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Supplemental Figure 1 | Derivation of patient-specific iPSCs from PBMCs. Representative
images of immunostained colonies are shown for iPSCs derived from ASD individuals. The iPSC
lines stain positive for markers of pluripotency: Oct3/4, Nanog, Sox2, TRA-1-81. Note that Oct3/4,
Nanog, and Sox2 plurpotency markers are localized to the nucleus (transcription factors)
whereas TRA-1-81 is a surface marker. Scale bar: 50 um.



Presenter
Presentation Notes
Supplemental Figure 1 | Derivation of patient-specific iPSCs from PBMCs.  Representative images of immunostained colonies are shown for iPSCs derived from ASD individuals. The iPSC lines stain positive for markers of pluripotency: Oct3/4, Nanog, Sox2, TRA-1-81. Note that Oct3/4, Nanog, and Sox2 plurpotency markers are localized to the nucleus (transcription factors) whereas TRA-1-81 is a surface marker. Scale bar: 50 μm. 
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Supplemental Figure 2 | Karyotypes of non-commercial iPSC lines used in study.
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Supplemental Figure 3 | Sanger sequencing validation of the iPSC lines to ensure that the
potential ASD alterations are preserved through the reprogramming process. Alterations of
interest are enclosed within the purple rectangles and sequencing from both the forward and reverse
primers is shown. Cell line 377110 with alterations in POLE at chrl12:133252760 (A), TRIM55 at
chr8:67047224 (B), and in VSP13B at chr8:100832259 (C). Cell Line 377134 with alterations in
PRICKLE1 at chr12:42864125 (D) and chr12:42862463 (E). Cell line 378691 with an alteration in
SLIT3 at chr5:168180047 (F). Cell line 378725 with an alteration in TRIM55 at chr8:67067937 (G). Cell
line 378732 with alteration in CLCN2 at chr3:184076909 (H), JARID2 at chr6:15496930 (I), and

STXBPS5 at chr6:147635108 (J). All genomic locations are in reference to the Hg19 assembly.
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Supplemental Figure 3 | Sanger sequencing validation of the iPSC lines to ensure that the potential ASD alterations are preserved through the reprogramming process. Alterations of interest are enclosed within the purple rectangles and sequencing from both the forward and reverse primers is shown. Cell line 377110 with alterations in POLE at chr12:133252760 (A), TRIM55 at chr8:67047224 (B), and in VSP13B at chr8:100832259 (C). Cell Line 377134 with alterations in PRICKLE1 at chr12:42864125 (D) and chr12:42862463 (E). Cell line 378691 with an alteration in SLIT3 at chr5:168180047 (F). Cell line 378725 with an alteration in TRIM55 at chr8:67067937 (G). Cell line 378732 with alteration in CLCN2 at chr3:184076909 (H), JARID2 at chr6:15496930 (I), and STXBP5 at chr6:147635108 (J). All genomic locations are in reference to the Hg19 assembly. 


&

Timing:
Phase:
Media:

Treatments:
Y27632
Thiazovivin
Dorsomorphin
SB431542
Heparin
bFGF

b-NGF

NT-3

BDNF

DAPT

B

NESTIN

- |
(o]
o
o
=
o]
o

) 40 41 42 43 44 45 ,

Neural Induction Rosette Formation Neural Progenitor Cell Expansion Terminal Differentiation “I

