may have caused a substantial over-519 

estimation of the concentration of thiols that can potentially react with H2O2. This because 520 

diamide can oxidize thiols to –RS+, which in turn readily react with other thiols.[44] In contrast, 521 

H2O2 can react at significant rates with thiolates but not with protonated thiols. Considering the 522 

mean protonation state under physiological pH, protein thiols are expected to react with H2O2 523 

at rate constants 1 M-1s-1 or lower, similar to GSH [ k   0.87 M-1s-1 [45]]. Other than those in 524 

the active centers of peroxidases and peroxiredoxins, few protein thiols characterized to date 525 

have H2O2 reactivities in excess of 200 M-1s-1 [46,47]. Accordingly, a study analyzing the profile 526 

of thiol reactivities under more controlled conditions has shown that only a small fraction of the 527 

protein thiols are very reactive [48]. Likewise, redox proteomic studies of various cell types and 528 

organisms show few thiol proteins being oxidized in response to H2O2 boluses [49–51].  529 

The considerations above and the fact that Prx are both very reactive and very abundant suggest 530 

that the overall contribution of protein thiols other than those in the active centers of 531 

peroxidases and peroxiredoxins for H2O2 clearance is modest. The following observations further 532 

support this notion. First, other very abundant proteins are not very H2O2-reactive. Only 6 533 

cytoplasmic proteins are more abundant than PrxI + PrxII in Jurkat T cells [13,52], and among 534 

these, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been flagged as the most 535 

prominent H2O2 target in a redox proteomic study,[49] indicating that the few more abundant 536 

proteins are less H2O2-reactive. Using the method described in Section 3.1 we estimate the 537 

concentration of GAPDH as 71 M. This protein reacts with H2O2 with a rate constant 500 M-1s-1 538 

[53,54]. Hence, the pseudo-first order rate constant for H2O2 reduction by this protein is a 539 

meager -10.036sGAPDHk  .  540 

Second, only two cytoplasmic proteins other than peroxiredoxins and Trx were detected as 541 

significantly reversibly oxidized in response to exposure of a HEK293T cell culture to a 50 M 542 

H2O2 bolus for 5 min, in a redox proteomics study that was able to quantitatively assess the 543 

redox state of 404 thiol proteins.[51]  Those oxidized proteins were GAPDH and proteasome 544 

subunit  type 1. Because the bolus was sufficient to extensively oxidize both PrxI and PrxII,[51] 545 

intracellular H2O2 concentrations should have increased very substantially during the pulse.  546 
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Third, although the redox-proteomic studies mentioned in the previous paragraph are biased 547 

towards abundant proteins it is unlikely that the set of less abundant H2O2-reactive proteins 548 

contributes significantly for H2O2 clearance. Indeed, even generously considering a total of 549 

10 mM H2O2-oxidizable thiols at a 500 M-1s-1 mean reactivity would amount to a pseudo-first 550 

order rate constant 15 sRSHk   for H2O2 consumption, which is still less than other reductants 551 

discussed in this section.  552 

Nevertheless, a quantitative analysis based on a mathematical model for H2O2 metabolism in 553 

Jurkat T cells [55] suggested that these cells contain an abundant pool (1 mM) of quite reactive 554 

(5×105 M-1s-1) protein thiols, amounting to a substantial 2 15 10 sRSHk   . More recently, a 555 

thorough analysis of the redox response of the 2-Cys peroxiredoxin Tpx1 from the fission yeast 556 

Schizosaccharomyces pombe to high concentrations of ectopic H2O2 also suggested the 557 

existence of a large (13 mM) pool of moderately H2O2-reactive (5×102 M-1s-1) protein thiols [56], 558 

yielding 17. sRSHk  . Nevertheless, none of these works identified the thiol proteins that might 559 

be oxidized at such rates. And in both cases reactivities and pool sizes were estimated quite 560 

indirectly by fitting complex kinetic models to experimentally determined time courses. Such 561 

estimates are very sensitive to the considerable uncertainties in both data and models. For 562 

instance, estimations in ref. [55] were based on experimental determinations of the redox 563 

potential of GSH that did not account for subcellular distribution of GSSG, which is now known 564 

to be concentrated in lysosomes and present at much lower concentrations in the cytoplasm 565 

[57]. In turn, in ref. [56] the observation of a bi-phasic response of Prx-SO2
- and intracellular H2O2 566 

concentrations in HEK293 to H2O2 boluses has been attributed to saturation of the peroxidases 567 

and a buffering effect from abundant protein thiols. But as we shall see in the main text and in 568 

Section 5 the same bi-phasic behavior is predicted by a model that neglects both these factors. 569 

Finally, it should be noted that the pseudo-first order rate constants above represent upper 570 

estimates of the contribution of the protein thiols for H2O2 consumption, as they embody the 571 

assumption that the respective oxidized forms are readily reduced. Otherwise, this thiol pool 572 

will be progressively oxidized, and its contribution for eliminating H2O2 under sustained load 573 

(i.e., at steady state) vanishes. We therefore neglected the contribution of non-peroxidase 574 

protein thiols for H2O2 clearance at steady state. 575 

3.2.2.4. Dismutation by catalase 576 

 In Jurkat T cells, as in most human cells, all catalase is contained within peroxisomes. As 577 

consequence, the consumption of cytoplasmic H2O2 by catalase is rate limited by the permeation 578 
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of the peroxisomal membrane [30]. Taking this fact into account, Antunes and Cadenas [30] 579 

estimated the contribution of catalase for the clearance of cytoplasmic H2O2 as Catk   0.4 s-1. 580 

From the activity per cell determinations for HeLa [36] and MCF-7 [37] — 0.21±0.042 581 

mL/min/106 cells and 0.42±0.061 mL/min/106 cells, respectively — we estimate the pseudo-first-582 

order rate constants 5.3 s-1 and 7.0 s-1, considering the respective cell volumes 9.4×10-13 dm3 [25] 583 

and 1.1×10-12 dm3 [28], the cytoplasm volume fractions in Supplementary Table 4 and a cell 584 

water volume fraction of 0.7. Huang & Sikes [32] made similar determinations for HeLa cells, 585 

which through similar calculations yield a pseudo-first-order rate constant of 1.7 s-1. We will thus 586 

consider the geometric mean of these determinations — 3.0 s-1 — as reference for this 587 

parameter in HeLa cells. 588 

3.2.2.5. Efflux 589 

 Because the plasma membrane is relatively permeable, part of the H2O2 can leave the 590 

cell. The rate constant for this process is infefflk k   5.2 s-1 as determined above. 591 

Unlike all the other H2O2 clearance processes discussed above, catalase and the efflux are 592 

virtually non-saturable.[58,59] Therefore, at very high H2O2 supply rates able to saturate all 593 

other processes, cytoplasmic H2O2 will nearly equilibrate with the extracellular environment, 594 

because effl Catk k . 595 

 596 

Altogether, the H2O2 clearance capacity through processes other than reduction by the typical 597 

2-Cys peroxiredoxins adds up to: 598 

 1 1(4.1 75. 0.4 5.2)s 85. sAltk         599 

at low oxidative loads, and to 600 

 1 1(0.40 5.2) s 5.6 sAltk      601 

 under strong enough oxidative loads to deplete GSH. 602 

3.2.3. Peroxiredoxin concentrations and rate constants 603 

 We consider Prx total concentration as the sum of the concentration of PrxI (Prdx1, 604 

