
A Appendix

A.1 Proofs of lemmas

The proofs of Lemma 3.1 and 3.2 follow.

Lemma 3.1

For a given value of M and i ≤ 73,
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Hence,

Ai(α, π0, τ) = π0α
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Lemma 3.2

For a given value of M and i ≥ 73,

Bi(α, π0, τ) =

∫
f(ζi|τ,Wi)π
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=

∫ [
(1−Wi) +Wi

ζ2i
τ 3/2
√

2π
exp

(
− ζ

2
i

2τ

)]
π1−Wi
0 (1− π0)Wi

×(1− α)
2∏
j=1

φ[zij|ζi, σ2
ij]dzi1dzi2dζidWi

= (1− α)π0

∫ 2∏
j=1

φ[zij|0, σ2
ij]dzi1dzi2

+(1− α)(1− π0)
∫

ζ2i
τ 3/2
√

2π
exp

(
− ζ

2
i

2τ

) 2∏
j=1

φ[zij|ζi, σ2
ij]dζidzi1dzi2.

Let

c =
1

σ2
i1

+
1

τ
, d =

1

σ2
i1

− 1

cσ4
i1

, f =
√
dbi =

√
dqγσi1, g = Φ(f)− Φ(−f),

h =
1

σi1
√
τ 3dc3

{
1

cdσ4
i1

[
g −

√
2

π
f exp

(
−f

2

2

)]
+ g

}
,

then

(1− α)π0

∫ 2∏
j=1

φ[zij|0, σ2
ij]dzi1dzi2

= (1− α)π0

∫ bi

−bi
φ[zi1|0, σ2

i1]dzi1

∫ ∞
−∞

φ[zi2|0, σ2
i2]dzi2

= (1− α)π0(2γ − 1),

(1− α)(1− π0)
∫

ζ2i
τ 3/2
√

2π
exp

(
− ζ

2
i

2τ

) 2∏
j=1

φ[zij|ζi, σ2
ij]dζidzi1dzi2

= (1− α)(1− π0)
∫ bi

−bi

∫ ∞
−∞

ζ2i
τ 3/2
√

2π
exp

(
− ζ

2
i

2τ

)
φ[zi1|ζi, σ2

i1]

∫ ∞
−∞

φ[zi2|ζi, σ2
i2]dzi2dζidzi1

2
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Hence

Bi(α, π0, τ) = (1− α)[(1− π0)h+ π0(2γ − 1)].

The prior density on ζi, i = 1, ...,M , given Wi and τ can be expressed as

f(ζi|τ,Wi) = (1−Wi)δ0 +Wi
1√
2πτ

exp

(
− ζ

2
i

2τ

)
where δ0 denotes a unit mass at 0. The following results are useful in describing the marginal

posterior density function.

Lemma 1 For a given value of M and i ≤ 73,

Ai(α, π0, τ) =

∫
f(ζi|τ,Wi)π

1−Wi
0 (1− π0)Wi

2∏
j=1

f(zij, Ri, Si|ζi)dζidWi,

and let
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1
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1
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,

then
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Lemma 2 For a given value of M and i ≥ 73,

Bi(α, π0, τ) =

∫
f(ζi|τ,Wi)π

1−Wi
0 (1− π0)Wi

2∏
j=1

f(zij, Ri, Si|ζi)dzi1dzi2dζidWi,

Let

c∗ =
1

σ2
i1

+
1

τ
, d∗ =

1

σ2
i1

− 1

c∗σ4
i1

, f ∗ =
√
d∗bi =

√
d∗qγσi1, g∗ = Φ(f ∗)− Φ(−f ∗),

h∗ =
g∗√

τc∗d∗σi1

then

Bi(α, π0, τ) = (1− α)[(1− π0)h∗ + π0(2γ − 1)].

Proofs are similar to the proofs for Lemma 3.1 and Lemma 3.2.

Based on the results above, it follows that the marginal posterior distribution on (M,α, π0, τ)

can be expressed in the same form as Eq(11).

A.2 Sensitivity analysis

In this section we examine the sensitivity of our conclusions to changes in the prior on M

and the parametric form assumed for the effect sizes. We considered two improper priors on

M , namely M−1 and M−2, and two parametric forms of the effect sizes, the moment prior

(discussed in the body of the paper) and a normal prior with mean 0 and variance τ . For

each of the 4 prior combinations, an MCMC chain was run for 106 iterations following a 105

burn-in period. The posterior densities are plotted in Figure 1, and Tables 1-4 provide the

posterior means, medians, and 95% credible intervals for each combination of priors for α,

M , π0, and τ .

