SUPPLEMENTAL MATERIAL

Cost effectiveness of left atrial appendage closure with the Watchman Device compared to warfarin or NOACs for secondary prevention in NVAF

Abbreviations list

AF=Atrial fibrillation GI=gastrointestinal ICER=Incremental cost-effectiveness ratio LAAC=Left atrial appendage closure MRS=modified Rankin score NOACs=non-warfarin oral anticoagulants OACs=Oral anticoagulants PSA=Probabilistic sensitivity analysis QoL=Quality of life QALYs=Quality-adjusted life years TEE=Transesophageal echocardiogram TIA=Transient ischemic attack

Supplemental Methods

Health State Utilities and Stroke Outcomes

Health state utilities and stroke outcomes are reported in Table II. Warfarin stroke outcomes were estimated using a weighted average of outcomes from four warfarin trials and reflect the results from all patients due to the fact that warfarin secondary prevention stroke outcomes varied widely across studies.^{1,2,3,4} To remain consistent, NOAC stroke outcomes were also taken from the overall stroke prevention populations from each of the respective trials, as available.^{5,6,7} Rates of nondisabling strokes were obtained for all three NOACs, and the rate of fatal strokes was available for apixaban and rivaroxaban. For dabigatran, the rate of fatal strokes was calculated as the average of the ratio of fatal stroke to nondisabling strokes for apixaban and rivaroxaban. The inverse of nondisabling and fatal strokes was assumed to represent disabling strokes for each of the NOACs and was evenly distributed across the moderately disabling and severely disabling stroke outcomes.

Supplemental Tables Table I. Clinical inputs

	Value	Range	Distribution	Source			
LAAC – Post-procedural Events							
RR of ischemic stroke*	1.08	0.86-1.30	Lognormal	Boston Scientific, unpublished data, 2017			
RR of major bleeding*	0.68	0.54-0.82	Lognormal	8			
Percentage of major bleeding that is hemorrhagic stroke [†]	33.00%	26.40-39.60%	Beta	9			
Annual risk of systemic embolism [‡]	0.22%	0.18-0.26%	Beta	Boston Scientific, unpublished data, 2017,9			
Annual risk of myocardial infarction	1.01%	0.81-1.21%	Beta	9			
Annual risk of	Based on conco	omitant drug therapy					
minor bleeding							
wartarin	-						
RR of ischemic stroke (relative to no therapy)	0.35	0.20-0.57	Lognormal	9			
RR of major bleeding (relative to HAS-BLED)	1.00	0.80-1.20	Lognormal	8			
Percentage of major bleeding that is hemorrhagic stroke [†]	21.75%	17.40-26.10%	Beta	10			
Annual risk of systemic embolism	0.20%	0.16-0.24%	Beta	9			
Annual risk of myocardial infarction	0.64%	0.51-0.77%	Beta	5,6,7,9			
Annual risk of minor bleeding	18.0%	14.4-21.6%	Beta	5,6,7,9			

Dabigatran							
RR of ischemic stroke*	1.00	0.65-1.54*	Lognormal	5			
RR of major bleeding*	1.00	0.77-1.34*	Lognormal	5			
Percentage of major bleeding that is hemorrhagic stroke [†]	12.75%	10.40-15.60%	Beta	5			
Annual risk of systemic embolism	0.16%	0.13-0.19%	Beta	5			
Annual risk of myocardial infarction	1.02%	0.82-1.22%	Beta	5			
Annual risk of minor bleeding	12.75%	10.2-15.3%	Beta	5			
Apixaban	1		1				
RR of ischemic stroke*	0.86	0.60-1.22	Lognormal	7			
RR of major bleeding*	0.73	0.55-0.98	Lognormal	7			
Percentage of major bleeding that is hemorrhagic stroke [†]	19.48%	15.58-23.38%	Beta	7			
Annual risk of systemic embolism	0.21%	0.16-0.24%	Beta	7			
Annual risk of myocardial infarction	0.56%	0.45-0.68%	Beta	11			
Annual risk of minor bleeding	16.51%	13.21-19.81%	Beta	7			
Rivaroxaban							
RR of ischemic stroke*	1.03	0.82-1.30	Lognormal	6			
RR of major bleeding*	0.97	0.79-1.19	Lognormal	6			
Percentage of major bleeding that is	19.10%	15.28-22.92%	Beta	6			

