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Supplementary Note 1: Experimental setup and data analysis 

 

Supplementary Figure 1: Schematic of the experimental setup: The optical beam (red line) is split 

into a weak probe and a strong pump beam, which are used to measure the optical birefringence 

with balanced photodiodes A and B, sensitive to the probe intensity polarized parallel to the 

electric field of the THz pulse and perpendicular to it. The pump beam is used to generate THz 

pulses from LiNbO3. 

This section contains a summary of the experimental setup and of the simulations performed to 

evaluate the local Kerr effect inside the cuvette and in the liquid. The experimental setup, depicted in 

Supplementary Figure 1, utilizes optical pulses from a Ti:Sapphire chirped-pulse laser amplifier with 

fundamental wavelength of 800 nm, 150 fs pulse duration and 7 mJ pulse energy to generate THz 

pulses by optical rectification in LiNbO3. The optical pulse-fronts are tilted by a grating to fulfill the 

phase-matching condition. The THz pulses generated from this source are de-magnified using two 

off-axis parabolic mirrors with 4" and 3" focal lengths. In the image plane, the pulses are 

characterized by electro-optic (EO) sampling using a 50 µm-thick <110>-cut GaP and a 200 µm-thick 

<110>-cut ZnTe crystal. The electric field waveform consists of a single cycle with peak electric field 

strength of 510 kV/cm and 0.25 THz center frequency. The THz beam diameter in the focus is one 

millimeter – an order of magnitude larger than the optical probe spot. For the measurement of liquid 

samples, Spectrosil® (synthetic fused silica) cuvettes are used with 1 cm diameter aperture and two 

1.2 mm-thick windows enclosing a 0.2 mm-thick sheet of liquid. Only for carbon disulfide (CS2), due 

to its low THz absorption coefficient, a cuvette of 2 mm inner thickness was used. To measure the 



optical birefringence, the polarization of the probe beam is tilted by 45° with respect to the THz 

electric field polarization. A Kerr effect time trace is recorded by scanning the delay between the 

pump (500 Hz repetition rate) and the probe (1 kHz), reading the pump-induced modulation 

detected by the balanced photodiodes using a lock-in amplifier. The data are normalized to the signal 

obtained when chopping the probe beam at 500 Hz, with the respective sample in the optical beam 

path. 

The data extractions start from the incoming electric-field waveform of the THz pulse 𝐸(𝑡), known in 

absolute units from EO sampling. Let 𝑧 be the propagation direction of the THz pulse, perpendicular 

to the windows of the cuvette. For every step Δ𝑧 (positive when propagating in the same direction as 

the probe beam), the electric field pulse is Fourier transformed and propagated by multiplying 

exp(𝑖𝜔Δ𝑧 × (𝑛(𝜔) − 𝑛0)/𝑐), where 𝑛(𝜔) is the complex refractive index of the specific material in 

the THz regime, known from TDS, and 𝑛0 is the (real) optical refractive index at the probe 

wavelength. When the pulse reaches an interface, it splits into a reflected and transmitted wave with 

its field strength modified by the reflection and transmission coefficients, (𝑛1(𝜔) − 𝑛2(𝜔))/

(𝑛1(𝜔) + 𝑛2(𝜔)) and 2𝑛1(𝜔)/(𝑛1(𝜔) + 𝑛2(𝜔)), respectively. As an example, the propagation of a 

THz pulse through a cuvette filled with water is shown in Supplementary Figure 2. In case of water, 

due to its strong absorption in the THz regime, the field strength is reduced significantly upon passing 

the water layer. 

 

 

Supplementary Figure 2: Propagation of the single-cycle THz pulse through a cuvette, filled with 

water. The vertical lines indicate the interfaces between the two 1.2 mm-thick fused silica 

windows and the 0.2 mm-thick sheet of water. The THz pulse propagates from left to right. The 

vertical axis denotes the pump-probe delay, i.e., ∆𝑡 = (𝑣THz − 𝑣opt) 𝑐⁄ × 𝑡, where 𝑣THz and 𝑣opt 

are the group velocities of each material in the THz and optical regimes, respectively. 

 

Applying the Kerr effect model, supplementary equations (1&2), to the simulated electric field data, 

one can exactly calculate the expected Kerr effect of the cuvette, considering absorption and 

reflection losses from the cuvette. This background signal is depicted as purple curve in 

Supplementary Figures 3&4 for illustration. It is then subtracted from the data while refining the Kerr 

coefficients of the liquid under investigation. The exact agreement of the model and experimental 

data for benzene as well as the alcohols confirms the accuracy of this approach. 



 

Supplementary Figure 3: The raw Kerr traces (blue curves) shown before subtracting the 

background from the cuvette (purple curves) as calculated for each sample (a)-(e) based on the 

known Kerr coefficient obtained from the refinement of an empty cuvette (f). Additionally, the red 

curves represent the refined model for the sum of electronic (orange curves) and molecular (green 

curves) Kerr effects. In (f), the two curves each correspond to the contribution of the front (early) 

and back (late) windows of the cuvette.  

 

 

Supplementary Figure 4: The raw Kerr traces (blue curves) shown before subtracting the 

background from the cuvette (purple curves) as calculated for each sample (a)-(d) based on the 

known Kerr coefficient obtained from the refinement of an empty cuvette. 