199aa, 22.11 kDa) and PrxII (Prxd2, 196aa, 21.892 kDa) the two main 2-cys cytoplasmic 605 

peroxiredoxin. 606 

Rhee et al. [60] determined the PrxI and PrxII contents in Jurkat T cells as PrxI/TR   2.7 μg/mg of 607 

total soluble protein, and PrxII/TR   1.0 μg/mg of soluble protein. Considering an average cell 608 
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volume of 6.6×10-13 dm3 [18], an average protein content of 210 g/dm3 [14] and the molecular 609 

weights of PrxI (22,110 Da) and PrxII (21,892 Da)  we obtain, the following concentrations: 610 

 
2 3 3
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4
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C R
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  
  

    
 611 
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4
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46. μM
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C R
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  
  

    
  612 

The rate constants for the oxidation of PrxII-S- to PrxII-SO- and of PrxII-SO- to PrxII-SO2
- , as well 613 

as the rate constant for conversion of PrxII-SO- to PrxII-SS, were experimentally determined as 614 

8 -1 -1(1.0 0.1) 10 M sOxk     [61] or 7 -1 -11.2 10 M s [62], 4 -1 -1(1.2 0.2) 10 M sSulfk     [63,64], 615 

-11.7 0.3sCondk   [63] or -10.25 0.01s [65], respectively.  The latter value for Condk  was 616 

determined based on the intrinsic Trp fluorescence method, which reflects the conformational 617 

changes taking place over the PrxII redox cycle. One limitation of this method is that there is no 618 

way to unequivocally attribute the observed slow component of the fluorescence variation to 619 

the condensation step. This attribution is questioned by the observation that the low rate 620 

constant inferred in ref. [65] leads to overestimation of the susceptibility of Prx2 to sulfinylation 621 

relative to that observed in vitro [66]. For this reason, we adopted the value -11.7sCondk  [63] 622 

in the PTTRS model. 623 

The rate constant for PrxII-SS reduction by human Trx1-S- was determined as 624 

5 -1 -1(2.1 0.3) 10 M sRedk     [61]. 625 

For Prx1 the following rate constants were experimentally determined: 626 

7 -1 -1(3.8 0.15) 10 M sOxk    , -19.0 0.2sCondk    [67]. The 36-fold higher Condk  value for PrxI 627 

than for PrxII is in keeping with the lower sensitivity of the former to hyperoxidation [68,69]. We 628 

estimated the value of Sulfk  by fitting the following kinetic model 629 
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 630 

to several independent NADPH consumption time series from coupled Prx1/Trx/TrxR assays. 631 

Namely, the first 150 s of the time 632 

courses reported in Fig. 1A of ref. [70]  633 

for 100 M and 200 M H2O2, after 634 

subtracting the basal NADPH 635 

consumption rate as computed from the 636 

time course for [H2O2]= 0. And the first 637 

110 s of the time course reported in 638 

Figure 6A of ref. [68], after subtracting 639 

the basal NADPH consumption rate as 640 

computed from the late phase (t > 120 s) 641 

of the curve.  642 

The parameters Oxk  and Condk  were 643 

fixed at the values indicated above, 644 

whereas Sulfk  and Redk  were left as 645 

adjustable parameters.  The fits were 646 

made using MathematicaTM v 11 647 

NonlinearModelFit function with default 648 

settings.  649 

The best fit for the first dataset was obtained for 3 -1 -1(1.61 0.026) 10 M sSulfk     , 650 

5 -1 -1(1.43 0.012) 10 M sRedk     (Adjusted R2= 0.99992, Supplementary Figure 4, top), whereas 651 

the best fit for the second one was for 3 -1 -1(1.1 0.11) 10 M sSulfk    , 652 

5 -1 -1(1.11 0.010) 10 M sRedk     (Adjusted R2= 0.999999, Supplementary Figure 4, bottom). 653 

 

  

Supplementary Figure 4. Fit to the time courses of 
NADPH consumption reported in Figure 1A of ref. [70] 
(top) and Figure 6A of ref. [68] (bottom). Dots, 
sampled points; lines, best fit curves. 
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These values for Sulfk  of PrxI are in close agreement, prompting us to adopt the compromise 654 

value 3 -1 -11.3 10 M sSulfk    in subsequent analyses. In turn, this value is one order of 655 

magnitude lower than that determined for PrxII, which indicates that the lower sensitivity of PrxI 656 

to hyperoxidation [68,69] is due to both a faster condensation step and less favorable 657 

sulfinylation.  This is in contrast to PrxIII, whose increased sulfinylation sensitivity relative to PrxII 658 

is entirely due to a lower value of Condk , the value of Sulfk  being virtually identical to that for 659 

PrxII [63].   660 

The best-fit values for the Redk of PrxI determined above are close to each other and comparable 661 

to that reported for PrxII [61]. For this reason and because we could not determine the origin of 662 

the Trx used in the experiments in refs. [68,70] we assumed that the value of Redk  for PrxI is the 663 

same as for PrxII.  664 

For simplicity, in the design space analysis we considered a single typical 2-Cys peroxiredoxin 665 

with 7 -1 -14. 10 M sOxk   , corresponding to the geometric mean of the values determined for 666 

PrxI and PrxII and Condk , Sulfk  values that are concentration-weighted averages of the values 667 

for PrxI and PrxII: 668 

  * PrxI PrxII -1 -1 -1+ 0.72 9.0 s 0.28 0.65 s 6.7 sCond PrxI Cond PrxII Condk f k f k           669 

* PrxI PrxII 3 -1 -1 4 -1 -1 3 -1 -1+ 0.72 1.3 10 M s 0.28 1.2 10 M s 4.3 10 M s .Sulf PrxI Sulf PrxII Sulfk f k f k          670 

The value PrxII -10.65 sCondk   is the geometric mean of those determined in refs. [63,65]. 671 

3.2.4. Peroxiredoxin glutathionylation 672 

 Both PrxI [71] and PrxII [72] can be glutathionylated and Grx1 and/or Srx [71,72] catalyze 673 

their deglutathionylation. These findings raise the question of the overall importance of these 674 

processes for the dynamics of the PTTRS, which we discuss below. 675 

Peskin et al. [72] determined a rate constant -1 -1500M sGlutk   for PrxII-SO- glutathionylation 676 

and found that deglutathionylation was fast in presence of Grx1+GSH, such that glutathionylated 677 

PrxII (PrxII-SSG) could only be detected in erythrocytes from Grx1-knockout mice after a 678 

peroxide challenge. In turn, although GSH was also able to reduce PrxII-SS, this process is 679 

relatively slow.[72]   680 

The following considerations help evaluating the extent to which Prx-SO- de/glutathionylation 681 

contributes to inhibit hyperoxidation and for Prx’s catalytic redox cycle. Once a Prx-SO- forms, 682 
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its fate is determined by a competition between sulfinylation, glutathionylation, and 683 

condensation. At physiological H2O2 and GSH concentrations both glutathionylation and 684 

condensation are much faster than sulfinylation. But for glutathionylation to strongly inhibit 685 

sulfinylation it must be faster than condensation, because otherwise it is the latter that will most 686 

strongly compete with sulfinylation. In erythrocytes, where PrxII is by far the dominant Prx and 687 

the GSH concentration is 3 mM, the pseudo-first order rate constant for glutathionylation is 688 

1.5 s-1. This is comparable to the -11.7 sCondk   determined by the same group, and therefore 689 

in erythrocytes PrxII-SO- de/glutathionylation can almost double the overall redox turnover of 690 

PrxII and inhibit is hyperoxidation by up to 50%. (However, GSH may be depleted at the 691 

oxidative loads where this inhibition might otherwise be most relevant.) Prx-SO- reduction by 692 

