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Experimental Setup
The confocal setup as in the main text Figure 5 has been integrated with a section that generates the microwave and radio
frequency pulses necessary to perform the active manipulation of the nitrogen-vacancy center spin. Here, we used a Hameg 8135
signal generator to provide continuous-wave radio frequencies that were pulsed via a ZASW-2-50DR+ Minicircuits fast switch
(5 ns of typical rise/fall time), then amplified by a high-power ZHL-16W-43+ 16-Watt Minicircuits amplifier and finally sent to
the impedance matched coplanar waveguide, which is terminated by a Rhode & Schwarz spectrum analyzer. The fluorescence
intensity detection was done by two Perkin Elmer Single Photon Avalanche Photodiodes (SP-APD) in a Hambury-Brown-Twiss
configuration, that allowed us to record second-order fluorescence autocorrelation functions via a PicoHarp 300 correlator
(PicoQuant). The pulses generated by the SP-APDs were sent to a National Instruments Data Acquisition Card (NI-DAQ 6225)
which was gated via bit-pattern generator. A 166 MHz Deditec Bit-Pattern generator was used to synchronize all the devices
and generate the pre-programmed TTL pulse patterns used to control the NI-DAQ card, as well as the radio frequency switching
unit.

Sample Preparation
Our supports were prepared on silicon dioxide cover slides, where a coplanar waveguide was produced on one side via
photolithography and subsequent sputtering of chromium and gold (Cr/Au/Cr). These supports were then cleaned in Pirahna
solution for 20 minutes (3:1 sulphuric acid / 30% hydrogen peroxide) and then sonicated for 30 minutes in a 1% Hellmanex
III solution and as well for 15 minutes in distilled water. In order to prepare the nanodiamond sample, we have taken a
Microdiamant QP25 nanodiamond suspension (average particle diameter of 27 nm, density of 3.9 mg/ml) and diluted it with
distilled water in the ratio of 1:10. Then, after sonication for 30 minutes, we have spin coated 20 µl of the diluted diamond
suspension on a coplanar waveguide at 3000 rpm for 10 seconds and a 5 second acceleration; with this approach, we were able
to identify single nanodiamonds via atomic force microscopy, and single nitrogen-vacancy centers via confocal microscopy.
By combining the two pictures and acquiring fluorescence autocorrelation functions, we were able to single out diamond
nanocrystals containing single NVs, that were then individually transferred via AFM pick-and-place to the superparamagnetic
iron oxide nanoparticles (SPION) support. Concerning the latter, we prepared it separately by taking a Sigma-Aldrich SPION
suspension (particles between 9 and 11 nm of diameter) having a density of 5 mg/ml and diluted it with toluene on a 1:100 ratio.
After sonicating the suspension for 30 minutes, we have taken a clean CPW cover slide and spin-coated on it a droplet of diluted
SPION suspension (approx 10 to 20 µl) at 3000 rpm for 15 seconds (with the rotation already in progress). By proceeding in
this way, the support would show through AFM imaging a SPION density of few particles per 10 µm2 to few particles per µm2,
although the surface would present areas with slightly higher and lower densities of particles and particle clusters.
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Figure S1. AFM scan of a coplanar waveguide showing a denser distribution of superparamagnetic nanoparticles. In this
specific image, 7 particles show an height up to 12 nm, while one is about 18 nm and hence more likely to be a cluster of
SPIONs.

NV Center Orientation

The nitrogen-vacancy center may be aligned along 4 principal diamond crystal axes1, which are equivalent to the [111] lattice
orientation and define the defect’s main quantization axis. While CVD monocrystalline bulk diamond, by being generally
grown along [100] or [111] planes, provides already a reference for the quantization axis direction of the NVs, nanodiamonds
have their lattices randomly arranged in space and the defects embedded within them are thus randomly oriented too. In order
to take advantage of the NV center as a vector magnetometer, it is useful to know its quantization axis orientation with respect
to the physical objects and forces involved in the measurements. It is possible to show that a pair of Helmholtz coils, producing
a two-dimensional magnetic field, is sufficient to perform such an estimation. The treatment may start with expressing the NV
center Hamiltonian as:

H = D0S2
z +E

(
S2

x −S2
y
)
+ γNV BS (1)

Where D0 is the zero-field splitting of 2.87 GHz, E is the transversal (strain-related) splitting, γNV the NV center gyromag-
netic ratio of 2.8 MHz/G, B the external magnetic field and S the Pauli matrices representing the electron spin. In the spin-1
basis we can write the previous equation as:

H =
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 (2)

By assuming the transversal component of the magnetic field to be weak in comparison to the zero-field splitting, so
γNV

√
B2

x +B2
y = γNV B⊥ << D0, we can rewrite the Hamiltonian as:

H =

D0 + γNV Bz 0 E
0 0 0
E 0 D0− γNV Bz

 (3)

having the eigenenergies:

ν±1 = D0±
√

γ2
NV B2

z +E2 (4)

Now, we can define a system of reference for the NV center (see Figure S2), where the z-axis is parallel to the NV
quantization axis, and a system of reference for the two pairs of Helmholtz coils, where x′ and y′ are the two coil axes
corresponding to the two orthogonal magnetic field vectors Bx′ and By′ .
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Figure S2. Sketch of the two reference systems used in the orientation measurement, where the NV center has its
quantization axis defined along z, and the Helmholtz coils are generating DC magnetic fields respectively along x′ and y′, or if
combined in the x′y′ plane.

These two reference systems are related through rotation operators around the polar angle φ and the azimuthal angle θ :Bx
By
Bz

=

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

Bx′

By′

Bz′

 (5)

By working in the low-field regime, we can assume that the ν±1 splitting is solely related to Bz; moreover, as the pairs of
Helmholtz coils generate by definition of the reference systems only magnetic fields parallel to x’ and y’, we can set Bz′ = 0.
Hence, the eigenenergies of the Hamiltonian (1) can be written as:

ν±1 = D0±
√

γ2
NV

(
By′sin(θ)sin(φ)−Bx′cos(θ)sin(φ)

)
+E2 (6)

In the particular case where θ ≈ π/2 (that means, one of the Helmholtz coil pairs generates a field orthogonal to the NV
quantization axis) the expression is further simplified to:

ν±1 = D0±
√

γ2
NV By′sin(φ)+E2 (7)
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Figure S3. Plots showing the NV center energy splittings between the ground state spin sublevels for two different
nanodiamonds as a function of the DC magnetic field generated along x′ (blue dots) and y′ (red dots) with the tilt angles
obtained through the fit functions derived from the equations (6) and (7) (blue and red lines respectively for the x′ and y′

oriented coils). The angles φ1 and φ2 are defining the orientation between the DC field axes (and the sample) and the NV center
axis. It can be observed that in a) the NV center axis lies almost parallel to y′ and moreover a static residual field of < 7 G is
present, while in b) this field is zero.
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This condition is verifiable by sweeping the Bx′ field and noticing that the effect on the detuning is negligible as shown in
Figure (S3a): from the same measurement we deduce that while approaching orthogonality to Bx′ , the NV center quantization
axis has an angle of 72±1 deg with respect to By′ and hence of 18±1 deg with respect to the z′ axis. Figure S3b shows instead
the case where γNV By′ 6= 0 and γNV Bx′ 6= 0. In this case, the assumption of orthogonality does not hold anymore.
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Figure S4. Energy separation (blue dots) between the NV center spin sublevels for a DC magnetic field generated on a
circumference in the x′y′ plane with a constant magnitude. Fitting the data (blue line) allows us to retrieve the angles of the NV
center axis with respect to the experimental system of reference as defined in Figure S2. The green line shows the fit result in
absence of a third residual magnetic field acting on the NV, whose magnitude is estimated in 16 G.

We can nevertheless determine both φ and θ by generating a rotating magnetic field in the x′y′ plane while keeping its
intensity constant. Figure S4 shows the result of such a scan with the fit indicating the orientation angles; it can be noticed that
the measurement allows us to calculate also eventual residual DC fields acting on the NV center spin.

AC Superparamagnetic Nanoparticle Response
Under the effect of an external magnetic field B and a negligible magnetocrystalline anisotropy, the superparamagnetic
nanoparticle average magnetization - in the thermal equilibrium state is governed by the Langevin equation2:

〈m〉B = mL
(

mB
kbT

)
= m

[
Coth

(
mB
kbT

)
− kbT

mB

]
(8)

with T being the temperature, kb the Boltzmann constant and the particle energy in the field B being U =−mB. Here, m is
the particle’s total (or saturation) magnetic moment, calculated by adding the contributions of each crystal unit cell Vu within
the volume Vp:

m = 32µB
Vp

Vu
= 32µB

4πr3

3a3 (9)