 

 



Supplementary Note 2: Field-strength dependence measurements of the Kerr effect 

Supplementary Figure 5(a) shows the EO sampling curves as function of the pump energy on the 

LiNbO3 crystal. From these curves we derive the field strength reached at each pump fluence. 

Supplementary Figure 5(b-d) shows Kerr effect measurements on the empty cuvette, methanol and 

water for different fluences of 7.4 mJ, 5 mJ and 3 mJ, respectively. The numbers shown next to the 

curves in Supplementary Figure 5(b-d) mark the time delay at which the values were extracted to 

determine the fluence dependence summarized in Supplementary Figure 5(e). It shows the induced 

birefringence as function of the electric field in the THz pulse together with linear and quadratic fits. 

The relation Δ𝜑 ∝ 𝐸2 is clearly observed with a slight tendency toward a higher exponent. 

    

Supplementary Figure 5: Field-dependence of the THz-induced birefringence. (a) depicts the EO 

sampling traces for various pump fluences of the IR beam used to generate the THz pulses. (b-d) 

show the Kerr effect traces of an empty cuvette, methanol and water, respectively, at three 

different pump conditions (7.4 mJ, 5 mJ and 3 mJ). Numbers in brackets denote a specific feature 

of the data, whose mean amplitude was determined and plotted against the electric field 

strengths, extracted from (a) and shown in (e). All features scale with the square of the THz 

electric field (green curve). The best fit exponent is 2.3±0.2. Dashed lines show linear and quartic 

scaling for comparison, which can be ruled out. 

Supplementary Note 3: Time-domain spectroscopy 

THz time-domain spectroscopy (TDS) was performed using a commercial fiber-laser and antenna-

based THz-generation system operating at MHz repetition rates. The TDS scans were performed 

under nitrogen purging and for every sample the empty cuvette was sealed and measured as 

reference. Two cuvettes of different thickness were used to adjust for the absorption in each liquid. 

Both cuvettes are made of two flat fused silica windows, each of thickness 𝑑′ = 1.2 mm.  In the thick 

cuvette with 𝑑 = 2 mm path length, all backreflections can be removed by temporal windowing, but 

for the thinner 200 µm-thick cuvettes, a transfer function approach must to be employed, which 

considers the backreflections inside the sample volume, 



𝐸cuv(𝜔)

𝐸mty(𝜔)
=

16𝑁′2 × exp((𝑁′ − 1)2𝑖𝜔𝑑′/𝑐)

exp(2𝑖𝜔𝑑/𝑐) × (1 − 𝑁′2)
2
− (𝑁′ + 1)4

 (1) 

 
where 𝐸mty(𝜔) and 𝐸cuv(𝜔) are the complex-valued Fourier transformed TDS traces of the empty 

beam path and the empty cuvette, respectively. 𝑁′ is the refractive index of the cuvette material 
(fused silica), which can be determined numerically for each frequency value in the data. Similarly, 

𝐸liq(𝜔)

𝐸cuv(𝜔)
= 𝑁

exp(𝑖𝜔𝑑/𝑐) × (𝑁′ − 1)2 − exp(−𝑖𝜔𝑑/𝑐) × (𝑁′ + 1)2

exp(𝑖𝜔𝑑𝑁/𝑐) × (𝑁′ −𝑁)2 − exp(−𝑖𝜔𝑑𝑁/𝑐) × (𝑁′ +𝑁)2
 (2) 

 
for the filled cuvette, 𝐸liq(𝜔), with refractive index 𝑁 of the liquid inside the cuvette, again 

considering backreflections through the liquid. Data obtained in this way are depicted in 
Supplementary Figures 6&7. In Supplementary Figure 6 it is clearly seen that the liquids under 
investigation possess quite different absorption coefficients with the lowest absorption observed in 
CS2 and the highest in water. The latter fact makes it particularly difficult to excite sufficiently thick 
layers of water by strong THz electric fields. Furthermore, Supplementary Figure 7 shows the THz 
dielectric function of water and methanol for different concentrations of NaI. 
 

 

Supplementary Figure 6: THz complex refractive index of the liquids, whose THz Kerr effect is 

determined in the main text. The spectra are obtained by time-domain spectroscopy (TDS). The 

large absorption coefficient of some liquids, water and methanol must be considered for the 

calculation of the Kerr coefficient. Periodic oscillations in the data are caused by interferences 

inside the cuvette, which are not fully subtracted by the transfer function formalism described 

here. 

 



 

Supplementary Figure 7: Complex refractive index data of water and methanol at different 

concentrations of NaI, obtained using TDS. In water and methanol, there is a clear trend of 

increasing refractive index. The absorption increases continuously with NaI concentration in water 

only at frequencies above about 1 THz. 

 

Supplementary Note 4: Time-domain model for the Kerr effect based on the Langevin 

equation 

Theory of Kalmykov and Coffey 

A theoretical description for dynamic Kerr signals of polar, asymmetric-top molecules in a solvent has 

been given by Kalmykov and Coffey1,2. In their approach, the emergence of birefringence in response 

to strong electric fields is treated based on rotational Brownian motion of single molecules. 

