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1. Theoratical derivation

1.1 Asymptotic properties

To investigate the asymptotic properties of the proposed estimator in Section 3, we apply the

standard theory of maximum likelihood estimators, similar to that of the ordinal regression.

For ease of notation, we denote ḟ(u) = df(u)
du

and f̈(u) = d2f(u)
du2

as the first and second

derivatives, respectively, ∆f(tm) = f(tm)− f(tm−1) as the difference for any function f , and

a⊗2 = aaT for any vector a. We rewrite the log of the likelihood function (8) as

`(θ) = n−1
S∑
s=1

n∑
i=1

M∑
m=1

U s
im log

(
∆g−1

{
z(tm)Tθ

})

≡ n−1
S∑
s=1

n∑
i=1

M∑
m=1

U s
im log

(
∆g−1

{
h(tm)Tα+ (xs)TA(tm)β

})
,

where h(t) = (h1(t), . . . , hm(t))T , and A(t) = Id ⊗ h(t), Id is an identity matrix with d

dimensions. The negative of the second derivative (or Hessian) matrix of the log-likelihood

is given by

V̂ = −n−1
S∑
s=1

n∑
i=1

M∑
m=1

U s
im

∆ ¨g−1
{
z(tm)Tθ

}
z(tm)⊗2 −

[
∆ ˙g−1

{
z(tm)Tθ

}
z(tm)

]⊗2
[∆g−1 {z(tm)Tθ}]⊗2

.

and the Fisher information matrix is V = EV̂ . Consistency and asymptotic normality follow

straightforwardly under standard regularity conditions.

Theorem 1: Suppose that all the possible parameter values θ are in a compact set,

and V is a nonnegative definite matrix, then θ̂ converges to θ0 in probability, as n goes to

infinity. Furthermore,
√
n(θ̂−θ0) is asymptotically normally distributed with mean zero and

covariance matrix V −1, as n goes to infinity.

1.2 Lower tail dependence

Lower tail dependence measures the dependence betwen the variables in the lower-left

quadrant of [0, 1]2 (See Nelsen (2006)). The coefficient of lower tail dependence is defined by

λL := lim
u→0+

P (F (X) < u|G(Y ) < u) = lim
u→0+

C(u, u)

u
.
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For all of the Archimedean copulas in Table 4.1 in Nelsen (2006), their lower tail dependence

are evaluated and summarized in Example 5.22 in Nelsen (2006). In particular, the relation-

ship between the association parameter of the copula (θ) and the lower tail dependence is

identical in the Nelson 4.2.12 and Clayton copulas, i.e., λL = 2−1/θ.

2. Appendix: Archimedean copulas in the homogeneous reproducibility class

In this appendix, we include a list of Archimedean copulas from Table 4.1 in Nelsen (2006)

that can be written in the regression form of (2).

(1) Copula function: Cθ(t1, t2) = max(1− [(1− t1)θ + (1− t2)θ]1/θ, 0), where θ ∈ [1,∞).

Name: (4.2.2) in Nelsen

Generator function: ψ(t) = (1− t)θ

Regression form: g(C(t, t)) = α1h(t), where g(C(t, t)) = 1 − C(t, t), h(t) = 1 − t,

α1 = 21/θ.

(2) Copula function: Cθ(t1, t2) = t1t2
1−θ(1−t1)(1−t2) , where θ ∈ [−1, 1).

Name: Ali-Mikhail-Haq family, (4.2.3) in Nelsen

Generator function: log 1−θ(1−t)
t

Regression form: g(C(t, t)) = α1h(t)+α2h
2(t), where g(C(t, t)) = 1−C(t,t)

C(t,t)
, h(t) = 1−t

t
,

α1 = 2, α2 = (1− θ).

(3) Copula function: Cθ(t1, t2) = exp(−[(− log t1)
θ + (− log t2)

θ]1/θ), where θ ∈ [1,∞).

Name: Gumbel-Hougaard family, (4.2.4) in Nelsen

Generator function: (− log t)θ

Regression form: g(C(t, t)) = α1h(t), where g(C(t, t)) = log(C(t, t)), h(t) = log(t),

α1 = 21/θ.