GSH is thus relevant in erythrocytes, where PrxII is the dominant Prx.  693 

In turn, the following observations indicate that de/glutathionylation plays only a minor role in 694 

PrxI’s redox cycle and protection against hyperoxidation. Park et al. [71] determined PrxI-SSG 695 

deglutathionylation rates of 20 nM s-1 with 22 M PrxI-SSG and 1 M Grx1 or Srx. This Grx1 696 

and Srx concentration is similar to the cytoplasmic concentrations in the A549 and HeLa cell lines 697 

used by these authors, from which we can roughly infer a deglutathionylation pseudo-first order 698 

rate constant ( Deglutk ) in the order of 10-3 s-1 in these cells. In order to examine the 699 

consequences of such a Deglutk  consider that the PrxI-SO- production rate is 700 

PrxI-SS 2 2- -
Oxv k PrxI S H O    . If glutathionylation is the dominant process consuming 701 

PrxI-SO- then the rate of PrxI-SSG production will also approach PrxI-SSv  , and the ratio between  702 

the concentrations of PrxI-SSG and Prx-S- at steady state will be approximately:  703 

 
7 -1 -1

10 -1
2 2 2 2 2 23 -1
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H O H O H O

kPrxI S 


    .  704 

Therefore, PrxI would be strongly glutathionylated even at H2O2 concentrations as low as 705 

0.1 nM. Similar arguments apply with respect to Prx-SS glutathionylation. However, Park et al 706 

(2009) needed to use an enrichment approach to detect PrxI-SSG even in cells exposed to 10 M 707 

H2O2. This shows that glutathionylation/deglutathionylation cannot significantly contribute for 708 

PrxI’s redox turnover or strongly inhibit PrxI sulfinylation. This low contribution may have the 709 

following two explanations. First, because Condk  for PrxI-SO- is substantially higher than for 710 

PrxII-SO- (Section 3.2.3) Glutk  for PrxI ought to be comparably higher than that for PrxII-SO- for 711 

glutathionylation to have a comparable contribution for the redox turnover of the former Prx. 712 



37 
 

Second, the estimated Deglutk  is at least 100-fold lower than the pseudo-first order rate constant 713 

for PrxI-SS reduction by a similar (1 M) Trx1-S- concentration (>0.1 s-1 as per Section 3.2.3). 714 

Moreover, Grx1 and Srx together are over one order of magnitude less abundant in A549 and 715 

HeLa cells than Trx1 (Supplementary Table 6), and they are also substantially less abundant than 716 

Trx1 in all other human cell lines examined in the present work. 717 

As further evidence for a low contribution of GSH for the Prx redox turnover, even a strong GSH 718 

depletion failed to increase the fraction of PrxII-SS in HeLa and A549 cells.[74] Because PrxI is 719 

the main H2O2 reductant in these cells (Supplementary Table 6), if GSH contributed substantially 720 

its redox turnover its depletion would translate on a significant elevation of the cytoplasmic H2O2 721 

concentration, resulting in increased PrxII dimerization. 722 

Because in all these cell lines examined in this work PrxI is several-fold more abundant than PrxII, 723 

the overall contribution of de/glutathionylation for the redox turnover and sulfinylation 724 

inhibition can be neglected in the coarse-grained single-Prx model. 725 

On the other hand, it also follows from the estimates above and from the estimated activities of 726 

PrxVI and GPx1 (Section 3.2.2 and Supplementary Table 6) that PrxII should be the main driver 727 

of GSH oxidation in all the examined human cells. 728 

3.2.5. Sulfiredoxin concentration and activity 729 

 The reduction of Prx-SO2
- to Prx-SO- requires ATP and a reductant and is catalyzed by 730 

sulfiredoxin. The rate-limiting step in this process is the formation of a thiosulfinate intermediate 731 

[75–78] (Srx-Prx) whose existence for the human enzyme has been confirmed [79]. The 732 

resolution of this complex 733 

generates an intramolecular 734 

disulfide bond Srx-SS, that is 735 

then reduced by Trx1-SH in 736 

the case of the yeast [80] or 737 

presumably GSH in the case 738 

of human Srx [81]. Human 739 

Srx has a catalytic constant 740 

of 3.0×10-3 s-1 for PrxI-SO2
-,  741 

and (ATP)MK   30 742 

M.[82] Therefore, the 743 

enzyme is normally 744 

 
Supplementary Figure 5. Fit of the time course of PrxI-SO2

- 

reduction in A549 cells previously exposed to 250 M H2O2 from 

the immunoblot images for “Control RNA”,“-PrxSO2” panel in 
Figure 8 from ref. [82]. 
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saturated with ATP. The ( )MK GSH  is unknown but presumed to be much lower than 745 

physiological GSH concentrations. [81] The Michaelis constant for Prx-SO2
- also has not been 746 

characterized, which prevents a detailed modeling of this process’ kinetics. On the other hand, 747 

we were able to estimate a pseudo-first-order rate constant for PrxI-SO2
- reduction in A549 cells 748 

previously exposed to 250 M H2O2 from the immunoblot images for “Control RNA”,“-PrxSO2” 749 

panel in Figure 8 from ref. [82]. Densitometry analysis of the image reveals a mono-exponential 750 

decay of the concentration of PrxI-SO2
-, which is well fitted (R2=0.996) by a 751 

549 3 14.45 10 sA
Srxk     (Supplementary Figure 5). From the data in the Proteomaps database, 752 

using the method described in Section 3.1, we estimated the concentration of Srx in A549 and 753 

in Jurkat T cells as: 754 
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 755 

Therefore, assuming that the pseudo-first-order rate constant is proportional to the 756 

concentration of Srx in each cell, we obtained: 757 

 3 1 4 1
Srx

0.13μM
4.45 10 s 5.8 10 s

1.0 μM

      k  .  758 

The slower reduction of Prx-SO2
- in HeLa than in A549 cells observed in ref. [83] is consistent 759 

with the 11-fold lower Srx concentration in those cells as per the proteomic dataset (Section 760 

3.5).  761 

Although PrxII-SO2
- is known to be more rapidly reduced than PrxI-SO2

- in cells,[84] there is 762 

insufficient information in the literature to determine Srxk  for the former Prx. However, because 763 

PrxI is the predominant Prx in all the cell lines the assumption of similar Srxk  for both Prx does 764 

not strongly affect the results. 765 

3.2.6. Thioredoxin concentration  766 

 Trx1 is a predominantly cytoplasmic protein [22] that can also be found in the nucleus 767 

[29,85].  Assuming a fully cytoplasmic localization, the cytoplasmic concentration of Trx1 (105aa) 768 

estimated using the method described above is: 769 
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The quantitative proteomics data for the other nucleated human cells considered in this work 771 

yield cytoplasmic concentrations in the range 17. – 69. M (Supplementary Table 6). These 772 

values are in the range of determinations obtained by other methods (Supplementary Table 5), 773 

including a recent one to determine redox-active Trx1 [86]. The widely held view that Trx1 774 

concentrations in human cells are in the M or sub-M range may have been biased by early 775 

determinations for erythrocytes, which are exceptionally Trx1-poor.  776 

However, not all the Trx1 is necessarily available to reduce Prx-SS. Trx1 can covalently bind 777 

numerous proteins [87], including very abundant actin [88]. Thioredoxin-interacting protein 778 

(TXNIP), which inhibits Trx1’s redox cycling [89], is much less abundant than Trx1 in the 779 

proteomic datasets under consideration, though. Trx1 also extensively translocates to the 780 

nucleus under some stress conditions,[85,90] including exposure of cells to extracellular H2O2 781 

[91]. 782 

Supplementary Table 5: Cytoplasmic thioredoxin concentrations estimated from non-proteomic 783 
methods. Cytoplasmic concentrations were estimated from the values provided in the cited references by 784 
assuming that the cytoplasm accounts for 50% of the cell volume (except erythrocytes, 100%), a protein 785 
density of 0.2 g/mL cell volume [15,16] and a cell water content of 70% by volume. Although the methods 786 
used do not discriminate between Trx1 and Trx2, the latter accounts for <6% of the total Trx contents in 787 
cells, according to the quantitative proteomics determinations. Note the very good agreement between 788 
the value for K562 cells in this table and that in Supplementary Table 6. 789 

Cell type Concentration 

(M) 

Method Ref. 