Specifically, a perturbing electric field seeks to rotate molecules on basis of their permanent dipole 

moments and (hyper-) polarizabilities, while thermal fluctuations aim to lead the system back 

towards an equilibrium distribution. This interplay is captured by an Euler-Langevin equation in the 

overdamped (Debye) and dilute (non-interacting) limit, which is used to derive a hierarchy of 

differential recurrence relations for the appropriate statistical moments of the problem. In this case, 

these are given by averages of Wigner's D functions 𝐷𝑚,𝑛
𝑗 (𝑡)3 which form an orthonormal basis set 

for the construction of the relevant quantities. For comparably low electric field strengths the 

hierarchy can be truncated early, leading to a simple description via two coupled vector-differential 

equations 

𝑑

𝑑𝑡
𝒄1(𝑡) = �̂�1𝒄1(𝑡) + 𝐸(𝑡)𝑩1 (3) 



𝑑

𝑑𝑡
𝒄2(𝑡) = 𝐸(𝑡)�̂�𝒄1(𝑡)+�̂�2𝒄2(𝑡) + 𝐸

2(𝑡)𝑩2. (4) 

Here, the vectors  𝒄1(𝑡)  and 𝒄2(𝑡)  carry averages of the first and second Wigner functions, 

𝒄1(𝑡) = (

〈𝐷0,−1
1 〉(𝑡)

〈𝐷0,0
1 〉(𝑡)

〈𝐷0,1
1 〉(𝑡)

), 𝒄2(𝑡) = 

(

 
 
 

〈𝐷0,−2
2 〉(𝑡)

〈𝐷0,−1
2 〉(𝑡)

〈𝐷0,0
2 〉(𝑡)

〈𝐷0,1
2 〉(𝑡)

〈𝐷0,2
2 〉(𝑡) )

 
 
 

. (5) 

Their time-evolution is determined by the coefficients of the rotational diffusion tensor 𝐷𝑖𝑗 and the 

response to the perturbing electric field 𝐸(𝑡). The latter is given by the permanent dipole moment 

𝝁and the elements of the electric polarizability tensor 𝜀𝑖𝑗  of a molecule. Hyperpolarizabilities are 

neglected here. In our case, the molecular reference frame 𝑥𝑦𝑧 is chosen in such a way that the 

rotational diffusion tensor is diagonal and encoded within 

∆=
𝐷𝑧𝑧

𝐷𝑥𝑥+𝐷𝑦𝑦
−
1

2
, (6) 

𝜏𝐷 =
1

𝐷𝑥𝑥+𝐷𝑦𝑦
, (7) 

Ξ =
𝐷𝑥𝑥−𝐷𝑦𝑦

𝐷𝑥𝑥+𝐷𝑦𝑦
. 

(8) 

 

For molecules with rotational symmetry around the 𝑧-axis, such as CS2 and benzene, Ξ = 0. 

The matrices �̂�1 and �̂�2 are then related to relaxation back towards the equilibrium distribution and 

read 

�̂�1 = −𝜏𝐷
−1 (

1 + Δ 0 Ξ/2
0 1 0
Ξ/2 0 1 + Δ

), (9) 

�̂�2 = −𝜏𝐷
−1

(

 
 
 

3 + 4Δ 0 Ξ√3/2 0 0

0 3 + Δ 0 3Ξ/2 0

Ξ√3/2 0 3 0 Ξ√3/2

0 3Ξ/2 0 3 + Δ 0

0 0 Ξ√3/2 0 3 + 4Δ)

 
 
 

, (10) 

where the diagonal entries give rise to relaxation times of the order of 𝜏𝐷 and 𝜏𝐷 3⁄ , respectively, if Ξ 

and ∆ can be neglected. The vector 𝑩1(𝑡) and the matrix �̂� relate to the impact of the permanent 

dipole moment 

�̂� =
√3

10𝜏𝐷𝑘𝐵𝑇

(

 
 
 
 

𝜇−(3 + 4Δ) − 𝜇+Ξ √2𝜇𝑧Ξ 0

3𝜇𝑧 [𝜇−(3 + 2Δ) − 2𝜇+Ξ]/√2 𝜇𝑧Ξ

√3/2(𝜇−Ξ − 𝜇+) 2√3𝜇𝑧 √3/2(𝜇− − 𝜇+Ξ)

𝜇𝑧Ξ [2𝜇−Ξ − 𝜇+(3 + 2Δ)]/√2 3𝜇𝑧

0 √2𝜇𝑧Ξ 𝜇−Ξ − 𝜇+(3 + 4Δ))

 
 
 
 

, (11) 



𝑩1 =
1

3√2𝜏𝐷𝑘𝐵𝑇
(

𝜇−(1 + Δ) − 𝜇+Ξ/2

√2𝜇𝑧
−𝜇+(1 + Δ) + 𝜇−Ξ/2

), (12) 

where 𝜇± =𝜇𝑥 ± 𝑖𝜇𝑦 . Finally, the vector 𝑩2(𝑡) gives the coupling to the electric polarizability 

𝑩2 =
1

10√6𝜏𝐷𝑘𝐵𝑇

(

 
 
 
 

(𝜀𝑥𝑥 − 2𝑖𝜀𝑥𝑦 − 𝜀𝑦𝑦)(3 + 4Δ) − (𝜀𝑥𝑥 + 𝜀𝑦𝑦 − 2𝜀𝑧𝑧)Ξ

2(𝜀𝑥𝑧 − 𝑖𝜀𝑦𝑧)(3 + Δ) − 3(𝜀𝑥𝑧 + 𝑖𝜀𝑦𝑧)Ξ

√6[2𝜀𝑧𝑧 − 𝜀𝑥𝑥 − 𝜀𝑦𝑦 + Ξ(𝜀𝑥𝑥 − 𝜀𝑦𝑦)]

