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1. Computational details 

 

All calculations are based on density functional theory (DFT). The geometries of the singlet ground 

state (
1
GS), the lowest triplet excited state, and the transition states (TS1) were optimized for complexes 

1-6 using the hybrid functional B3LYP
1,2

 in combination with the 6-31G* basis set for all atoms. Rela-

tivistic effects were included for the Ir atom by using the ECP-60-mwb Stuttgart/Dresden pseudopoten-

tial.
3
 The nature of the stationary points was confirmed by computing the Hessian at the same level of 

theory. The minimum energy crossing point (MECP) between the 
1
GS and the 

3
MC potential surfaces 

was optimized using Harvey´s algorithm,
4
 as implemented in the ORCA software;

5
 in this case, the 

B3LYP functional was employed in combination with the def2-svp basis set and the ECP-60-mwb 

Stuttgart/Dresden pseudopotential for Ir. To get relative energies for the MECP, single-point calcula-

tions with the 6-31G* basis set were performed. All calculations apart from the MECP optimization 

were carried out with the Gaussian09 program package.
6
  

The phosphorescence radiative decay rates were computed using the QR TD-B3LYP approach, as im-

plemented in the Dalton program,
 7

 at the optimized geometry of the emissive triplet state (Tem) of com-

plexes 1-6. The rate constants (kr) for phosphorescence radiative decay from one of the three spin 

sublevels (indexed by i) of the emissive states (Tm) can be expressed as 

 

(1), 

 

where ES-T is the transition energy, t0 = (4

mee

4
,  is the fine-structure constant, and Mj

i
 is the j 

axis projection of the electric dipole transition moment between the ground state and the i
th

 sublevel of 

the triplet state Tem. The transition moment Mj
i
 can be expressed as, 

 

(2), 

 

which is calculated using the QR TD-B3LYP approach.8 Note that individual phosphorescence rates for 

the three spin sublevels can only be observed experimentally in the limit of large fine-structure splittings 
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and at low temperatures. In the high-temperature limit, spin relaxation is usually fast and the triplet lev-

els are almost equally populated, and only weighted phosphorescence rates can be measured. Hence, 

phosphorescence rates are calculated according to (3). 

 

(3) 

In the QR TD-B3LYP calculations the 6-31G and raf-r basis set were used for light atoms and Ir, re-

spectively. Scalar relativistic effects were included with the Douglas-Kroll-Hess second order (DKH2) 

Hamiltonian.
9
 The SOC operator applied in all our calculations makes use of a semi-empirical effective 

single-electron approximation, as suggested by Koseki et al.
10
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2. Correlation between Elim and x 

In Eq(6) of the manuscript, 
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     0 ≤ x ≤ 1                 (6), 

 

x is introduced, which is a scaling prefactor of order unity determining the availability or not of the tem-

perature-dependent non-radiative channels at RT. For complexes 1-2, these channels are negligible, 

since they possess PLQY values of almost unity at RT (see the phos values in Table 1 of 

the manuscript). The computed Elim values for 1-2 are the largest ones among all the complexes. There-

fore, since the non-radiative pathways are not operative at this temperature, when estimating their 

PLQY values with Eq. (6), only the krx/kr1 ratio determines the PLQY. In contrast, for complexes 3-6, 

since their PLQY are clearly smaller than the unity of quantum yield (i.e. the non-radiative pathways are 

fully operative at RT), the Elimx/Elim1 factor in Eq. (6) should be concomitantly evaluated with the 

krx/kr1 ratio. Note that the Elim values for 3-6 are smaller as compared to 1-2. These evidences show 

that there is a clear correlation between the Elim and the x values. To define such a correlation one 

needs of two further assumptions, namely i) which are the limit conditions in the correlation fit and ii) 

what type of correlation (e.g. linear, hyperbolic, etc.) is more appropriate. In the following I explore the 

robustness of the model by deeply exploring the correlation between the Elim and x values.  

 

Linear correlation between the Elim and the x values (Model 1): This is the original model present-

ed in the manuscript (Model 1). A linear correlation between the x and Elim values is considered, assum-

ing the following limit conditions: x=1 Elim1=0.298 eV (note that this is the computed Elim value for 

complex 1) and x=0 Elim=0 eV. Complexes with Elim values above the upper limit condition (i.e., 

Elim>0.298 eV) possess x=1. These limit conditions assume that the non-radiative pathways are fully 

quenched for complex 1 at RT (only the krx/kr1 ratio determines the PLQY values in Eq.(6)), whilst in 

the other extreme case (x=0) these processes occur in a barrierless manner and thus, only the 

Elimx/Elim1 ratio dominates in Eq. (6). This correlation fit is shown in Fig S1. The x values tabulated in 

Table 2 of the manuscript for complexes 2-6 are extrapolated from this correlation fit. 
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Figure S1. Linear correlation between the Elim and x values using as limit conditions: x=1 

Elim1=0.298 eV and x=0 Elim=0 eV. 
 