Peripheral blood 
mononuclear cells 

86. Fluorescein isothiocyanate-labeled insulin [86] 

Lymphocytes 53. Fluorescein isothiocyanate-labeled insulin [86] 

Ramos 21. Fluorescein isothiocyanate-labeled insulin [86] 

U937 1.1×102 Fluorescein isothiocyanate-labeled insulin [86] 

K562 22. Fluorescein isothiocyanate-labeled insulin [86] 

Fibroblasts 18. Immunochemical [92] 

Erythrocytes 0.56 Immunochemical [93] 

 790 

3.2.7. Thioredoxin oxidation  791 

 Besides the reduction of typical 2-Cys peroxiredoxins other processes also contribute 792 

for Trx1 oxidation. Prominent among these are the reduction of ribonucleotides to 793 

deoxyribonucleotides catalyzed by ribonucleotide reductase, and the reduction of protein 794 
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disulfides. The former process is essential for DNA replication.  Replication of the 3.0×109 base 795 

pairs of the human genome during the 12 h duration of S phase in a Jurkat T cell [94] implies 796 

an average Trx1 oxidation rate of 2 Ms-1. In turn, an upper estimate of the mean Trx1 797 

oxidation rate imposed by a massive oxidation of the protein thiols can be derived from the 798 

following data. Hansen et al. [43] determined that 3.6 protein thiols (PSH) per 1000 aminoacyl 799 

residues (aa) were oxidized to disulfides upon treatment of HEK293 cells with excess diamide. 800 

Reduction of the protein disulfides was essentially complete 20 minutes after the treatment. 801 

Considering that cells contain 5×106 proteins/fL cell water [14], and an average human protein 802 

contains 375 aa, the concentration of protein thiols oxidized to disulfides by this extreme 803 

treatment can be roughly estimated as (5×106 proteins/10-15 L)×(375 aa/protein)×(3.6 PSH/1000 804 

aa) / (6.0×1023 PSH/mol) = 11. mM. Therefore, the mean rate of PSS reduction was (11. mM/2) 805 

/ 1200 s = 4.6 M s-1. Values for HeLa cells are in the same range [43]. However, only a small 806 

fraction of the oxidized PSH reside in the cytoplasm [43]. These mean rates are much lower than 807 

the VMax(TrxR)= 180 Ms-1, estimated in Section 3.2.8. Therefore, they are insufficient to sustain 808 

a strong Trx1 oxidation, although peak rates may be much higher. In turn, the 166 M Prx if fully 809 

oxidized to Prx-SS can drive Trx1-S- oxidation at a maximal rate of810 

5 -1 -1 4 5 -12.1 10 (M s ) 1.7 10 (M Prx-SS) 1.2 10 (M Trx-S ) 0.43 mMs        , and can thus in 811 

principle cause the complete Trx1-S- oxidation.  812 

3.2.8. Thioredoxin reductase concentration and activity 813 

 Low et al. [95] determined the activity of Trx reductase in Jurkat T cells for 5-(3-Carboxy-814 

4-nitrophenyl)disulfanyl-2-nitrobenzoic acid (DTNB) as substrate as 1.63±0.35 nmol/106 815 

cells/min, at 37 oC, pH 7.4.  We estimated [31] that the activity with human Trx1 as substrate is 816 

1.3-fold higher.  Therefore, considering a mean Jurkat T cell volume of 6.6×10-13 dm3 and a 817 

cytoplasmic fraction of 0.3 [18] one can estimate: 818 

 
9

1
, 9 3

1.6 10 (mol)
1.3 0.18mMs

0.3 6.6 10 (dm ) 60(s/min)
Max TrxRV







 

  
 . 819 

This is the value we will use as reference in our modelling. 820 

A partly independent estimate follows from the mass fraction of thioredoxin reductase (TxnRd1, 821 

Laa= 649)  ( 4
TrxR 4.04 10   ) obtained from the proteomic dataset from Geiger et al. [12] and 822 

as reported  in the Proteomaps database [13].  Applying the method described in Section 3.1, 823 

this corresponds to the following concentration: 824 
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Considering the 176.3scatk   estimated in ref. [31] this concentration yields 826 

-1
, 0.45 mMsMax TrxRV  , in reasonable agreement with the previous estimate. 827 

TrxR follows a ping-pong catalytic mechanism [96,97] whose kinetics can be described by: 828 

  
,

, , , ,
1

Max TrxR

M TrxR NADPH M TrxR TrxSS

V
v

K K

NADPH TrxSS



 

 829 

We considered , , 1.8 μMM TrxR TrxSSK   [98]. The low , , 6.0 μMM TrxR NADPHK   [99] implies that 830 

except under strong and prolonged oxidative stress NADPH concentrations can be considered 831 

saturating. This should be especially true for tumor cell lines, which tend to over-express the 832 

pentose phosphates pathway [100] and thus have a large capacity to reduce NADP+ to NADPH. 833 

Therefore, we assume that TrxR is saturated with NADPH and approximate its kinetics as 834 

  
,

, ,

Max TrxR

M TrxR TrxSS

V TrxSS
v

TrxSS K



. 835 

3.2.9. NADP+ reduction capacity 836 

 The oxidative branch of the pentose phosphate pathway (oxPPP) is the main supplier of 837 

reducing equivalents for NADP+ reduction in the cytoplasm of most cells, with the oxidation of 838 

methylene tetrahydrofolate to 10-formyl-tetrahydrofolate sometimes contributing significantly 839 

(20%).[101]  The flux over oxPPP is normally limited at the first step, catalyzed by by glucose 840 

6-phosphate (G6P) dehydrogenase (G6PD). Ursini et al. [102] determined a G6PD activity of 0.23 841 

mol NADPH / mg protein / min in untreated proliferating Jurkat T cells, which transiently 842 

increased to 0.51mol NADPH / mg protein / min within 6 h after cells were treated with a 200 843 

M H2O2 bolus for 30 min. Similar results were found for HepG2 and Hep3B cells [102]. 844 

Considering a mean Jurkat T protein contents of 210 g dm-3 (Section 3.1) and a cytoplasmic 845 

fraction of 0.3 [18], and noting that each G6P molecule entering the oxidative branch of the PPP 846 

permits the reduction of 2 NADP+ molecules, one finds the following NADP+ reduction capacity 847 

of the oxPPP: 848 

 
4 -1 -1 2 -3

-12.3 10 (molg min ) 2.1 10 (g dm )
2 5.4 mMs

0.3 60s
PPPV

  
  


 849 
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for untreated cells, and 12. mM s-1 for the treated ones. In turn, from the cytoplasmic G6PD 850 

concentration estimated from the proteomic data in ref. [12] through the method described in 851 