−2(𝜀𝑥𝑧 + 𝑖𝜀𝑦𝑧)(3 + Δ) + 3(𝜀𝑥𝑧 − 𝑖𝜀𝑦𝑧)Ξ

(𝜀𝑥𝑥 + 2𝑖𝜀𝑥𝑦 − 𝜀𝑦𝑦)(3 + 4Δ) − (𝜀𝑥𝑥 + 𝜀𝑦𝑦 − 2𝜀𝑧𝑧)Ξ)

 
 
 
 

. (13) 

In a Kerr measurement, the perturbing electric field is assumed to occur along the axis 𝑍 in the 

laboratory coordinate system spanned by the three axes 𝑋𝑌𝑍. The birefringence is then measured 

between the axes 𝑋 and 𝑍 with an optical probe pulse. It can be derived from the measured optical 

anisotropy Δ𝛼(𝑡) =  〈𝛼𝑍𝑍 − 𝛼𝑋𝑋〉(𝑡) by way of the Lorenz-Lorentz equation as 

Δ𝑛(𝑡) ≈
2𝜋𝜌0

𝑛𝑠
Δ𝛼(𝑡), (14) 

with the number density 𝜌0, the refractive index of the solvent 𝑛𝑠 and formulated here for a 

polarizability volume 𝛼 = 𝛼′ 4𝜋𝜀0⁄  4,5. The connection between Δ𝛼(𝑡) and Supplementary equations 

(3) and (4) is given by a dot product 

Δ𝛼(𝑡) = 𝒂2 ∙ 𝒄2(𝑡), (15) 

where 𝒂2 contains the spherical components of the body-fixed optical polarizability tensor �̂�0 and 

reads 

𝒂2 = √3/8

(

 
 
 

𝛼𝑥𝑥 − 𝛼𝑦𝑦 + 2𝑖𝛼𝑥𝑦

2(𝛼𝑥𝑧 + 𝑖𝛼𝑦𝑧)

√6[𝛼𝑧𝑧 − Tr[�̂�]/3]

2(−𝛼𝑥𝑧 + 𝑖𝛼𝑦𝑧)

𝛼𝑥𝑥 − 𝛼𝑦𝑦 − 2𝑖𝛼𝑥𝑦)

 
 
 

. (16) 

The vector 𝒂2 contains anisotropies of the optical polarizability and defines the dimension and 

overall size of the resulting signal. In fact, its central component can be rewritten as ∆𝛼0 =𝛼0,‖ −

𝛼0,⊥ =𝛼𝑧𝑧 − (1/2)(𝛼𝑥𝑥 +𝛼𝑦𝑦) and multiplies to the central components of both 𝒄1 and 𝒄2. If we 

choose the molecular 𝑧-axis to coincide with the permanent dipole moment, these elements give 

direct measures for orientation and alignment of the molecules as 

〈𝐷0,0
1 〉(𝑡) =  〈cos(𝜃)〉(𝑡) (17) 

〈𝐷0,0
2 〉(𝑡) =

1

2
(〈3 cos2(𝜃) − 1〉(𝑡)). (18) 

Both relations follow from a general property of the 𝐷 functions, specifically 𝐷0,0
𝑗
= 𝑃𝑗(cos(𝜃)), 

where 𝑃𝑗 is the Legendre polynomial of rank 𝑗, and 𝜃 the Euler angle between the molecular 𝑧-axis 

and the laboratory 𝑍-axis 2,3. For the case of isotropic rotational diffusion, where  𝐷𝑥𝑥 = 𝐷𝑦𝑦 =

𝐷𝑧𝑧 = 𝐷 such that Ξ = ∆= 0, we can formally solve the theory of Supplementary equations (3) and 

(4). Assuming isotropic initial conditions, where 𝒄1(0) = 0and  𝒄2(0) = 0, as well as choosing the 

molecular 𝑧-axis to coincide with the permanent dipole moment, we obtain 



Δ𝛼(𝑡) =
1

5𝜏𝐷
[
3

4

Δ𝛼0
+Δ𝜀0

+

𝑘𝐵𝑇
+
Δ𝛼0 Δ𝜀0
𝑘𝐵𝑇

]∫ 𝑑𝑢𝐸2(𝑢)𝑒
−3
(𝑡−𝑢)
𝜏𝐷

𝑡

0

+
1

5𝜏𝐷
2

Δ𝛼0 𝜇𝑧
2

(𝑘𝐵𝑇)
2
∫ 𝑑𝑢∫ 𝑑𝑠

𝑢

0

[𝐸(𝑢)𝑒
−3
(𝑡−𝑢)
𝜏𝐷 ] [𝐸(𝑠)𝑒

−
(𝑢−𝑠)
𝜏𝐷 ]

𝑡

0

, 

(19) 

where we defined Δ𝛼0
+ =𝛼𝑥𝑥 − 𝛼𝑦𝑦 and Δ𝜀0

+ =𝜀𝑥𝑥 − 𝜀𝑦𝑦 as well as ∆𝜀0 =𝜀𝑧𝑧 − (1/2)(𝜀𝑥𝑥 +

𝜀𝑦𝑦) in accordance with ∆𝛼0. Supplementary equation (19) renders two distinct behaviors: the first 

term induces a unipolar signal which depends on the anisotropies of the electric polarizability and 

the second creates a bipolar term that depends on the permanent dipole moment. For molecules 

with zero permanent dipole moment, we expect a unipolar contribution consistent with the results 

for benzene and CS2 in the main text. For molecules with non-zero permanent dipole moment, the 

second term contributes as well and we expect an interplay between both contributions. The latter 

may be a particularly important component for the measurement on water and the alcohols. As such, 

we implement the theory of Supplementary equations (3) and (4) for the case of liquid water in the 

next section. 