Effect of changing the limit conditions of the linear correlation between the Elim and the x values 

(Model 2): I next evaluate the effect of modifying the limit conditions in the correlation fit, and more 

particularly the lower region of the fit (x < 0.05). At RT, complexes 4-5 possess almost negligible 

PLQY (phos < 01). They are also characterized by the lowest computed Elim values (Elim < 0.06 eV). 

These facts point out that these small barriers are extremely accessible at RT. Therefore, for 4-5, these 

processes occur in a “barrierless” manner and a new lower limit condition can be proposed, i.e. x=0 

Elim4=0.042 eV (note that this is the computed Elim value for 4), instead of x=0 Elim=0 eV that was 

used in Model 1. This correlation fit (maintaining the previous upper limit condition) is shown in Fig 

S2. Complexes with Elim values above (below) the upper (lower) limit condition, possess x=1 (x=0). 
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Figure S2. Linear correlation between the Elim and x values using as limit conditions: x=1 

Elim1=0.298 eV and x=0 Elim4=0.042 eV. 
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Using this correlation fit new prefactor x(Model 2) values are obtained (see Table S1). Upon substitution 

on Eq. (6) new PLQY are obtained and are also tabulated in Table S1. 

Table S1. Prefactor x(Model2) for 1-6 using the correlation fit of Fig. S2. PLQY obtained with these 
x(Model 2) values. 

Complex P (theo, 
Model2) 

x       
(Model2) 

1 - 1 
2 0.87 0.90 
3 0.55 0.37 
4 0.00 0.00 
5 0.04 0.07 
6 0.52 0.82 

 
As seen in Table S1, with the new prefactor x(Model 2) values, very similar theoretical estimators of the 

PLQY to those listed in Table 1 are obtained. Obviously, since the correlation fit presented in Fig. S2 is 

more suited to reproduce the lower limit conditions, better comparison with the experimental evidences 

are obtained for 4-5. In general, the modification of the limit conditions does not have a great impact on 

the qualitative pre-screening of phosphors, since the trends in the computed PLQY of the Ir(III) series 

are maintained, i.e., 2 > 3 > 6 > 4 ≥ 5, and the model still discerns from highly emissive (1-2) to non-

emissive (4-5) or intermediately emissive complexes (3,6) at RT. 

 

Hyperbolic correlation between the Elim and the x values (Model 3): I next evaluate the effect of 

assuming a hyperbolic correlation between the Elim and the x values. This hyperbolic fit is particularly 

designed to obtain the expected asymptotic behavior for the lower (x < 0.05) and upper (x > 0.95) re-

gions of the fit whilst maintaining the predominant linear correlation in the middle region (0.05 < x < 

0.95). Indeed, this curve is best suited to simulate the drop off of the emission lifetimes of these com-

plexes with increasing temperatures (see e.g. Figures 4-5 of Ref.11). As remarked for Model 2, there is a 

lower limit Elim value (Elim4=0.042 eV), below which the non-radiative pathways are fully operative. 

Likely, and also experimentally corroborated (since 1-2 possess PLQY values of almost unity at RT), an 

upper limit Elim value (Elim2=0.272 eV) can be defined, above which the non-radiative pathways are 

mostly quenched. In Model 3, I assume that the limiting barriers for complexes 4 and 2, i.e. Elim4 and 

Elim2, provide the change from linear to asymptotical tendency of the symmetric sigmoid function, i.e. 

x=0.05 Elim1=0.042 eV and x=0.95 Elim4=0.272 eV. The asymptotes are assigned as x=0 

Elim=0 eV and x=1 Elim=0.31 eV and a symmetric condition is assigned at x=0.5 Elim=0.155 eV. 

Complexes with Elim values above the asymptotic limit condition, i.e. Elim>0.31 eV, possess x=1. This 

correlation fit along with its correlation function is shown in Figure S3.  
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Figure S3. Hyperbolic correlation between the Elim and x values. The used correlation function along 

with its coefficients and goodness measure are also shown. 
 