Section 3.1  (9.2 M), one can estimate an upper limit for this rate by considering a 690 s-1 852 

catalytic constant for G6PD [103]. The value obtained, 13. mM s-1, is in good agreement with the 853 

rate above.  854 

However, the activity of G6PD is in substantial excess of cells’ capacity to supply G6P [104]. 855 

Indeed, at physiological plasma glucose concentrations, in the absence of oxidative stress, Jurkat 856 

T cells import glucose at a rate of just 150 M s-1.[105] Under oxidative stress conditions cells 857 

can not only direct most of the G6P through the oxPPP but also recycle intermediates from upper 858 

glycolysis into the oxPPP.[106] Upon this metabolic reconfiguration, the oxPPP could reduce up 859 

to 12 NADP+ per G6P consumed, yielding a maximum 1.8 mM s-1 NADPH production. This is a 860 

theoretical upper limit corresponding to the full oxidation of glucose with a net expenditure of 861 

1 ATP/glucose. As discussed in detail in refs. [104,107], the “excess” G6PD activity is 862 

instrumental in avoiding NADPH depletion and ensuring a fast response to changes in the 863 

demand for reducing equivalents. 864 

In turn, actual NADPH consumption rates are much lower than the production capacities 865 

discussed in the previous paragraph. The cytoplasmic consumption of NADPH in proliferating 866 

HEK293T and other cell lines is 8 M s-1.[101] Most (>80%) of this flux is devoted to 867 

biosynthesis, and in cells that were growth arrested by exposure to a 150 M H2O2 bolus the 868 

mean NADPH consumption over 5h actually decreases to 5 M s-1.[101] (Though substantially 869 

higher instantaneous fluxes may have been attained immediately after treatment.) 870 

Altogether, these considerations indicate that cells have the means to avoid sustained strong 871 

NADPH depletion under low to moderate oxidative stress. Indeed, Kuehne et al. [106] found that 872 

exposure of fibroblasts to a 500 M H2O2 bolus caused just 30% NADPH depletion. 873 

3.3. Estimations for other human cells 874 

 The concentrations of the relevant proteins in the other cell lines considered in the 875 

work, were computed through the mass fraction method described in Section 3.1, using the data 876 

generated by Geiger et al. (2012) [12]. We have also used the dataset from Wiśniewski et al. [21] 877 

for human hepatocytes and HepG2 cells. 878 

The condensation rate constants for the peroxiredoxin and the pseudo-first order rate constants 879 

for Srx were estimated through the methods described for Jurkat T cells in Sections 3.2.1 and 880 

3.2.4, respectively. 881 
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The MaxV  for TrxR was estimated from the concentration of this enzyme by considering the 882 

catalytic constant 176.3scatk   estimated in ref. [31]. 883 

As discussed in Section 3.2.1, we were able to estimate infk  for Jurkat T, HeLa, MCF-7 cells and 884 

erythrocytes but are unaware of data that permit this estimation for any other human cells. 885 

However, the estimates for these cells suggest that this parameter does not vary widely among 886 

cell types. Therefore we assume -110. sinfk  , the geometric mean of the values for the four cell 887 

mentioned above, for all other human cells examined. 888 

The sum of the contributions from PrxVI, GPx1, catalase and efflux were used as an 889 

approximation of the cytoplasm’s capacity to scavenge H2O2 through processes other than 890 

reduction by PrxI and PrxII. 891 

The contribution from PrxVI activity for all other cell lines was estimated as described in Section 892 

3.2.2.2 for Jurkat T cells.  893 

The GPx1 activities in Jurkat T, HeLa, MCF-7 cells and erythrocytes were obtained from the 894 

literature (Section 3.2.2.1). For all the other human cells the GPx1 activity was assumed as 895 

proportional to GPx1 protein mass as given in the Proteomaps database [13] for the  dataset 896 

from ref. [12] or from the dataset in ref. [21] and the same proportionality constant as for Jurkat 897 

T cells. Therefore, drawing on the estimate in Section 3.2.2.1, and further assuming that the 898 

total protein concentration is essentially invariant among cell types (i.e., Cell type Jurkat
tot totC C ), the 899 

estimated value is given by: 900 

  
1

14.1s
s

32.17 ppm

Jurkat
Cell type Cell type Cell typeGPx
GPx GPx GPxJurkat

GPx

k
k  




   (42) 901 

In all cell lines examined catalase is confined to peroxisomes. As a consequence, its action on 902 

cytoplasmic H2O2 is limited by the membrane permeation step. The peroxisomal-membrane-903 

limited Cat activities in Jurkat T, HeLa, MCF-7 cells and erythrocytes were obtained from the 904 

literature (Section 3.2.2.4). For simplicity we assumed that all other cell lines show the same 905 

proportionality between catalase abundance and effective pseudo-first-order rate constant for 906 

consumption of cytoplasmic H2O2 as Jurkat T cells. Therefore, drawing on the estimate in Section 907 

3.2.2.4, and further assuming that the total protein concentration is essentially invariant among 908 

cell types (i.e., Cell type Jurkat
tot totC C ), the estimated value is given by: 909 
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1

10.4 s
s

246.98 ppm

Cell type
Cell type Cell typeJurkatCat

CatCat CatJurkat
Cat

k k






  . (43) 910 

Although this is admittedly a rough estimate of Cell type
Catk , its uncertainty is a minor concern 911 

because Cell type
Catk  typically has a minor contribution to Altk . 912 

3.4. Estimations for Saccharomyces cerevisiae 913 

3.4.1. H2O2 Permeability 914 

 The permeability constant and pseudo-first order rate constant for permeation to/from 915 

the cytoplasm were estimated from data in figure 1 of ref. [108], which shows the time course 916 

of H2O2 consumption by a yeast liquid culture with OD 0.5 (7x106 cells/ml). By fitting an 917 

exponential decay to this data (Supplementary Figure 6) we first find the pseudo-first order rate 918 

constant for the consumption of extracellular H2O2: 
3 -1

cells  (1.33 0.08) 10 sk    . From this 919 

value and considering the average cell surface area for yeast as 133±9.5 µm2 [109]  we then 920 

obtain the permeability coefficient: 921 
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3 -

3 2
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1.33 10 (s )
  1.43 10  dms
7 10 1 (dm.33 0 )1

perm
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  922 

Considering that the water volume fraction of S. cerevisiae cells is 0.68waterf   [110], that the 923 

cell volume is 42 µm3 [111] and that the volume ratio of cytoplasm to full cell is 0.70cytoplasmf   924 

[112], we obtain the cytoplasmic water volume: 925 

 1 3 14 34 dm 2.0 10 dm0.70 0.68 4.2 .10cytoplasm cytoplasm water yeast cellV f f V          926 

From this we finally obtain the following pseudo-first order rate constant for permeation: 927 
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  928 

which is similar to that for human cells. 929 

3.4.2. Alternative H2O2 sinks 930 

 The cytoplasm of S. cerevisiae contains catalase T (CTT1) and alkyl hydroperoxide 931 

reductase (Ahp1), an atypical 2-Cys peroxiredoxin. Furthermore, cytochrome c peroxidase (CcP) 932 

in the mitochondrial intermembrane space may also contribute to clear cytoplasmic H2O2, as the 933 

latter is expected to freely cross the mitochondrial outer membrane. The contributions of these 934 

enzymes for cytoplasmic H2O2 clearance were estimated as follows. 935 
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3.4.2.1. Cytochrome c 936 

peroxidase 937 

 From the molecule 938 

counts per cell in ref. [113], 939 

and assuming that H2O2 can 940 

freely permeate between 941 

cytosol and the mitochond-942 

rial intermembrane space 943 

and that the volume of the 944 

latter compartment is 945 

negligible, the estimated 946 

concentration of CcP is: 947 
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Considering the rate constant for H2O2 reduction by CcP (3.9x107 M-1s-1 [114]) one obtains: 949 