 

Implementation for liquid water 

 

Supplementary Figure 8: Phase shift ∆𝜙(𝑡) for the case of liquid water obtained from 

Supplementary equations (3) and (4) (dark blue lines with squares) versus the experimental result 

∆𝜙exp(𝑡) (light blue dash-dotted lines). Panel (a) shows the theoretical prediction for the optical 

polarizability of Supplementary equation (21), while panel (b) shows the result for the polarizability 

of Supplementary equation (22). The experimental result has been scaled by a factor of 20 to 

account for absorption and to enable a rough comparison. Panel (c) shows a measure for orientation 

〈cos(𝜃)〉(𝑡) (solid green line with squares) and alignment 〈cos2(𝜃)〉(𝑡) (dotted yellow line with 

triangles) obtained from Supplementary equations (17) and (18). The perturbing electric field 𝐸(𝑡) is 

modelled as the Gaussian of Supplementary equation (23) and is shown normalized in all panels 

(solid red line with circles). 

 

Supplementary equations (3) and (4) have been evaluated numerically in Supplementary Figure 8. To 

do so, we extracted the diagonal elements of the rotation diffusion tensor from previous molecular 

dynamics simulations6, specifically 

�̂� = (
0.211 0 0
0 0.114 0
0 0 0.272

)1/ps. (20) 

Here, we assumed that the principal axes coincide with the principal axes of inertia such that the 𝑧-

direction points in the direction of the permanent dipole moment, 𝑥 spans the H-H-direction and 𝑦 



points out of the molecular plane. The resulting timescale is then given as 𝜏𝐷 ≈ 3ps where 𝜏𝐷/3 ≈

1ps. We note in passing, that a different choice of �̂� (see, e.g., refs. 7–9) does not lead to a significant 

change in the overall theoretical result. The polarizability tensors for water are assumed to be 

diagonal in the molecular frame chosen. To enable a comparison we use the same values as those in 

Supplementary Note 5. Specifically, we utilize values for water vapor10 

�̂�0
(1)
= (

1.626 0 0
0 1.286 0
0 0 1.495

)Å3 , (21) 

which has a ∆𝛼0
(1)
≈ 0.04Å3 > 0 and a second set derived from coupled cluster theory calculations11 

�̂�0
(2)
= (

1.375 0 0
0 1.442 0
0 0 1.321

)Å3 , (22) 

which features a ∆𝛼0
(2)
≈ −0.09Å3 < 0. The polarizability in the THz regime together with the 

permanent dipole moment governs the response to the THz pulse. As results for the static 

polarizability tensor of water do not deviate much from Supplementary equations (21) and (22) (see, 

e.g., 12) we assume the electric polarizability given by the 𝜀𝑖𝑗  to be equal to the optical polarizability 

values. The permanent dipole moment of a water molecule is given as 𝝁 = 𝜇𝒆𝑧 with 𝜇 = 2.95D, 

which is an appropriate value in the liquid phase13,14. The THz pulse 𝐸(𝑡) is modelled as in 

Supplementary equation (24) with 

𝐸(𝑡) = 𝐴 ∙ 𝐸0∙cos(𝜔𝑐t+φ)𝑒
−
(𝑡𝑝−𝑡)

2

2𝜎2 , 
(23) 

where we use slightly different values and set 𝜔𝑐 = 2𝜋 ∙ 0.3THz and the phase to 𝜑 = −𝜋 4⁄ . We 

center the pulse at 𝑡𝑝 = 4.2ps and set its width to 𝜎 = 1ps. The prefactor 𝐴 ≈ 1.1 normalizes the 

pulse such that its maximum gives 𝐸0 = 510kV/cm, in accordance with the experimental 

parameter. For this value 𝜇𝐸
0
𝑘𝐵𝑇 ≈ 0.1⁄  at room temperature, which is appropriate for the low-

energy theory we consider. Note, however, that we do not take absorption effects into account in 

this way. Finally, we evaluated the theory at room temperature and chose the number density equal 

to that of liquid water as 𝜌0 = (1 30⁄ )Å−3. In order to compare to experimental values, the phase-

shift has been obtained by ∆𝜙(𝑡) =  (2𝜋𝐿 𝜆⁄ )∆𝑛(𝑡), where we used 𝐿 = 0.2mm as the thickness of 

the liquid sheet in the cuvette and the probing wavelength𝜆 = 800nm. As initial conditions we 

assumed isotropy, i.e. 𝒄1(0) = 0and 𝒄2(0) = 0. 

Supplementary Figure 8 shows the result for the polarizabilities of Supplementary equations (21) and 

(22) in contrast to the experimental results. The dynamics are dominated by the permanent dipole 

moment contribution entering through the dynamic vector 𝒄1(𝑡). The reason for this lies in the fact 

that the polarizability of water is nearly isotropic such that Δ𝜀0 and Δ𝜀0
+ are small. Therefore, the 

resulting curves show a bipolar behavior as expected from the second term in the isotropic solution 

of Supplementary equation (19) as the contribution related to the first term is negligible. A direct 

comparison of prefactors also yields (∆α0/𝑘𝐵𝑇)/(𝜇²/(𝑘𝐵𝑇)²) ≈ 10
−4. 

