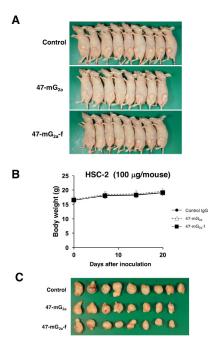
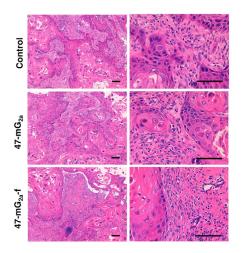
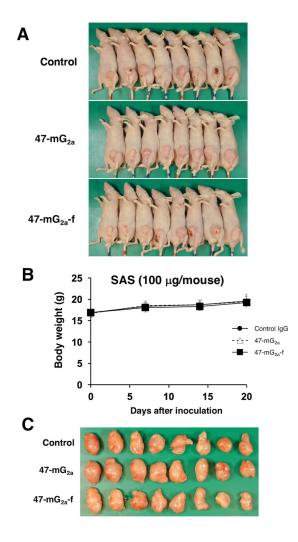
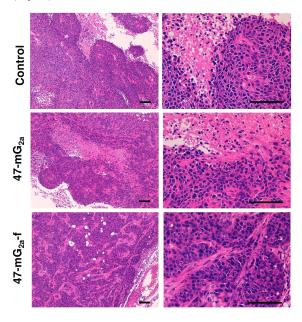
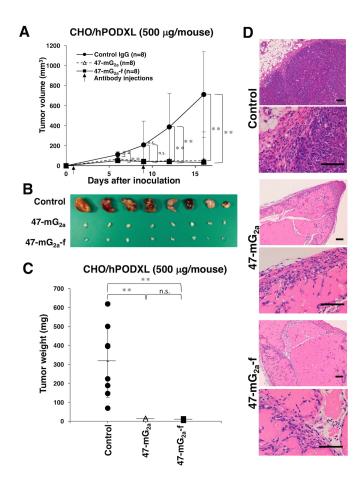

Anti-podocalyxin antibody exerts antitumor effects via antibodydependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma

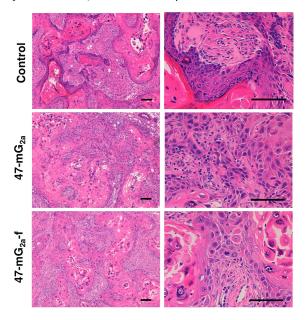

SUPPLEMENTARY MATERIALS


Supplementary Figure 1: Antitumor activity of 47-m G_{2a} and 47-m G_{2a} -f against CHO/hPODXL xenografts (100 µg/day; 5 mg/kg). (A) Comparison of the tumor size and tumor incidence of CHO/hPODXL xenograft in nude mice (day 16). (B) Body weight. The values are means \pm SEM (C) Comparison of the tumor size (day 16).


Supplementary Figure 2: Hematoxylin & eosin staining of CHO/hPODXL xenografts (100 μ g/day; 5 mg/kg). Scale bar = 100 μ m.


Supplementary Figure 3: Antitumor activity of 47-m G_{2a} and 47-m G_{2a} -f against HSC-2 xenografts (100 μ g/day; 5 mg/kg). (A) Comparison of the tumor size and tumor incidence of HSC-2 xenograft in nude mice (day 20). (B) Body weight. The values are means \pm SEM (C) Comparison of the tumor size (day 20).


Supplementary Figure 4: Hematoxylin & eosin staining of HSC-2 xenografts (100 μg/day; 5 mg/kg). Scale bar = 100 μm.


Supplementary Figure 5:Antitumor activity of 47-m G_{2a} and 47-m G_{2a} -f against SAS xenografts (100 µg/day; 5 mg/kg). (A) Comparison of the tumor size and tumor incidence of SAS xenograft in nude mice (day 20). (B) Body weight. The values are means \pm SEM (C) Comparison of the tumor size (day 20).

Supplementary Figure 6: Hematoxylin & eosin staining of SAS xenografts (100 μ g/day; 5 mg/kg). Scale bar = 100 μ m.

Supplementary Figure 7: Antitumor activity of 47-m G_{2a} and 47-m G_{2a} -f against CHO/hPODXL xenografts (500 µg/day; 25 mg/kg). (A) Tumor volume of CHO/hPODXL xenografts. CHO/hPODXL cells were injected subcutaneously into female nude mice. The indicated antibodies (500 µg/day; 25 mg/kg) were administered intraperitoneally 1 and 9 days after cancer cell inoculation. The tumor volume was measured at the indicated time points. The values are means \pm SEM. (B) Comparison of tumor size (day 16). (C) Tumor weight of CHO/hPODXL xenografts (day 16). (D) Hematoxylin & eosin staining of CHO/hPODXL xenografts. An asterisk indicates statistical significance (**P < 0.01, Tukey-Kramer's test). Scale bar = 100 µm.

Supplementary Figure 8: Antitumor activity of 47-mG_{2a} and 47-mG_{2a}-f against HSC-2 xenografts (500 μg/day; 25 mg/kg). Hematoxylin & eosin staining of HSC-2 xenografts.

Supplementary Figure 9: Antitumor activity of 47-m G_{2a} and 47-m G_{2a} -f against SAS xenografts (500 µg/day; 25 mg/kg). (A) Tumor volume of SAS xenografts. SAS cells were injected subcutaneously into female nude mice. The indicated antibodies (500 µg/day; 25 mg/kg) were administered intraperitoneally 1, 8, and 15 days after cancer cell inoculation. The tumor volume was measured at the indicated time points. The values are means \pm SEM. (B) Comparison of tumor size (day 21). (C) Tumor weight of SAS xenografts (day 21). (D) Hematoxylin & eosin staining of SAS xenografts. An asterisk indicates statistical significance (*P < 0.05, Tukey-Kramer's test). Scale bar = 100 µm.

Supplementary Table 1: Immunohistochemical analysis by anti-PODXL mAbs against OSCC.

See Supplementary File 1