hemorrhagic				
Annual risk of	0.17%	0 14-0 20%	Beta	6
systemic	0.1770	0.14 0.2070	Deta	0
embolism				
Annual risk of	0.72%	0.58-0.87%	Beta	6
myocardial				
infarction				
Annual risk of	10.78%	8.62-12.94%	Beta	6
minor bleeding				
No Therapy				
RR of ischemic	1.00	0.80 - 1.20	Lognormal	Based on
stroke*				CHADS2
RR of major	0.24	0.19 - 0.29	Lognormal	9
bleeding*				
Percentage of	25.00%	20.00 - 30.00%	Beta	9
major bleeding				
that is				
hemorrhagic				
stroke'	1.050/	1.00 1.500/		
Annual risk of	1.25%	1.00 - 1.50%	Beta	9
systemic				
Annual risk of	1 10%	0.88 - 1.32%	Beta	Q
myocardial	1.1070	0.00 1.5270	Deta	,
infarction				
Annual risk of	5.60%	4.48% - 6.72%	Beta	9
minor bleeding				
Aspirin	I			
RR of ischemic	0.76	0.61 - 0.91	Lognormal	9
stroke (relative to				
no therapy)				
RR of major	0.68	0.54 - 0.82	Lognormal	12
bleeding*				
Percentage of	33.00%	26.40 - 39.60%	Beta	9
major bleeding				
that is				
hemorrhagic				
Stroke Appual right of	0.710/	0.57 0.950/	Poto	0
Alliual IISK OI	0./1%	0.37 - 0.83%	Dela	7
embolism				

Annual risk of myocardial infarction	0.95%	0.76 - 1.14%	Beta	9
Annual risk of minor bleeding	7.00%	5.60 - 8.40%	Beta	9

RR = relative risk

* All relative risks are relative to warfarin unless otherwise stated.

+ Hemorrhagic stroke is calculated as a percent of major bleeding events.

[‡] No systemic emboli were observed in the secondary prevention sub-group analysis of PROTECT AF. To adjust for this, the ongoing risk of systemic embolism was calculated using the risk of systemic embolism from the warfarin arm of the secondary prevention analysis of the European Atrial Fibrillation Trial multiplied by the relative risk of ischemic stroke from PROTECT AF. (Boston Scientific, unpublished data, 2017,⁹)

	LAAC	Warfarin	Dabigatran	Apixaban	Rivaroxaban	Utility Value
Nondisabling	75% (Boston	24% (1-4)	36%(13)	58%(11)	48%(14)	0.76(15)
stroke (MRS 0-2)	Scientific,					
	unpublished					
	data, 2017)					
Moderately	5% (Boston	29% (1-4)	24%*	$11\%^{*}$	13%*	0.39(15)
disabling stroke	Scientific,					
(MRS 3)	unpublished					
	data, 2017)					
Severely disabling	10% (Boston	35% (1-4)	24%*	10%*	13%*	0.11(15)
stroke (MRS 4-5)	Scientific,					
	unpublished					
	data, 2017)					
Fatal stroke (MRS	10% (Boston	12% (1-4)	16%*	21%(11)	26%(14)	0.000
6)	Scientific,					
	unpublished					
	data, 2017)					

Table II. Stroke outcomes and health state utilities

* Dabigatran fatal strokes was calculated as the average ratio of fatal strokes to nondisabling strokes for apixaban and rivaroxaban; the inverse of nondisabling and fatal strokes was assumed to represent disabling strokes for each of the NOACs and was evenly distributed across the moderately disabling and severely disabling stroke outcomes.