The results in Supplementary Figure 8(a&b) show only a rough qualitative agreement to the 

experimental results with somewhat similar relaxation behavior and similar structure but marked 

differences in both the height as well as the exact position of the minima and maxima. This implies 

that our model is insufficient to describe the exact Kerr dynamics in the case of liquid water. This 

observation matches well with the fact that the isotropic solution in Supplementary equation (19) 

cannot be readily fitted to the experimental data, unless one of the relaxation times becomes much 

smaller than the other. However, the net negative and positive effects obtained when calculating the 



Kerr effect using a negative ∆𝛼0
(2)

 or positive ∆𝛼0
(1)

 shows that ∆𝛼 must be negative to explain a net 

negative Kerr effect. In addition, we also note that the average peak electric field in the 0.2 mm-long 

water layer is only around 150 kV/cm, reducing the ratio of peak Kerr effects in experiment and 

simulation to less than 2. Finally, Supplementary Figure 8(c) shows the resulting measures for 

orientation and alignment. As predicted, the electric field pulse couples strongly to the permanent 

dipole moment and orients the molecules while the alignment dynamics follows this profile as well. 

In addition, the resulting behavior agrees well with the simulation results obtained in Supplementary 

Note 5 (Figure 2 of the main text). 

Despite the rough qualitative agreement, however, these results evidently call for a more involved 

treatment. In particular, the Debye approximation assumes strong damping and excitation energies 

not higher than the low GHz range, both insufficient for small molecules such as water and the higher 

frequency of the pump pulse2. Additionally, another particularly strong limitation is given by the 

assumption of a dilute liquid and, thus, non-interacting molecules. It is well known that water and 

alcohols interact through the formation of H-bonds which may strongly impact the rotation dynamics 

underlying the present theory. Lastly, the theory also neglects effects from hyperpolarizabilities such 

that, for instance, an instantaneous electronic contribution to the signal cannot be described. Other 

potential sources of errors may include quantum, memory and conduction effects which are 

neglected a priori in the present theory. 

 

Supplementary Note 5: Molecular Dynamics Simulation 

Computational Details 

To investigate the THz Kerr effect on liquid water computationally, molecular dynamics (MD) 

simulations of bulk water were performed employing the rigid TIP4P/2005 force field15 under 

periodic boundary conditions using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS)16. A simulation box of 256 water molecules at a density of 1 g/cm3 was thermally 

equilibrated at  300 K using the Nose-Hoover thermostat17. After the equilibration, 5000 initial 

atomic configurations and velocities were generated from a long MD trajectory performed under 

canonical (NVT) conditions. These different sets of initial conditions were sampled with a time 

interval of 1 ps to avoid artificial correlations between each sampled phase space point. Each set of 

initial conditions was then propagated in the presence of a THz pulse for 6 ps. All trajectories were 

propagated using the velocity-Verlet algorithm with 1 fs time step along with the SHAKE algorithm18 

to fix the intramolecular bonds and angles. A cut-off radius of 15 Å was used for the calculation of the 

short-range Lennard-Jones interactions and Particle-Particle-Particle-Mesh technique was used to 

calculate the electrostatic interaction. 

The THz pump pulse employed in the simulations is given by 

𝑬(𝑡) = 𝐴exp(−
(𝑡 − 𝑡0)

2

2𝜎2
)𝒖𝑧cos(𝜔𝑐𝑡 + 𝜙) (24) 

with 𝜎 = 800 fs. The central photon frequency considered is 𝜔𝑐 = 2𝜋 × 0.39 THz (13 cm-1), which 

results in a full cycle long pulse. The polarization direction of the electric field is 𝒖𝑧 = (0,0,1) and 𝜙 is 

the carrier-envelope phase, which is set to 𝜋/2. The maximum electric field amplitude 𝐴 =

0.05corresponds to a power per unit area of 3.387 × 1010 W/cm2. 

The time-dependent refractive indices parallel (𝑛∥(𝑡)) and perpendicular (𝑛⊥(𝑡)) to the THz pulse 

polarization direction can be obtained from the polarizability of the sample as5 



𝑛∥(𝑡) = √1 + 4𝜋 (
𝑁

𝑉
) 〈𝛼∥〉(𝑡) (25) 

𝑛⊥(𝑡) = √1 + 4𝜋 (
𝑁

𝑉
) 〈𝛼⊥〉(𝑡) (26) 

Here, the average polarizability per molecule 〈𝛼〉 is obtained from 𝑀 MD trajectories with 𝑁 

molecules each, as 

〈𝛼〉(𝑡) =
1

𝑀𝑁
∑𝑅𝑇 (Φ𝑗(𝑡), θ𝑗(𝑡), Ψ𝑗(𝑡))