For the spherical magnetite iron oxide nanoparticles used in our experiment, the unit cell Vu has a net magnetization of
32µB and a lattice constant of a = 0.839 nm, and the single particles have an average radius of 5.5±0.5 nm. The magnetic field
generated by the particle’s point-dipole moment has axial symmetry and can be straightforwardly calculated at the position r as:

B(r) =
µ0

4π

[
−m

r3 +
3(m · r)r

r5

]
(10)

It has to be noticed that magnetite iron oxide nanoparticles are not isotropic as according to the initial assumption, but rather
uniaxial, and their energy term must take into account internal ordering effects having the form of U = KV sin2 (θ)−mBcos(θ),
with K being the magnetocrystalline anisotropy constant (in this specific case ≈ 1.4 ·104J/m3), V the particle volume, and θ

the angle between the anisotropy axis and the external magnetic field. It is also fundamental to observe that anisotropy, also for
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Figure S5. Real component of the first order magnetic susceptibility as a function of the field frequency, according to the
Casimir-DuPre model and for τN = 5.5 ·10−11 s (red line) and τN = 5.5 ·10−12 s (blue line). The solid black line marks the
frequency of 2.855 GHz.

B→ 0, arises from specific atomic/lattice configurations that would result in a net magnetization due to spin alignment within
the structure (ferromagnetism). Nevertheless, when the particle volume shrinks, KV turns small or comparable to kbT and the
thermal effects become sufficiently important to induce a magnetization reversal/relaxation in the form of an exponential decay
towards an equilibrium state, with a characteristic timescale described in the Neels theory3 as:

τN = τ0e
KV
kbT (11)

Where τ0 is the inverse of the attempt frequency f0. Now, the superparamagnetic behavior appears when, for a given
measurement time τm, the condition τN << τm is satisfied - that is, the relaxation of the magnetization occurs on a much faster
timescale than the observation process, leading to an effective null net polarization. In this case, the exact magnetic dynamics of
single domains shows far more complexity and will not be treated in details here. A fundamental analysis has been performed
by Brown4 who modeled the particle magnetization through a Landau-Lifshiz-Gilbert equation with an additional stochastic
term and solved the resulting Fokker-Planck equation under certain assumptions. The literature has been since then greatly
expanded and several authors have discussed a manifold of different physical situations involving magnetic single domains
including nonlinear responses5, 6, also in AC and DC bias fields. In our experimental conditions, with the particles diameter
being in the range of 10 - 12 nm, we observe that KV ' 0.73−1.26 ·10−20J, kbT ' 4.1 ·10−21J and mB' 3.1−5.4 ·10−22J,
which implies KV > kbT and mB < kbT . The inverse of the attempt frequency τ0, which exhibits in general a dependence from
temperature or external fields and their orientation respect to the easy axes7, is assumed to be constant, since the temperature
during the experiment is constant too and moreover mB < kbT < KV . From the literature, we consider τ0 to be typically in
the range between 10−9 and 10−13s and for our calculations we will set τ0 = 5 ·10−12s. In our case, we have KV > kbT and
hence the Neel-Arrhenius picture should provide a sufficiently accurate description of the particle’s physics. In order to have an
insight in the SPION behavior in high frequency oscillating magnetic field, we adopted a less detailed approach based on the
Casimir-DuPre model8 (analog to the Debye model for electric dipoles) Here the first order AC magnetic susceptibility χ = ∂M

∂H
is calculated as:

χ (ω) = χ
′ (ω)+ iχ ′′ (ω) (12a)

χ
′ (ω) =

χ (0)
1+ω2τ2 (12b)

χ
′′ (ω) =

χ (0)ωτ

1+ω2τ2 (12c)

Where χ ′ (0) is the DC susceptibility, χ ′ (ω) accounts for the in-phase linear response, χ ′′ (ω) for the out-of-phase dissipative
processes, ω is the driving field frequency, and τ is the relaxation time of the magnetization. In our experiment, we have that
τ = τN and we can obtain the indicative plot in Figure S5. By using the NV center ms = 0 to ms =−1 resonant radio frequency
(ωNV ) to manipulate both the NV electron spin and the particle magnetization, we can project its linear in-phase response on
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the nitrogen-vacancy spin coherence. This means that the NV spin flip-flops will be effectively driven by the external applied
AC field and the field generated by the AC nanoparticle response:

Bxycos(ωNV t) = BAC,xycos(ωNV t)+B
(
〈m〉BAC ,r

)
cos(ωNV t)sin(φ) (13)

where BAC,xy is the NV-axis transversal component of the AC field, r the SPION-NV distance and φ the angle between the NV
center quantization axis and BAC. Knowing that BAC = µ0HAC, the particles average magnetic moment can be expressed as:

〈m〉BAC = χ
′ (ωNV )HAC (14)

and by using the expression (8) and the equality χ (0) = m(∂L/∂H):

〈m〉BAC =
m

1+ω2
0 τ2

N

∂L(µ0mH/kbT )
∂H

HAC (15)

which is equivalent to:

〈m〉BAC =
m

1+ω2
0 τ2

N

∂L(mB/kbT )
∂B

BAC (16)

In our experimental setting the NV center axis has an angle of φ = 18 ± 1 deg with respect to the z axis that defines the AC
field direction - as from Figure S2 and the articles Figure 1 and 5. With a Rabi frequency of 7.33 ± 0.05 MHz, we obtain that
BAC = 12.0± 0.1 G. Concerning the superparamagnetic nanoparticle, at T = 296 K we have that τN = 11 τ0 and assuming
τ0 = 5 · 10−12 s we get a χ ′ (ωNV ) in the range of [0.5, 1.0] as in Figure S5. Moreover, from equation (15) we can derive
〈m〉 ' 1.3×103µb for our selected BAC,xy value. We selectively displace the SPION via AFM until it is located a distance of <
100 nm from the nanodiamond. Keeping all the other experimental parameters constant, we observe a reduction of the Rabi
frequency of 90 ± 70 KHz, to 7.24 ± 0.05 MHz, with the ODMR resonance frequency for the selected NV spin transition
remaining in the range between [2854.5 to 2854.9] MHz. This small but measurable difference can be indeed explained by the
effect of the particle average magnetization. By combining the eq. (16) with the particle characteristic physical parameters, it is
possible to show that a non-zero in-phase AC magnetic field is generated by the SPION in a classical dipolar pattern. Let’s set
the origin of our reference frame in the center of the SPION; if the driving field is oriented along z′, the magnetized particle will
generate a field that, projected on the NV center xy plane, will have an opposite direction respect to the driving field, with a xy
intensity at z′ = 0 nm (remembering the angles defined in the previous chapter) going from 47 mG at a distance of 50 nm to 11
mG at 80 nm, which would account for a Rabi frequency decrease of respectively 93 KHz and 22 KHz (see supplementary
Figure S6). By choosing any other plane between z′ = 0 and z′ = 45 nm (remembering the nanodiamond having a radius of 20
to 25 nm and the SPION of 5.5 nm) we obtain the graph as in the main article Figure 1, where the effective counter-active field
is in the order of magnitude of several 10−2 G. Finally, we may consider that, despite not having a precise localization of the
NV center, our simulations and results agree with its localization within the spherical particle representing the nanodiamond
and located between 50 and 80 nm from the SPION.

Relaxometry of a Superparamagnetic Nanoparticle
An NV center T1 time measurement (also denoted as relaxometry measurement) can be used to detect a magnetic field noise
acting on the spin population of the defect and having a frequency component comparable to the ms = 0→ ms =±1 transition
energies. The general treatment of this problem, that is an individual spin subject to a random fluctuating magnetic field, can be
found in several sources9, 10. In our case we start by taking the NV center S = 1 quantum system and defining the Z axis as
the quantization axis determined by the large zero-field splitting. We prepare, by laser polarization, the center’s spin in the
ms = 0 state. Now, the dynamics of the center spin may be modeled with a system of rate equations - excluding the intersystem
crossing to the dark state:

 n′0
n′+1
n′−1

=

−2k k k
k −k 0
k 0 −k

 n0
n+1
n−1

 (17)

where n0, n+1 and n−1 are the populations of the ms = 0,+1,−1 spin levels obeying the normalization relation n0+n+1+n−1 =
1. By solving the differential equation system it can be found that n0 relaxes over time with an exponential decay towards the
equilibrium condition:

n0 =−2Ce−3kt +
1
3

(18)
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Figure S6. Visualization of the field generated by the SPION that is effectively driving the NV center electron spin as a
function of the distance from the SPION center (set in the origin of the reference system). The x’y’ system of coordinates is
given by the Helmholtz coils (x’y’ is equiplanar to the waveguide surface as well) and z’ is parallel to the driving microwave
field. The plot is calculated assuming z’ = 0, that is considering the NV center and the SPION center to lie on the same plane
parallel to the surface. In this case, the SPION AC response is anti-parallel with respect to the external driving AC field. The
dashed line shows the coordinates where the SPION AC response has an effective strength on the NV center xy plane of
respectively 45 mG.