Table III.	Cost inputs
	Cost inpats

Event	Costs	Code (Source)
LAAC procedure and 2 TEEs*	\$16,109	DRG 273/274 (16,17)
Fatal ischemic stroke	\$11,171	DRG 063 (16)
Severe ischemic stroke	\$47,886	DRG 061/CMG 108-110
		(16,18)
Moderate ischemic stroke	\$33,034	DRG 062/CMG 105-107
		(16,18)
Nondisabling ischemic stroke	\$23,128	DRG 063/CMG 101-104
		(16,18)
TIA	\$4,267	DRG 069 (16)
Systemic embolism (non-fatal)	\$5,155	DRG 068 (16)
Systemic embolism (fatal)	\$8,466	DRG 067 (16)
Fatal hemorrhagic stroke	\$10,231	DRG 064 (16)
Severe hemorrhagic stroke	\$42,267	DRG 064/CMG 108-110
		(16,18)
Moderate hemorrhagic stroke	\$28,118	DRG 065/CMG 105-107
		(16,18)
Nondisabling hemorrhagic stroke	\$18,603	DRG 066/CMG 101-104
		(16,18)
Major extracranial hemorrhage	\$5,875	DRG 377 (16)
(non-fatal)		
Major extracranial hemorrhage	\$10,339	DRG 378 (16)
(fatal)		
Minor bleeding	\$420	CPT 42970 (17)
Myocardial infarction (non-fatal)	\$6,042	DRG 280,281,282 (16)
Myocardial infarction (fatal)	\$5,829	DRG 283,284,285 (16)
Quarterly Costs		
Warfarin + INR monitoring	\$109	CPT 85610, 99211 (17,19)
NOAC	\$969	19
Independent post-stroke	\$108	20,21,22
Moderately disabled post-stroke	\$9,381	20,21,22
Severely disabled post-stroke	\$15,274	20,21,22

*Costs for the LAAC procedure reflect 2016 CMS reimbursement rates. Weighting reflects an 18%/82% split across DRG 273 and 274.²³

Table IV. Total costs and QALYs over 20 years for warfarin, dabigatran, and apixaban using base case inputs. Incremental costs, incremental QALYs, and ICERs were calculated relative to warfarin.

	Total Costs	Total QALYs	Incremental Costs (NOAC minus warfarin)	Incremental QALYs (NOAC minus warfarin)	ICER (NOAC versus warfarin)
20 Years					
Warfarin	\$85,577	5.662			
Dabigatran	\$87,636	5.841	\$2,059	0.178	\$11,555
Apixaban	\$85,426	5.821	-\$151	0.159	Dominant*

*Dominant indicates a therapy is more effective and less expensive than comparators

Figure I. One-way sensitivity analyses at 20 years of LAAC versus warfarin, LAAC versus dabigatran, and LAAC versus apixaban

Figure Ia. LAAC versus warfarin

Figure Ib. LAAC versus dabigatran

Cost/QALY LAAC vs. dabigatran - 20 years

Figure Ic. LAAC versus apixaban

Table V. Total costs and QALYs over 20 years for LAAC, warfarin, dabigatran, and apixaban using Kamel stroke outcomes data. Incremental costs, incremental QALYs, and ICERs were calculated relative to warfarin.

	Total Costs	Total QALYs	Incremental Costs*	Incremental QALYs*	ICER versus warfarin
20 Years					
LAAC	\$59,675	6.066			
Warfarin	\$107,394	5.531	-\$47,720	0.535	Dominant+
Dabigatran	\$116,896	5.670	\$9,501	0.139	\$68,195
Apixaban	\$104,141	5.708	-\$3,253	0.178	Dominant ⁺

*Incremental costs and incremental QALYs were calculated as LAAC minus warfarin and NOACs minus warfarin, respectively

+ Dominant indicates a therapy is more effective and less expensive than comparators

Supplemental References

¹ Stroke Prevention in Atrial Fibrillation Investigators. Stroke prevention in atrial fibrillation study: Final results. Circulation 1991;84:527-539.