𝑀𝑁

𝑗=1

𝛼𝐺𝑅 (Φ𝑗(𝑡), θ𝑗(𝑡), Ψ𝑗(𝑡)) (27) 

with the gas-phase polarizability 𝛼𝐺 = (
1.626 0 0
0 1.286 0
0 0 1.495

)Å310. The rotation matrices 

𝑅 (Φ𝑗(𝑡), θ𝑗(𝑡), Ψ𝑗(𝑡)) rotate the 𝑗-th molecular frame (z-axis along the molecular dipole, x-axis 

along the H-H axis and y-axis perpendicular to the molecular plane) to the simulation-box frame 

using the three Euler angles Φ𝑗, θ𝑗, Ψ𝑗. By assuming a uniform distribution for Φ andΨ, one obtains 

〈𝛼∥〉(𝑡) = �̂�
𝐺 + (𝛼∥

𝐺 − 𝛼⊥
𝐺) (〈cos2(θ)〉(𝑡) −

1

3
) (28) 

〈𝛼⊥〉(𝑡) = �̂�
𝐺 − (𝛼∥

𝐺 − 𝛼⊥
𝐺) (〈cos2(θ)〉(𝑡) −

1

3
) (29) 

where �̂�𝐺 = 1 3⁄ (𝛼𝑥𝑥
𝐺 + 𝛼𝑦𝑦

𝐺 + 𝛼𝑧𝑧
𝐺 ), 𝛼⊥

𝐺 = 1 2⁄ (𝛼𝑥𝑥
𝐺 + 𝛼𝑦𝑦

𝐺 ), 𝛼∥
𝐺 = 𝛼𝑧𝑧

𝐺  and 〈cos2(𝜃)〉 =
1

𝑀𝑁
∑ cos2(𝜃𝑗)
𝑀𝑁
𝑗=1  is calculated from the MD trajectories. As ∆𝛼𝐺 = 𝛼∥

𝐺 − 𝛼⊥
𝐺 is small compared to �̂�𝐺 

for all cases considered here, we can approximate 

Δ𝑛(𝑡) ≈
4𝜋𝑁

𝑉𝑛0
∆𝛼𝐺 (〈cos2(𝜃)〉(𝑡) −

1

3
) (30) 

with 𝑛0 = √1 + 4𝜋(𝑁/𝑉)�̂�
𝐺. 

 

The effect of the THz pump on the molecular orientation and alignment 

 

Figure 2 in the main text presents 〈cos(𝜃)〉(𝑡), a measure for the molecular orientation due to the 

applied THz pump pulse. Here, 𝜃 is the angle of the molecular dipole with respect to the polarization 

axis of the field. As expected, 〈cos(𝜃)〉(𝑡) is 0 before the pulse. In the presence of the field, the 

permanent dipoles of water start reorienting along the direction of the field. The maximum 

orientation of the molecules is achieved with a time lag of a few hundred fs in comparison to the 

electric field profile of the pulse. A similar effect can also be observed for the molecular alignment 

described by 〈cos2(𝜃)〉(𝑡) (see Figure 2). The employed THz pulse in the frequency range of 0.3 - 3 

THz couples to the collective modes of water connected by hydrogen bonds19,20 and, as the field 

amplitude increases, the hydrogen bond network is weakened enough to allow for orientation and 

alignment. As soon as the electric field changes the polarization direction, the water molecules also 

respond and change their preferred orientation, which can be seen from the slight negative part of 

〈cos(𝜃)〉(𝑡) towards the end of the pulse (see Figure 2). 

 

  



Kerr Effect 

 

 

Supplementary Figure 9: The dependence of 〈cos2(𝜃)〉(𝑡) on the pulse intensity I for the cases of 

I=1.33×1011 W/cm2 (black) and I=3.32×1010 W/cm2 (blue). A linear scaling of 〈cos2(𝜃)〉(𝑡) with the 

field intensity and an equilibrium value of 1/3 can be anticipated. This linear relationship is 

employed to scale the results from I = 1.33×1011 W/cm2 to I = 3.32×1010 W/cm2 (red). The good 

agreement of the scaled data with the simulation result at I = 3.32×1010 W/cm2 (blue) confirms the 

linear scaling. 

 

The results presented in Supplementary Figure 9 employed a peak electric field amplitude that was 

ten times higher than the experimental electric field amplitude, which corresponds to a hundred 

times higher intensity in the simulations than the experiments. To obtain reliable Kerr effect data at 

the experimental intensity, the anticipated linear scaling of 〈cos2(𝜃)〉(𝑡) with the field intensity was 

exploited. To test the linear scaling of 〈cos2(𝜃)〉(𝑡) with the field intensity, simulations at different 

intensities were performed (see Supplementary Figure 9). Results obtained at a higher intensity 

(I=1.33×1011 W/cm2) were then scaled down to a lower intensity (I = 3.32×1010 W/cm2) employing a 

linear relationship of 〈cos2(𝜃)〉(𝑡) with the field intensity and an equilibrium (i.e., with no field 

applied) value of 1/3. The scaled results were in very good agreement with results obtained from 

simulations at I = 3.32×1010 W/cm2. This confirms the assumed linear scaling in the intensity regime 

considered in this work. Additionally, a linear scaling of the experimentally observed ∆𝜙 with 

employed field strength squared was also found (see Supplementary Figure 5). 

 

 

 

 



  

Supplementary Figure 10: Time-dependent parallel 〈𝛼∥〉 and perpendicular 〈𝛼⊥〉 polarizabilities of 

the water system at the experimental pulse intensity (Supplementary equation 28). (b) Time-

dependent ∆𝑛 due to the employed THz pump pulse (Supplementary equation 30). 