with 3k = 1/T1 and C being a constant dependent on the boundary conditions. We continue by observing that in our experiment,
after the initial polarization, the NV center spin interacts with the SPION magnetization vector whose dynamics is described
by a stochastic process with a zero first-order momentum (i.e. zero-average), a non-zero second-order momentum (variance)
and a exponentially decaying autocorrelation function. In this case, we can relate the spin population decay constant with the
variance of the SPION transversal magnetization with:9, 10

1
T1

= 3k = 3γ
2
NV 〈B2

xy〉A(ωNV ,τN) (19)

where:

A(ω,τN) =
τN

1+ω2
NV τ2

N
(20)

Finally, by combining the above equations with the intrinsic relaxation rate of the NV center, we derive:

1
T1

=
1

T1,NV
+3γ

2
NV 〈B2

xy〉
τN

1+ω2
NV τ2

N
(21)

Now, in order to derive from the variance measurement the total particle magnetic moment and its distance from the defect
center, we proceed by calculating the statistical second order momentum of the magnetic field components generated by the
particle dipole at a position r as from the equation (10), and integrate with a weighting term over a spherical surface to account
for the random fluctuations. Considering an angle κ between the NV z (quantization) axis and the magnetic particle-NV
direction vector, and given 〈B2

xy〉= 〈B2
x〉+ 〈B2

y〉 we get:

〈B2
xy〉=

m2µ2
0

48π2

[
5−3cos2 (κ)

r6

]
(22a)

〈B2
z 〉=

m2µ2
0

48π2

[
1+3cos2 (κ)

r6

]
(22b)

Our experimentally observed 〈B2
xy〉 is 2.9 ± 0.5 G2, and given an angle κ ' 72±1 deg as from the orientation measurements,

we get a magnetic moment of 38000 ± 6000 µb for an in-plane (x’y’) separation of 64 nm (here, the moment uncertainty
arises from the T1 measurement errors and the NV axis angle estimation error). However, it can be noticed that given the
different sizes of the nanodiamond and the SPION, we may have different combinations of vertical (z’) and in-plane (x’y’)
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Figure S7. Plot of the expected magnetic moment for the SPION as a function of the (x’y’) and z’ projected distance with
respect to the NV center in the diamond. The red circumference shows the nanodiamond (only for comparative purposes). The
black solid line represents the coordinates that correspond to a 38000 µb SPION that is compatible with our particle diameter of
11 nm, while the dashed lines show the coordinate uncertainty area given an uncertainty on the particle size of ± 1 nm as from
the AFM measurements.

separations that correspond to a particle of a defined size (or magnetic moment) interacting with the NV. In other words, the
change observed in the T1 time could come from a 38000 µb particle located at κ = 72◦ and rx′y′ = 64 nm or from the same
particle positioned at κ = 95◦ and rx′y′ = 59 nm or anywhere else on the curve f (r,κ) that satisfies the equations in (22). In
Figure S7 we show the estimated magnetic moment of the iron oxide nanoparticle as a function of the position with respect to
the NV center, where the solutions for a particle of radius R = 5.5 ± 0.5 nm are highlighted.

Hahn-echo Fit
The Hahn-echo decays have been fitted using the formula:

f (t) = A+Bexp

[
−
(

t
T2

)2
]

(23)

where A is the offset parameter, B the contrast, T2 the transverse decay time. Now, the overall relaxation rate T2 can be
considered as the sum of the “bare” NV center relaxation rate and the SPION contribution:

1
T2

=
1

T2,NV
+

1
T2,SPION

(24)

where 1/T2,SPION is equal to (see equations 19-21 and the main text reference 46):

1
T2,SPION

=
1

2T1
+ γ

2
nv〈B2

z 〉τN (25)

with 〈B2
z 〉 being the variance of the B field component parallel to the NV center axis. In order to solve this equation in our

practical case, we need to use the T1 obtained from the relaxometry measurement, and calculate 〈B2
z 〉 from the estimated

NV-SPION distance and particles magnetic moment. By doing that, we may observe that the expected 1/T2,SPION contribution
to 1/T2 is at least one order of magnitude lower with respect to the bare NV center contribution, which would translate in a
modest (circa 140 ns) reduction of the overall T2 time.
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