 6 7 -1 -1 -10.54 10 (M) 3.9 10 (M s ) 21. sCcPk       . 950 

3.4.2.2. Catalase T 951 

 Branco et al. [108] determined a 2 3 -1 -11.1 10 dm g sCatA     catalase activity in extracts 952 

from yeast growing in exponential phase, which is abolished in ctt1 mutants. Considering 953 

5.7 pgprotm   as the protein content of a yeast cell [115], this activity translates into: 954 
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3.4.2.3. Alkyl hydroperoxide reductase 956 

 From the molecule counts per cell in ref. [113] the estimated concentration of Ahp1 is: 957 
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Supplementary Figure 6. Fit of the time course of H2O2 
consumption in S. cerevisiae cells culture exposed to a 100 μM 
H2O2 bolus. Black dots, experimental data; broken line, best fit to 
the function H2O2 = 100 exp(-kconsumption t). Best fit parameter was 
kconsumption= (1.33±0.08)×10-3 s-1. The fitting was done using the 
function NonLinearModelFit in Mathematica 10.3. 
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The second-order rate constant for H2O2 reduction by Ahp1 can be estimated from the specific 959 

activity (3.3×10-4 mol g-1 s-1) and Michaelis constant (1.5×10-4 M) determined in ref. [116], 960 

considering a molecular mass of 1.9×104 g mol-1 (http://www.uniprot.org/)[22]: 961 
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 . 962 

From this one obtains the following pseudo-first order rate constant: 963 

 6 4 -1 -1 -1
1 1.3 10 (M) 4.2 10 (M s ) 0.054 sAhpk       , 964 

which is negligible in comparison to other H2O2 sinks. 965 

 966 

Altogether, the H2O2 clearance capacity through processes other than reduction by the typical 967 

2-Cys peroxiredoxins and including the efflux through the plasma membrane adds up to: 968 

 -1 -1(21. 3.1 9.5) s 34. sAltk       969 

3.4.3. Peroxiredoxin concentrations and rate constants 970 

 S. cerevisiae contains two cytoplasmic typical 2-Cys peroxiredoxins, Tsa1 and Tsa2. Their 971 

cytoplasmic concentrations can be estimated from the protein counts in ref. [113] as: 972 
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The rate constants for H2O2 reduction by these Prx have been determined by Tairum et al. [117] 975 

as (4.7±2.2)x107 M-1s-1 and (5.0±1.7)x106 M-1s-1, respectively. (For comparison, previous 976 

determinations [118] yielded 2.2x107 M-1s-1 and 1.3x107 M-1s-1, respectively.) Because Tsa1 is 977 

much more abundant than Tsa2 it is a good approximation to consider 31.μMTPrx  , 978 

7 -1 -14.7 10 M sOxk   .   979 

The rate constants for the condensation reaction and for Prx-SS reduction by Trx1 were 980 

estimated through a global fit of the following model (44) to the NADPH oxidation progress 981 

curves reported in ref. [119]:  982 

http://www.uniprot.org/
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  (44) 983 

In order to make all the relevant parameters identifiable and facilitate the global fitting we 984 

rescaled all the variables as follows: 985 
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We fixed the value of 7 -1 -1 7 -1
1 3.4 10 (M s ) 2.0 10 (M) 6.8 s    Trrk based on the 987 

7 -1 -1/ 3.4 10 M scat Mk K    value determined in ref. [120], and we used the NonlinearModelFit 988 
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function of MathematicaTM 10.3 989 

with default settings to fit the 990 

scaled model to the data, with 991 

,   as adjustable parameters. 992 

This procedure achieved an 993 

excellent fit (Supplementary 994 

Figure 7). Solving the scaling for 995 

the original parameters yields996 

-10.58 0.046 sCondk   ,997 

6 -1 -1(1.33 0.071) 10 M sRedk    ,  998 

-1 -17. 3.4 M sSulfk    . Of note, 999 

this value for Sulfk  is much lower 1000 

than that estimated for the 1001 

human typical 2-Cys 1002 

peroxiredoxins [63], consistent 1003 

with the low hyperoxidation 1004 

shown in the experiments in ref. 1005 

[119] for Tsa1 treatment with 1006 

200 M H2O2. 1007 

The value of Redk  for the 1008 

reduction of Tsa1 by Trx2 was 1009 

roughly estimated from the rate 1010 

of NADPH oxidation reported in 1011 

Figure 6A from ref. [121] 1012 

(Supplementary Figure 8). In order 1013 

to approximate the concentration of NADPH we assumed that the decrease in absorbance at 1014 

340 nm over the course of the experiment corresponded to the consumption of 20 M NADPH, 1015 

the H2O2 concentration initially present in the reaction medium. With this approximation, the 1016 

time course showed a decrease in NADPH concentration at a constant rate of 0.54 M s-1 from 1017 

10 s to 30 s, from which a 6 -1 -11.2 10 M sRedk    can be estimated. This value is within the 1018 

experimental error of the value estimated above for Tsa1 reduction by Trx1 and of the same 1019 

order of magnitude of that (6.4x106 M-1s-1) determined for the reduction of Ahp1 by Trx2 [122].  1020 

 

Supplementary Figure 7. Global fit (broken lines) of the 
NADPH progress curves reported in ref. [119] (dots) for 

reaction mixtures containing 150 M NADPH, 200 μM H2O2, 1 

μM Tsa1, 0.2 μM Trr1, and 1 μM , 2 M, 5 M and 10 M Trx1. 

Fitted values are ρ= 0.195±0.015, = 0.0854±0.0045, = 
(9.±5.0)×10-7 (R2= 0.9996). 

 

 

Supplementary Figure 8. Determination of the rate of 
NADPH consumption in the experiment reported in in Figure 

6A from ref. [121]. The reaction mixture contained 0.225 M 

Trx2, 0.075 M thioredoxin reductase 2, 2.1 M Tsa1, 0.18 

mM NADPH, 20 M H2O2, 1 mM azide, 100 M DTPA, 50 mM 
Hepes.NaOH, pH 7.4. The black line was fitted to the 10 s – 
20 s data points, yielding a slope 5.4×10-7 M s-1. 
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The value of Redk  to be considered in the model is a concentration-weighted average of the 1021 

values for Trx1 and Trx2: 1022 

 6 -1 -1 6 -1 -1 6 -1 -10.33 1.33 10 M s 0.67 1.2 10 M s 1.2 10 M sRedk          , 1023 

where 0.33 and 0.67 are the fractions of Trx contributed by Trx1 and Trx2, respectively (Section 1024 

3.4.5). In lack of specific data we assume that the sulfinylation rate constant for Tsa2 is similar 1025 

to that for Tsa1. This assumption is of minor consequence, given the low concentration of Tsa2. 1026 

3.4.4. Sulfiredoxin concentration and activity 1027 

 The cytoplasmic concentration of Srx was estimated from spectral count in ref. [113], 1028 

under the assumptions that concentration is the same in the cytoplasm and in the nucleus and 1029 

that the nucleus constitutes 9% of the cell volume [112]: 1030 
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The catalytic constant for yeast Srx is (3.0±0.1)×10-2 s-1 [78] and a KM(Tsa1-SO2
-)= 20 M can be 1032 

inferred from data in ref. [76]. Thus, except when a large fraction of Tsa1 is sulfinylated the 1033 

reduction of Tsa1-SO2
- follows approximately pseudo-first order kinetics with a rate constant 1034 
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 At Tsa1-SO2
- concentrations substantially above 20 M the reduction rate will eventually 1036 

saturate at 2 -1 8 -13.0 10 (s ) 3.9 10 (M) 1.2 nM s     . Because these high 1037 