² Ezekowitz MD, Bridgers SL, James KE, Carliner NH, Colling CL, Gornick CC, et al. Warfarin in the prevention of stroke associated with nonrheumatic atrial fibrillation. N Engl J Med, 1992;327:1406–12.

³ Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med, 1990;323:1505–11.

⁴ Connolly SJ, Laupaucis A, Gent M, Roberts RS, Cairns JA, Joyner C. Canadian Atrial Fibrillation Anticoagulation (CAFA) study. J Am Coll Cardiol 1991;18:349–55.

⁵ Diener HC, Connolly SJ, Ezekowitz MD, Wallentin L, Reilly PA, Yang S, et al. Dabigatran compared with warfarin in patients with atrial fibrillation and previous transient ischaemic attack or stroke: a subgroup analysis of the RE-LY trial. Lancet Neurol 2010;9:1157-63.

⁶ Hankey GJ, Patel MR, Stevens SR, Becker RC, Breithardt G, Carolei A, et al. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. Lancet Neurol 2012;11:315-22.

⁷ Easton DJ, Lopes RD, Bahit MC, Wojdyla DM, Granger CB, Wallentin L, et al. Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of the ARISTOTLE trial. Lancet Neurol 2012;11:503-11.
⁸ Ariesen MJ, Claus SP, Rinkel GJE, Algra A. Risk factors for intracerebral hemorrhage in the general population. Stroke. 2003;34:2060–2066.

⁹ European Atrial Fibrillation Trial (EAFT) Study Group. Secondary Prevention in nonrheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:1255-62.

¹⁰ Sorenson SV, Dewilde S, Singer DE, Goldhaber SZ, Monz BU, Plumb JM. Cost-effectiveness of warfarin: Trial versus "real-world" stroke prevention in atrial fibrillation. Am Heart J 2009;157:1064-73.

¹¹ Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–92.

¹² Mohr JP, Thompson JLP, Lazar RM, et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med, 2001;345:1444-51.

¹³ Connelly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–51.

¹⁴ Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883-891.

¹⁵ Gage BF, Cardinalli AB, Owens DK. The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life. Arch Intern Med 1996;156:1829-1836.

¹⁶ FY 2016 IPPS Final Rule Home Page. Centers for Medicare & Medicaid Services. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/FY2016-IPPS-Final-Rule-Home-Page.html.Accessed January 4, 2018.

¹⁷ CPT[®] Code Lookup. TCI SuperCoder, The Coding Institute. <u>https://www.supercoder.com/cpt-codes-range</u>. Accessed January 4, 2018.

¹⁸ Inpatient Rehabilitation Facility PPS. Centers for Medicare & Medicaid Services. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-

Payment/InpatientRehabFacPPS/index.html. Accessed January 4, 2018.

¹⁹ Analysource – Active NDCs. DMD America

https://www.analysource.com/qry/as_products.taf?_purgefilter=Y. Accessed January 4, 2018. ²⁰ Cipriano LE, Steinberg ML, Gazelle GS, Gonzalez RG. Comparing and predicting the costs and outcomes of patients with major and minor stroke using the Boston Acute Stroke Imaging Scale neuroimaging classification system. Am J Neuroradiol 2009;30:703-709.

²¹ Mercaldi CJ, Siu K, Sander SD, Walker DR, Wu Y, Wu N. Long-term costs of ischemic stroke and major bleeding events among Medicare patients with nonvalvular atrial fibrillation. Cardiol Res Pract 2012; article ID 645469.

²² Caro JJ, Huybrechts FK. Stroke treatment economic model (STEM): predicting long-term costs from functional status. Stroke 1999;30:2574-2579.

²³ HCUP National Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP).
2012. AHRQ. www.hcup-us.ahrq.gov/nisoverview.jsp. Accessed November 2014.