A Appendix

A.1 Proofs of lemmas

The proofs of Lemma 3.1 and 3.2 follow.

Lemma 3.1

For a given value of M and i <73,
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The prior density on (;,2 = 1,..., M, given W; and 7 can be expressed as

) L (¢
F(Glm W5) = (1 — W;)do + Wzﬁ exp ( 27)

where dy denotes a unit mass at 0. The following results are useful in describing the marginal

posterior density function.

Lemma 1 For a given value of M and v < 73,
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Lemma 2 For a given value of M and v > 73,
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Proofs are similar to the proofs for Lemma 3.1 and Lemma 3.2.
Based on the results above, it follows that the marginal posterior distribution on (M, «, mg, 7)

can be expressed in the same form as Eq(11).

A.2 Sensitivity analysis

In this section we examine the sensitivity of our conclusions to changes in the prior on M
and the parametric form assumed for the effect sizes. We considered two improper priors on
M, namely M~! and M2, and two parametric forms of the effect sizes, the moment prior
(discussed in the body of the paper) and a normal prior with mean 0 and variance 7. For
each of the 4 prior combinations, an MCMC chain was run for 10° iterations following a 10°
burn-in period. The posterior densities are plotted in Figure 1, and Tables 1-4 provide the
posterior means, medians, and 95% credible intervals for each combination of priors for a,

M, 7, and 7.

Sensitivity to M

The posterior distributions of «, m, and 7 are essentially insensitive to the prior on M

for a given parametric form of the effect sizes. There appears to be a slight shift in the



Effect Size Prior | M Prior | Posterior Mean | Posterior Median | 2.5% | 97.5%
Moment Mt .00540 .00479 .00122 | .0131
M2 .00545 .00484 .00124 | .0131
Normal M-t .00575 .00510 .00131 | .0139
M2 .00584 .00518 .00133 | .0141

Table 1: Posterior means, medians, and 95% credible intervals for o with varying priors on

effect size and M.

posterior distribution of M, with the posterior shifted towards smaller values for the M?
prior. However this shift is of little practical importance as the posterior mean and medians
only a change at most by 8 and 7 respectively. Overall, the model is insensitive to the choice

of prior on M.

Sensitivity to Prior on Effect Sizes

The model is far more sensitive to changes in the prior on the effect sizes. The most striking
sensitivities are found in the posterior distribution of 7 and my. However, it is important
to note that 7 represents a slightly different parameter in both models (although it is still
a measure of the spread of the effect sizes in both models), so this result should be neither
surprising nor worrying. The posterior of 7y is also sensitive, noting moderate changes in
both location and scale, however the same general conclusions of 7y being alarmingly high
are still warranted in either model. M and « both appear to be very insensitive to the

parametric form of the effect sizes.

Comparison of Distribution of Effect Sizes

Since the posterior distribution of 7y is particularly sensitive to the choice of prior for the
effect sizes, it is of interest to determine which prior provides a better fit to the effect sizes.
To assess model fit, a Bayesian y? goodness of fit (GOF) test was performed using pivotal

quantities for both the normal and moment priors. After drawing values of (; from the
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Figure 1: Posterior Densities for various combinations of priors for M and the effect sizes.

Moment priors (———), normal priors (- - - - - ).



Effect Size Prior | M Prior | Posterior Mean | Posterior Median | 2.5% | 97.5%

Moment M-t 739 732 519 | 995
M2 732 728 519 | 979

Normal Mt 698 692 487 | 941
M2 690 685 484 | 922

Table 2: Posterior means, medians, and 95% credible intervals for M with varying priors on

effect size and M.

Effect Size Prior | M Prior | Posterior Mean | Posterior Median | 2.5% | 97.5%

Moment Mt 934 936 891 | .963
M2 933 935 892 | .962

Normal Mt .891 .895 818 | .941
M2 .892 .896 821 | .941

Table 3: Posterior means, medians, and 95% credible intervals for my with varying priors on

effect size and M.

Effect Size Prior | M Prior | Posterior Mean | Posterior Median | 2.5% | 97.5%

Moment Mt 0881 .0862 .0608 | .126
M2 0877 .0859 .0605 | .125

Normal M1 184 77 112|296
M2 186 179 113 | .301

Table 4: Posterior means, medians, and 95% credible intervals for 7 with varying priors on

effect size and M.



posterior distribution using MCMC, a x? GOF test was performed comparing the values of
|Gij| (since the values of (;; were arbitrarily signed) to the density 2 x f((|7,W;), ¢; > 0
where f is the parametric form of the effect sizes (moment or normal). Note that only values
of (; were used in which W; = 1 on each MCMC draw since we are only interested in the
distribution of effect sizes when the null hypothesis is false. Three bins were chosen using
the 1/3 and 2/3 quantiles of 2f. Thus the x?* GOF values calculated from the posterior
draws of ¢; should follow a 3 distribution if the model has been specified correctly.

The x? values were calculated from a random sample of 10,000 posterior draws for each
of the 4 model combinations in the sensitivity analysis. Figure 2 plots the histogram of
the calculated x? values and the theoretical 3 distribution for each of the cases. In each
instance, the moment prior appears to be a much better fit than the normal prior, indicating
that we have selected an appropriate model for the effect sizes. There does not seem to be

any indication that changing the prior for M strongly influences the fit of the effect sizes.
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Figure 2: Posterior pivotal quantities (histogram) vs a x3 distribution (—). The moment

prior appears to be a more appropriate model for the effect sizes.



