Cell Reports, Volume 23

# **Supplemental Information**

# **RNF12 X-Linked Intellectual Disability**

### **Mutations Disrupt E3 Ligase Activity**

## and Neural Differentiation

Francisco Bustos, Anna Segarra-Fas, Viduth K. Chaugule, Lennart Brandenburg, Emma Branigan, Rachel Toth, Thomas Macartney, Axel Knebel, Ronald T. Hay, Helen Walden, and Greg M. Findlay

#### SUPPLEMENTARY DATA

# Supplementary Table 1: Primer sequences, related to Experimental procedures

| Gene      | Forward (5' to 3')       | Reverse (5' to 3')       |
|-----------|--------------------------|--------------------------|
| Nanog     | CTCATCAATGCCTGCAGTTTTTCA | CTCCTCAGGGCCCTTGTCAGC    |
| Fgf5      | GCTGTGTCTCAGGGGATTGT     | CACTCTCGGCCTGTCTTTTC     |
| Klf4      | ACACTTGTGACTATGCAGGCTGTG | TCCCAGTCACAGTGGTAAGGTTTC |
| Dnmt3b    | CTGGCACCCTCTTCTTCATT     | ATCCATAGTGCCTTGGGACC     |
| Sox1      | TTCCCCAGGACTCCGAGGCG     | GCTGTGTGCCTCCTCTGCGG     |
| Pax6      | GGACTTCAGTACCAGGGCAACC   | GCATCTGAGCTTCATCCGAGTC   |
| Ascl1     | TCTCCTGGGAATGGACTTTG     | GGTTGGCTGTCTGGTTTGTT     |
| Brachyury | TCCCGAGACCCAGTTCATAG     | TTCTTTGGCATCAAGGAAGG     |
| Sox17     | TATGGTGTGGGGCCAAAGACGAA  | AACGCCTTCCAAGACTTGCCTA   |
| GAPDH     | CTCGTCCCGTAGACAAAA       | TGAATTTGCCGTGAGTGG       |



#### Figure S1. RNF12/Rlim CRISPR/Cas9 gene knockout strategy (related to Figure 1).

Paired CRISPR/Cas9 guide RNAs were designed to target exon 5 of the *Rlim* gene on Chromosome X. Genomic DNA sequencing analysis of the isolated clone 6 predicts a truncated mRNA/protein of 132 amino acids. RNF12 immunoblot analysis does not detect a protein product in resulting *Rlim* -/y ESC line.



**Figure S2. Endogenous RNF12 protein is localised to the nucleus (related to Figure 2).** *Rlim* +/y and -/y ESCs were analysed via immunofluorescence and confocal microscopy.



# Figure S3. RNF12 catalytic activity is required for REX1 ubiquitylation and degradation (related to Figure 3).

*Rlim -*/y ESCs were transfected with HA-REX1 and wild-type RNF12 or the indicated catalytic mutants. Ubiquitylated proteins were captured using HALO-TUBE resin and HA-REX1 ubiquitylation determined by immunoblotting. Total ubiquitin levels are shown as a control. HA-REX1, RNF12 and ERK1/2 levels in cell lysates were determined by immunoblotting.



#### Figure S4. In vitro characterisation of RNF12 catalytic activity (related to Figure 4).

(A) Analysis of RNF12 ubiquitylation activity in combination with a panel of 31 E2 ubiquitin conjugating enzymes. Infra-red scan (Ub-IR<sup>800</sup>) shows labelled fluorescent ubiquitin chains (Ub<sup>n</sup>). RNF12 levels were determined by immunoblotting. \* = non-specific fluorescent band. (B) In vitro REX1 ubiquitylation by WT or XLID mutant RNF12 proteins. Infra-red scan (Ub-IR<sup>800</sup>) shows labelled fluorescently labelled ubiquitylated proteins. REX1 and RNF12 levels were determined by immunoblotting. Specific ubiquitylated REX1 (REX1-Ub<sup>n</sup>) and RNF12 (RNF12-Ub<sup>n</sup>) signals are indicated. \* = non-specific fluorescent band.



#### Figure S5. RNF12/*Rlim* WT and R575C CRISPR/Cas9 knock-in strategy (related to Figure 5). Paired CRISPR/Cas9 guide RNAs were designed to target exon 5 of the *Rlim* gene on Chromosome X in

order to replace endogenous RNF12 with either RNF12 WT or R575C fused to IRES-EGFP. Genomic DNA sequencing of *Rlim* WT-KI and R575-KI ESCs confirmed the presence of wild-type RNF12 or introduction of a single nucleotide substitution resulting in R575C mutation, respectively.