(4) Copula function: Cθ(t1, t2) = max(θt1t2 + (1− θ)(t1 + t2 − 1), 0), where θ ∈ (0, 1]

Name: (4.2.7) in Nelsen
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Generator function: ψ(t) = − log[θt+ (1− θ)]

Regression form: g(C(t, t)) = α1h(t) +α2h(t)2, where g(C(t, t)) = 1−C(t, t), h(t) =

1− t, α1 = 2, α2 = −θ

(5) Copula function: Cθ(t1, t2) = t1t2 exp(−θ log t1 log t2), where θ ∈ (0, 1]

Name: Gumbel-Barnett family, (4.2.9) in Nelsen

Generator function: ψ(t) = log(1− θ log t)

Regression form: g(C(t, t)) = α1h(t) +α2h
2(t), where g(C(t, t)) = logC(t, t), h(t) =

log t, α1 = 2, α2 = −θ.

(6) Copula function: Cθ(t1, t2) = (1 + [(t−11 − 1)θ + (t−12 − 1)θ]1/θ)−1, where θ ∈ [1,∞)

Name: (4.2.12) in Nelsen

Generator function: ψ(t) = (1
t
− 1)θ

Regression form: g(C(t, t)) = α1h1(t) + α2h2(t), where g(C(t, t)) = log C(t,t)
1−C(t,t)

,

h1(t) = 1, h2(t) = log t
1−t , α1 = − log 2

θ
, α2 = 1.

(7) Copula function: Cθ(t1, t2) = max(1 + θ
log[eθ/(t1−1)+eθ/t2−1]

, 0), where θ ∈ [2,∞)

Name: (4.2.18) in Nelsen

Generator function: ψ(t) = exp( θ
t−1)

Regression form: g(C(t, t)) = α1h1(t)+α2h2(t), where g(C(t, t)) = 1
1−C(t,t)

, h1(t) = 1,

h2(t) = 1
1−t , α1 = − log 2

θ
, α2 = 1.

3. Supplementary figures

[Figure 1 about here.]

4. Supplementary tables

[Table 1 about here.]

[Table 2 about here.]
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Figure 1: Verification of the functional form for the regression model for the ChIP-seq data
in Li et al. (2011). Empirical data shows that there is an approximated linear trend between
log(Ψ(t)) and log(t) for most peak callers.
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Table 1: Accuracy of estimation at different sample sizes and spacing of cutoffs under
canonical model specification. Data are simulated from a Gumbel-Hougaard copula with
θG = 1.0, 2.0 and 3.0. The table shows the mean and the standard deviation of the estimated
parameters α1 over n data sets with M = 20, 50 and 100.

n=500 n=1,000 n=10,000

θG α1 = 2
1
θG M = 20 M = 50 M = 100 M = 20 M = 50 M = 100 M = 20 M = 50 M = 100

1 2.000 1.978 2.001 2.007 1.989 1.997 1.992 1.997 1.996 1.996
0.096 0.090 0.094 0.068 0.066 0.073 0.019 0.021 0.019

2 1.414 1.402 1.404 1.416 1.416 1.415 1.418 1.410 1.413 1.414
0.130 0.152 0.136 0.092 0.075 0.082 0.027 0.028 0.026

3 1.260 1.242 1.254 1.240 1.253 1.255 1.259 1.257 1.258 1.257
0.170 0.199 0.192 0.119 0.117 0.116 0.037 0.044 0.045
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Table 2: Lab and platform effects on the reproducibility of differentially expressed genes in
a microarray study (Irizarry et al., 2005). The data is fitted using the regression model:
logit(Ψ(t)) = α1 +α2logit(t) +βLXL +βPXP +βPLXPXL +βLtXLlogit(t) +βPtXP logit(t) +
βPLtXPXLlogit(t).

Estimate 95% confidence interval

Baseline α1 -0.520 [-0.768, -0.272]
α2 0.917 [ 0.809, 1.026]

Two-color oligo βP -0.377 [-0.738, -0.015]
Lab 2 βL 0.033 [-0.317, 0.384]
Two-color*Lab 2 βLP 0.050 [-0.458, 0.558]
Two-color*logit(t) βPt 0.142 [-0.024, 0.309]
Lab 2*logit(t) βLt 0.006 [-0.148, 0.159]
Two-color*Lab 2*logit(t) βPLt -0.067 [-0.299, 0.165]