Using this correlation fit new prefactor x(Model3) values are obtained (see Table S2). Upon substitution 

on Eq. (6) new PLQY are obtained and are also tabulated in Table S2.  

Table S2. Prefactor x(Model3) for 1-6 using the correlation fit of Fig. S3. PLQY obtained with these 
x(Model3) values. 

Complex P (theo, 
Model3) 

x       
(Model3) 

1 - 1.00 
2 0.92 0.95 
3 0.59 0.41 
4 0.06 0.05 
5 0.04 0.08 
6 0.65 0.89 

 
As seen in Table S2, with the new prefactor x(Model3) values, similar theoretical estimators of the 

PLQY to those listed in Table 1 and S1 are obtained. The correlation fit presented in Fig. S3 is best suit-

ed to reproduce both the lower and upper limit conditions, since better comparison with the experi-

mental evidences are obtained for the highly emissive 2 complex and the non-emissive 4-5 complexes. 

Regarding the intermediately emissive 3,6 complexes the order in their PLQY is reversed with respect 

to Models 1 and 2, i.e. 6 > 3. Still, Model 3 is well suited to discern from highly emissive (1-2) to non-

emissive (4-5) or intermediately emissive complexes (3,6) at RT.  
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Summary of the correlation models: In Table S3 are listed the results for the prefactor x and PLQY 

using Models 1-3 along with the experimental values of the PLQY. 

Table S3. Summary of the prefactor x and PLQY values using the different Model 1-3. 

Complex x       
(Model1) 

x       
(Model2) 

x       
(Model3) 

P (theo, 
Model1) 

P (theo, 
Model2) 

P (theo, 
Model3) 

P (exp, 
RT)

 a
          

1 1 1 1 - - - 0.97  
2 0.91 0.90 0.95 0.88 0.87 0.92 0.98  
3 0.46 0.37 0.41 0.63 0.55 0.59 0.55  
4 0.14 0.00 0.05 0.16 0.00 0.06 <0.01  
5 0.20 0.07 0.08 0.11 0.04 0.04 <0.01  
6 0.85 0.82 0.89 0.57 0.52 0.65 0.37  

a
 From Ref. 11. 
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3. Choosing a different molecule as a reference. 

Effect of changing the reference molecule in evaluating the PLQY: In the following I evaluate the 

effect of choosing a different reference molecule. As in the experimental setups, a reference value is 

needed to compute the PLQY with Eq. (6). In the manuscript this reference value is the experimental 

Phos(298K) value of complex 1, i.e. 1(298K) In the following, I evaluate how the results are 

affected by choosing a different reference molecule. Towards obtaining maximum sensitivity on the 

PLQY estimations with Eq. (6), complexes with near the unity of quantum yield are required. Therefore, 

complex 2 is herein chosen, being the new reference value its experimental PLQY, i.e.  

2(298K)Correspondingly Eq. (6) is transformed to 
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      0 ≤ x ≤ 1                 (7). 

 

The PLQY values of 1,3-6 using Models 1-3 with Eq. (7) are presented in Table S4.  

Table S4. Computed PLQY values with Models 1-3 using 2 as a reference molecule. 

Complex P (theo, 
Model1) 

P (theo, 
Model2) 

P (theo, 
Model3) 

1 0.98 0.98 0.98 
2 - - - 
3 0.64 0.56 0.60 
4 0.17 0.00 0.06 
5 0.11 0.04 0.04 
6 0.58 0.53 0.66 

 
As seen in Table S4, the effect of choosing a different reference molecule has a smaller effect on the 

PLQY than the choice of the model to evaluate the PLQY. The new PLQY values are only deviated by 

±0.01 from the values obtained using complex 1 as a reference (see Table S3). 
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4. Table S5. 

Table S5. Activation barriers (eV) for the temperature-dependent non-radiative channels (see Scheme 
1), prefactors x and estimated PLQY using Models 1-3 for 7-8. 

Complex Ea Eb Ec
 

Elim
 a
 x(Model 

1) 
x(Model 

2) 
x(Model 

3) 
PLQY 

(Model1) 
PLQY 

(Model 2) 
PLQY 

(Model 3) 
7 0.211 0.203 0.097 0.211

 
0.71 0.78 0.75 0.63 0.71 0.68 

8 0.311 0.218 0.091 0.311 1 1 1 0.97 0.97 0.97 
a
 The Elim value usually corresponds to Ea or Ec value, depending on the kinetic scenario.  
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