Tsa1-SO2
- concentrations, corresponding to >65% hyperoxidation, should only be attained at 1038 

very high supv , we neglect Srx saturation. 1039 

3.4.5. Thioredoxin concentration 1040 

 S. cerevisiae has two thioredoxin isoforms that are functionally redundant to a large 1041 

extent and are present in most organelles: Trx1 and Trx2. We considered the two isoform as a 1042 

single thioredoxin. From the protein count in ref. [113] we can estimate their aggregate 1043 

concentration as: 1044 
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3.4.6. Thioredoxin reductase concentration and activity 1046 

 From the spectral count in ref. [113] we can estimate the concentration of TrxR1 as 1047 

follows, neglecting its contents in the mitochondrial intermembrane space: 1048 
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S. cerevisiae TrxR has similar -143. scatk   for both Trx1 and Trx2,[120] which translates into  1050 

 -1 5 -143.(s ) 2.4 10 (M) 1.0 mMsMax catV k TrxR       . 1051 

The MK  for these two substrates are also quite similar (1.3 M and 0.6 M, respectively 1052 

[120]) yielding a weighted average 1053 
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3.5. Summary of protein concentrations and kinetic parameters 1055 

Supplementary Table 6. Summary of the protein concentrations and kinetic parameters estimated in this work. The values 1056 
of the concentrations and parameters entering the kinetic model are presented in Table 2 of the main text. Italicized values 1057 
were determined specifically for the cells in point.  1058 

 PrxI PrxII PrxVI GPx1 Cat Srx Grx1 Trx1 TrxR1 kCat kPrxVI kGpx1 kInf 

Localization: C C C C/M P a C C C C - - - - 

Units: M M M M M M M M M s-1 s-1 s-1 s-1 

A549 47. 2.0 11. 0.27 1.4 1.0 1.9 29. 7.7 0.13 33. 0.96 10. 

GAMG 71. 5.4 14. 3.6 3.2 0.57 1.2 44. 7.6 0.32 42. 13. 10. 

HEK293 1.1×102 32. 45. 4.6 1.1 0.092 0.33 46. 2.5 0.11 1.3×102 16. 10. 

HeLa 51. 15. 27. 0.98 1.9 0.24 0.41 24. 3.1 3.0 80. 73. 12. 

HepG2 69. 24. 36. 2.1 4.5 0.57 4.9 27. 1.5 0.44 1.1×102 7.1 10. 

Jurkat T 1.2×102 46. 25. 1.2 4.1 0.12 9.4 36. 5.5 0.40 75. 4.1 5.2 

K562 72. 29. 55. 0.1 3.9 0.077 0.026 28. 1.8 0.38 1.6×102 0.35 10. 

LnCap 50. 36. 33. 5.6 9.8 0.21 0.23 17. 4.1 0.96 1.0×102 19. 10. 

MCF-7 59. 33. 17. 3.5 1.9 0.74 0.17 23. 3.0 7.0 51. 6.8 14. 

RKO 59. 28. 43. 1.1 0.89 1.5 15. 69. 3.6 0.086 1.3×102 3.7 10. 

U-2 OS 73. 11. 27. 1.5 1.6 0.55 2.9 18. 4.4 0.16 82. 5.2 10. 

HepG2b 86. 24. 21. 0.049 7.8 0.34 2.9 24. 0.62 0.76 63. 0.17 10. 

Hepatocytesb 67. 19. 61. 2.4 43. 0.065 4.7 63. 0.65 4.2 1.8×102 8.3 10. 

Erythrocytes 6.8 5.7×102 3.0 1.3×102 24.c - - 0.56 0.13 218. 9.0 25. 11. 

Yeast 31.d 0.40e - 0.54f - 0.039g - 1.5h 24. 3.1 - 21. 9.5 

Subcellular localization is reported as: N, nuclear; C, cytoplasmic; M, mitochondrial; P, peroxisome.  1059 
a Concentration referred to cell water volume. b From the dataset in ref. [21]. c In erythrocytes catalase is localized in the cytoplasm.  1060 
d Tsa1. e Tsa2. f CcP g Also localized to  the nucleus. h Present in most organelles. 1061 
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4. Numerical model considering PrxI and PrxII separately 1062 

 In order to evaluate the redox state of PrxI and PrxII separately in simulations of wet-lab 1063 

experiments we set up the model below, which treats these Prx as separate entities and 1064 

accounts for H2O2 permeation.  1065 
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 1066 

Here, 2 2,outH O  stands for the concentration of H2O2 in the medium,   stands for the 1067 

permeability constant of the cell membrane, cellsn  stands for the number of cells in the medium 1068 

volume ( mediumV ) considered, and '
Condk , ''

Condk (
'
Sulfk , 

''
Sulfk ) represent the condensation 1069 

(sulfinylation) rate constants for PrxI-SO- and PrxII-SO-, respectively.  1070 



53 
 

5.  Simulation of experimental results 1071 

 1072 
Supplementary Figure 9. Simulation of experiments treating HEK293 cells with H2O2 steady states (A) 1073 
and boluses (B). Plots show the percentage of disulfide-crosslinked PrxII dimers at various steady 1074 
extracellular H2O2 concentrations (A), or 5 min after bolus treatment (B) under the conditions of the 1075 
experiments described in Figures 6A and 6B (respectively)  from Sobotta et al. [33]. Simulations were 1076 
carried out using Model 2 (Section 0) with the parameters in Table 2 and Supplementary Table 6. 1077 

 1078 

 1079 

 1080 

 1081 
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 1083 

 1084 

 1085 

 1086 

 1087 

 1088 

 1089 

 1090 

 1091 

 1092 



54 
 

  1093 

 
Supplementary Figure 10. Simulation of experiments treating HEK293 cells with H2O2 boluses 
considering a low Trx1 availability. (A) Percentage of disulfide-crosslinked PrxII dimers 5 min after 
bolus treatment under the conditions of the experiments described in Figure 6B from Sobotta et al. 
[33]. The underestimation of crosslinked PrxII monomers at very high H2O2 boluses is likely due to the 
neglect of GSH and NADPH depletion at the extremely high vsup values attained under these non-
physiological conditions. (B) Mean H2O2 probe oxidation rate between t=30 s and t=120 s and (C) 
percentage of hyperoxidized Prx monomers 10 min after bolus treatment under the conditions of the 
experiments described in Figures 6D and 6F (respectively) from Tomalin et al. [56]. Simulations were 
carried out using Model 2 (Section 0) with the parameters in Table 2 and Supplementary Table 6, 

except for [Trx1]= 1.5 M.  