 

The linear scaling of 〈cos2(𝜃)〉(𝑡) with the field intensity was then employed to obtain the averaged 

polarizabilities at the experimentally employed field intensity. Supplementary Figure 10 presents the 

time-dependent averaged polarizabilities parallel 〈𝛼∥〉(𝑡) and perpendicular 〈𝛼⊥〉(𝑡) to the THz field 

polarization (panel (a)), Δ𝑛(𝑡) calculated using Supplementary equations (30) and (26) (panel (b)). 

The simulation model does not include any explicit electronic contributions and therefore only the 

molecular contribution to Δ𝑛 was obtained. Comparing the Kerr effect obtained from the MD 

simulations with the molecular Kerr effect (Figure 1 of the main text) obtained by the fitting 

procedure described in the main text, a difference in sign as well as an order of magnitude difference 

in the strength of the effect is found. Given the form of Δ𝑛(𝑡) in Supplementary equation (30), the 

overestimation of the effect might arise due to inaccuracies in 𝑛0, ∆𝛼𝐺 or 〈cos2(𝜃)〉(𝑡). An 

overestimation of 〈cos2(𝜃)〉(𝑡) might arise due to overestimating the average field strength in the 

experimental sample. Given the 𝛼𝐺 employed in this model, a value for 𝑛0 of 1.27 is obtained, which 

reasonably well agrees with the experimental value of 1.33. Remaining differences might be due to 

induced effects of that change �̂� in the liquid system as well as vibrational effects not included in the 

model presented, but cannot account for the order of magnitude difference seen for ∆𝜑. This would 

imply that the biggest error arises due to errors in the magnitude of ∆𝛼𝐺 employed in our model. 

However, as discussed in the main text, the calculation of ∆𝛼𝐺 is very hard as ∆𝛼𝐺 �̂�𝐺⁄  is a tiny 

quantity and water seems nearly isotropic in terms of 𝛼∥ and 𝛼⊥. Thus, small errors in the calculation 

of 𝛼𝐺 can result in large errors in the calculation in ∆𝛼𝐺 and thus also in larger errors in the 

calculated ∆𝜑 presented here. Furthermore, the magnitude of ∆𝛼 might also be influenced by 

induced effects due to the surrounding liquid. The difference in the sign can also be rationalized by 

the limitation of the model that employs the gas-phase values and does not allow for any induced 

effects. As the water molecules align due to the THz pulse, the sign of the induced Kerr effect 

obtained from the MD simulations is given by ∆𝛼𝐺 = 𝛼∥
𝐺 − 𝛼⊥

𝐺 > 0. As pointed out above and in the 

main text, the accurate determination of ∆𝛼𝐺 is very hard. A different choice of gas-phase 

polarizability, e.g., calculated from coupled cluster theory 𝛼𝐺 = (
1.375 0 0
0 1.442 0
0 0 1.321

)Å3, 

∆𝛼𝐺 < 0, 11 would result in a negative sign in the simulated Kerr effect in agreement with the 

experiment. In addition, the model employed neglects any effect on the polarizability of each 

molecule induced by its surrounding. As the magnitude of ∆𝛼𝐺 is small, it seems possible that the 

induced effects may change its sign. The analysis based on the model presented here implies that the 

effective polarizability of a water molecule in liquid water has a small and negative polarizability 



anisotropy ∆𝛼. Comparing the timescale of the molecular Kerr effect in Figure 1 of the main text with 

the simulations, a similar time delay of the maximal response with respect to the pump pulse can be 

observed. Yet, the molecular contribution to ∆𝜑 shows a longer tail in the experimental data than in 

the MD simulations. This difference may be attributed to too weak water-water interactions in the 

force field15,21 that allow for a faster response of the water molecules to the sign change of the THz 

electric field. In addition, the alignment observed in the MD simulations is likely underestimated, 

which will also lead to a faster decay to equilibrium. It was found previously that rigid non-

polarizable force fields underestimate the low-frequency IR bands of water compared to 

experimental results22–24 as well as the dielectric constant15 and, thus, the coupling of the employed 

water model to the applied THz pulse may be too weak. 

 

Supplementary Note 6: The impact of temperature on the TKE of water 

Supplementary Figure 11 shows the TKE of water in a cuvette, measured at various temperatures 

between 23 and 68 °C. Due to the temperature-independence of the electronic Kerr effect, the 

temperature-dependent signal −𝑑Δ𝜙(𝑡) 𝑑𝑇⁄  originates from the molecular Kerr effect in water only. 

The resulting (blue) curve in Supplementary Figure 11 is in good agreement with the molecular 

contribution to the Kerr effect derived from the modelling of experimental data (black curve). The 

experimental setup was the same as described previously. 

 

 
Supplementary Figure 11: Temperature-dependence of the TKE from an 
empty cuvette (left panels) and from water inside the cuvette (right panels) 
with temperatures given in the legend. The two middle panels show the 
difference of each curve and their average (green curve). While the purely 
electronic signal from the cuvette is temperature-independent, the TKE from 
water shows a clear temperature-dependence. According to the model in 



equations 3&4 of the main text, the molecular contribution decreases with 
increasing temperature. The increase of the overall signal level observed here 
confirms that the molecular contribution must be negative.  −𝑑Δ𝜙(𝑡) 𝑑𝑇⁄  
corresponds to the linearized temperature-dependence of the signal. 
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