Sensitivity to M

The posterior distributions of α, π0, and τ are essentially insensitive to the prior on M

for a given parametric form of the effect sizes. There appears to be a slight shift in the
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Effect Size Prior M Prior Posterior Mean Posterior Median 2.5% 97.5%

Moment M−1 .00540 .00479 .00122 .0131

M−2 .00545 .00484 .00124 .0131

Normal M−1 .00575 .00510 .00131 .0139

M−2 .00584 .00518 .00133 .0141

Table 1: Posterior means, medians, and 95% credible intervals for α with varying priors on

effect size and M .

posterior distribution of M , with the posterior shifted towards smaller values for the M2

prior. However this shift is of little practical importance as the posterior mean and medians

only a change at most by 8 and 7 respectively. Overall, the model is insensitive to the choice

of prior on M .

Sensitivity to Prior on Effect Sizes

The model is far more sensitive to changes in the prior on the effect sizes. The most striking

sensitivities are found in the posterior distribution of τ and π0. However, it is important

to note that τ represents a slightly different parameter in both models (although it is still

a measure of the spread of the effect sizes in both models), so this result should be neither

surprising nor worrying. The posterior of π0 is also sensitive, noting moderate changes in

both location and scale, however the same general conclusions of π0 being alarmingly high

are still warranted in either model. M and α both appear to be very insensitive to the

parametric form of the effect sizes.

Comparison of Distribution of Effect Sizes

Since the posterior distribution of π0 is particularly sensitive to the choice of prior for the

effect sizes, it is of interest to determine which prior provides a better fit to the effect sizes.

To assess model fit, a Bayesian χ2 goodness of fit (GOF) test was performed using pivotal

quantities for both the normal and moment priors. After drawing values of ζi from the
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Figure 1: Posterior Densities for various combinations of priors for M and the effect sizes.

Moment priors (——–), normal priors (- - - - -).
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Effect Size Prior M Prior Posterior Mean Posterior Median 2.5% 97.5%

Moment M−1 739 732 519 995

M−2 732 728 519 979

Normal M−1 698 692 487 941

M−2 690 685 484 922

Table 2: Posterior means, medians, and 95% credible intervals for M with varying priors on

effect size and M .

Effect Size Prior M Prior Posterior Mean Posterior Median 2.5% 97.5%

Moment M−1 .934 .936 .891 .963

M−2 .933 .935 .892 .962

Normal M−1 .891 .895 .818 .941

M−2 .892 .896 .821 .941

Table 3: Posterior means, medians, and 95% credible intervals for π0 with varying priors on

effect size and M .

Effect Size Prior M Prior Posterior Mean Posterior Median 2.5% 97.5%

Moment M−1 .0881 .0862 .0608 .126

M−2 .0877 .0859 .0605 .125

Normal M−1 .184 .177 .112 .296

M−2 .186 .179 .113 .301

Table 4: Posterior means, medians, and 95% credible intervals for τ with varying priors on

effect size and M .
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posterior distribution using MCMC, a χ2 GOF test was performed comparing the values of

|ζij| (since the values of ζij were arbitrarily signed) to the density 2 × f(ζi|τ,Wi), ζi > 0

where f is the parametric form of the effect sizes (moment or normal). Note that only values

of ζi were used in which Wi = 1 on each MCMC draw since we are only interested in the

distribution of effect sizes when the null hypothesis is false. Three bins were chosen using

the 1/3 and 2/3 quantiles of 2f . Thus the χ2 GOF values calculated from the posterior

draws of ζi should follow a χ2
2 distribution if the model has been specified correctly.

The χ2 values were calculated from a random sample of 10,000 posterior draws for each

of the 4 model combinations in the sensitivity analysis. Figure 2 plots the histogram of

the calculated χ2 values and the theoretical χ2
2 distribution for each of the cases. In each

instance, the moment prior appears to be a much better fit than the normal prior, indicating

that we have selected an appropriate model for the effect sizes. There does not seem to be

any indication that changing the prior for M strongly influences the fit of the effect sizes.
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Figure 2: Posterior pivotal quantities (histogram) vs a χ2
2 distribution (—–). The moment

prior appears to be a more appropriate model for the effect sizes.
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