 
Supplementary Figure 11. Simulated time courses for treatment of HEK293 cells with H2O2 boluses. 
Treatments under the conditions of the experiments described in Figures 6D and 6F from Tomalin et 
al. [56]. For comparison to Supplementary Figure 10B please note that the mean rate of probe 

oxidation is proportional to the area under the H2O2 curve from t= 30 s to t= 120 s. (A) 5 M H2O2 

bolus, (B) 10 M, (C) 15 M, (D) 20 M, (E) 30 M. Simulations were carried out using Model 2, with 
the same parameters as for Supplementary Figure 10. Similar results are obtained using Model 1, with 
the total fractions of disulfide and sulfinate peroxiredoxins as variables. 
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 1094 
Supplementary Figure 12. Influence of various factors on the threshold for Prx hyperoxidation and 1095 
cytoplasmic H2O2 accumulation. Percentage of hyperoxidized Prx monomers 10 min after bolus treatment 1096 
(A,C,E) and mean H2O2 probe oxidation rate between t=30 s and t=120 s (B,D,F) under the conditions of 1097 
the experiments described in Figures 6F and 6D (respectively) from Tomalin et al. [56]. Except as otherwise 1098 
indicated, simulations were carried out using Model 1 and the parameters in Table 2 and Supplementary 1099 
Table 6 for HEK293 cells (except [Trx1]= 1.5 M) as reference. Solid black lines, results obtained for the 1100 
reference parameter values; dotted and dashed lines, effect of 5-fold decrease or increase (respectively) 1101 

of the following parameters: (A,B) permeability constant; (C,D) TTrx , blue; App
MaxV , yellow; (E,F) Altk , blue; 1102 

TPrx , yellow, overlapping the black line. 1103 
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 1104 

 1105 
Supplementary Figure 13. Simulated steady state response of the PTTRS in HEK293 cells to H2O2 supply. 1106 
In panels C-F solid and dashed lines refer to PrxII and PrxI, respectively. Simulations were carried out using 1107 
a variant of Model 2 (Section 0) replacing H2O2 permeation by a prescribed H2O2 supply rate (vsup). 1108 
Parameter values are as shown in Table 2 and Supplementary Table 6 for HEK293 cells, except for 1109 
[Trx1]=  1.5 M. Note the quite abrupt decrease in the fraction of both PrxI and PrxII in thiolate form over 1110 
a narrow range of vsup. 1111 
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 1112 
 1113 

 1114 

 1115 
Supplementary Figure 14. Simulation of experiments treating Jurkat T cells with H2O2 boluses. Fraction 1116 
of Prx as Prx-SO2

- (blue) and Prx-SS (yellow) for 106 Jurkat T cells/mL 10 min after treatment with the 1117 
indicated boluses, for 100% (solid lines), 30% (dashed) and 3% of the Trx concentration indicated in 1118 
Supplementary Table 6 for this cell line. The vertical gray lines indicate the boluses examined in Figures 2E 1119 
and 3A of ref. [95]. Comparisons must take into account that the experiments over-estimate the fraction 1120 
of disulfide-crosslinked Prx dimers due to adventitious oxidation during sample handling.[95] Note that 1121 
the simulations considering the Trx concentration estimated from the proteomic dataset yield a good fit 1122 
to the experimental observations but those considering 30% or 3% of this concentration do not. 1123 
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 1124 

 
Supplementary Figure 15. Simulation of experiments treating human erythrocytes with H2O2 boluses. 
Fraction of Prx as Prx-S-, Prx-SO2

- and Prx-SS, and of Trx as Trx-SS for 5×106 erythrocytes/mL treated with 

5 M H2O2 (A, compare to Figure 4A of ref. [95]) or 10 min after treatment with the indicated boluses (B, 
compare to Figure 3B of ref. [95]). Comparisons must take into account that the experiments over-
estimate the fraction of disulfide-crosslinked Prx dimers due to adventitious oxidation during sample 
handling.[95] Although computational predictions with Model 1 are less accurate than those with the 
much more complex model in ref. [31], they still provide a good match to the experimental observations. 
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 1125 

Supplementary Figure 16. Comparison of simulation results from Model 1 (A,C) and Model 2 (B,D) for 1126 
HEK293 (A,B) and Jurkat T (C,D) cells. Simulations were carried out using the parameters in Table 2 and 1127 
Supplementary Table 6, except for [Trx1]= 1.5 M in the case of HEK293. Both models predict essentially 1128 
similar behavior. Color codes are as for Figure 2 except that cytoplasmic H2O2 concentrations are scaled 1129 
by 100 M. 1130 

 1131 
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6. Additional design space slices and responses 1132 

 
Supplementary Figure 17. Slices of the design space of the PTTRS over the physiological (vsup,VMax

App) 
planes for GaMG (A,D) , RKO (B,E), and U-2 OS (C,F) cells. In lack of reliable morphometric data for 
these cells, we consider the extreme values of fcytoplasm and fnucleus among the other cells in 
Supplementary Table 4. Namely, fcytoplasm=0.3, fnucleus=0.6 (A-C), and fcytoplasm=0.78, fnucleus=0.18 (D-F). 

 
Supplementary Figure 18. Responses of the PTTRS to H2O2 supply rates in GaMG (A,D), RKO (B,E), 
and U-2 OS (C,F) cells. Morphometric parameters are as for Supplementary Figure 17. Note the 

logarithmic scales. Predictions at vsup > 0.5 mM s-1 may be inaccurate due to neglect of NADPH 
depletion. Color codes are as for Figure 2 from the main text. Cytoplasmic H2O2 concentrations are 

scaled by 100 M. 
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 1133 

Supplementary Figure 19. Slices of the design space of the PTTRS over the physiological (vsup,VMax
App) 1134 

plane considering that only 3% of the Trx1 in nucleated human cells is available to reduce Prx-SS. The 1135 
black scales inside the plots mark the apparent VMax of TrxR and the values of vsup corresponding to 1 M, 1136 
10 M and 100 M extracellular H2O2. These values of vsup were estimated based on the known cell 1137 
permeability and morphology (HeLa, MCF-7, Jurkat T cells, erythrocytes and S. cerevisiae) or assuming 1138 
kInf = 10 s-1 (all other cells). Note the logarithmic scales. Color codes are as for Figure 2. A, HepG2, ref. [52]; 1139 
B, HepG2, ref. [21]; C, hepatocytes; D, erythrocytes; E, HEK293; F, Jurkat T; G, HeLa; H, K562; I, MCF-7; 1140 
J, A549; K, LnCap; L, S. cerevisiae. 1141 

 1142 
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 1143 

 1144 

Supplementary Figure 20. Responses of the PTTRS to H2O2 supply rates for human cell types and S. 1145 
cerevisiae considering that only 3% of the Trx1 in nucleated human cells is available to reduce Prx-SS. 1146 
Note the logarithmic scales. The plots were obtained by numerical integration of equations (1) in the main 1147 
text with the parameters in Table 2, except for the concentration of Trx1 in nucleated human cells being 1148 
3% of the values presented in that table. Predictions of the responses at vsup > 0.5 mM s-1 may be 1149 
inaccurate due to neglect of NADPH depletion. Color codes are as for Figure 2, except that cytoplasmic 1150 
H2O2 concentrations are scaled by 100 M. A, HepG2, ref. [52]; B, HepG2, ref. [21]; C, hepatocytes; D, 1151 
erythrocytes; E, HEK293; F, Jurkat T; G, HeLa; H, K562; I,MCF-7; J,  A549; K, LnCap; L, S. cerevisiae. 1152 
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Supplementary Figure 21. Transient response of the PTTRS to temporary increases in H2O2 supply beyond the limits of region TTPU. (A,B,C) Jurkat T cells, Response H; (D,E,F) 1154 
HEK293 cells with TrxT set to 1.5 M, Response PD; (G,H,I) HepG2 cells, Response D. vsup was increased from 10 nM s-1 to 250 M s-1 between t= 60 s and t= 1260 s, amounting 1155 
to a H2O2 dose near the limit of what cells can survive. The time scale is expanded around t= 60 s (B,E,H) and t= 1260 s (C,F,I) to show the fast dynamics following the onset 1156 
and termination of the high-vsup period. H2O2 concentrations are multiplied by 50, to fit in the same scale. 1157 

 1158 
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