mTeSR1  STEMdiff Neural Induction Medium (NIM)  NIM:ENB

10 pM
2um 1M
1M
10 pid
2 pgfmL
20 ng/mL
20 ng/mL

20 ng/mL
20 ng/mL

CONTROL

SYNAPSIN 1

CONTROL

Supplemental Figure 4 | Differentiation of cortical neurons from ASD and control iPSCs.
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Supplemental Figure 4 | Differentiation of cortical neurons from ASD and control iPSCs. (A) Differentiation scheme used to derive cortical neurons from iPSCs. (B) Rosettes co-immunostained for Nestin and SOX2. (C) Network of control iPSC-derived neurons at day 35. (D) Day 18 ASD and control neurons immunostained for DCX. (E) Day 25 cultures of early born TBR1+ (lower layer) ASD and control iPSC-derived cortical neurons shown co-immunostained for TBR1 and β-tubulin III. (F) Day 90 ASD and control neurons co-immunostained for MAP2 and Synapsin I. Neural induction was initiated by culturing aggregated iPSCs in a serum–free neural induction medium and supplemented with small molecules that promote survival, namely Y27632 and thiazovivin, in addition to two inhibitors of SMAD signaling: SB431542 and dorsomorphin (A). In the following days, morphologically distinct neural tube-like rosettes are formed in these cultures, indicative of primitive neuroepithelia. Cells within neural rosette structures express Nestin and SOX2, which are standard markers for neural stem cells (B). Neuronal progenitor cells began giving rise to newly ‘born’ neurons (doublecortin-positive cells; a marker for immature migrating neurons) starting ~day 12 of differentiation (D). TBR1-expressing lower layer cortical neurons were numerous at day 25 (E). As neurons matured, they formed thick neural networks (C). The formation of physical synapses among iPSC-derived cortical neurons was detected relatively early in culture, appearing ~day 25 (data not shown) and becoming more abundant over time, whereby day 90, we observed robust expression of Synapsin co-localized in the dendrites (MAP2 immunostaining) of both ASD and control neuronal cultures (F). (B,C) Scale bar: 100 μm. (D-F) Scale bar: 100 μm.
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Supplemental Figure 5 | Time course transcriptome data analysis pipelines. ASD and control RNA-
Seq data from two different time points (35 and 135 DIV) were fed into single gene (DEGs; identified using
EdgeR) and network (WGCNA) analysis pipelines. Note that output generated from WGCNA and
differential expression analysis (EdgeR) was fed into IPA and BiINGO analysis software to indicate the
pathways and biological processes that are thought to be dysregulated. DIV: Days in vitro, IPA: Ingenuity
Pathway Analysis (Qiagen), GO: Gene Ontology, WGCNA: Weighted Gene Co-expression Network
Analysis, DEGs: Differentially Expressed Genes (FDR<0.05).
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Supplemental Figure 5 | Time course transcriptome data analysis pipelines. ASD and control RNA-Seq data from two different time points (35 and 135 DIV) were fed into single gene (DEGs; identified using EdgeR) and network (WGCNA) analysis pipelines. Note that output generated from WGCNA and differential expression analysis was fed into IPA and BiNGO analysis software to indicate the pathways and biological processes that are thought to be dysregulated. DIV: Days in vitro, IPA: Ingenuity Pathway Analysis (Qiagen), GO: Gene Ontology, WGCNA: Weighted Gene Co-expression Network Analysis, DEGs: Differentially Expressed Genes (FDR<0.05).
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Supplemental Figure 6 | ASD and control iPSC-derived neurons cluster as distinct groups at
both the day 35 (A) and day 135 (B) time points based on RNA-seq analysis. Hierarchical
clustering of the RNA-seq samples was performed to show the relationship between the samples.

The ASD and control samples clearly segregated into distinct groups at both the day 35 (A) and day
135 (B) time points.
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Supplemental Figure 7 | DEG GO biological process enrichments identified using neuronal background sets. Top 15 GO biological
processes identified for DEGs using neuronal background sets limited to genes expressed across all iPSC-derived neuronal lines examined in this
study (A, C, E) and genes expressed in RNA-Seq BrainSpan samples of human fetal brain (B, D, F). (A, B) Day 35 DEG biological process
enrichments. (C, D) Day 135 DEG biological process enrichments. (E, F) Biological processes enriched in DEGs that overlap time points. The red
line in the bar plots indicates the cut-off for significance (adjusted P = 0.05).
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Supplemental Table 1 | Small molecule and recombinant protein regimen used to differentiate
iPSCs into cortical neurons. "Begin" and "omit" column values indicate the day of differentiation that
treatments are added/omitted from the culture medium.

Treatment Concentration Begin Omit
Y27632* 10 uM 0 12
. . 2 uM 0 2
Thiazovivin
1 uM 2 12
Dorsomorphin 1 uM 0 12
SB431542 10 uM 0 12
Heparin 2 pg/mL 10 35
bFGF 20 ng/mL 12 17
B-NGF 20 ng/mL 18 35
NT-3° 20 ng/mL 18 N/A
BDNF' 20 ng/mL 18 N/A
DAPT 2 uM 35 45

*10 uM Y27632 is added to the medium after passaging cells (regardless of day in culture).

TFrom day 18 and on, NT-3 and BDNF are continuously added to the medium.
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Supplemental Table 1 | Small molecule and recombinant protein regimen used to differentiate iPSCs into cortical neurons. "Begin" and "omit" column values indicate the day of differentiation that treatments are added/omitted from the culture medium.
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Supplemental Table 2 | Primary antibodies used for immunocytochemistry.

Primary Antibodies Dilutions Source Catalog #
Mouse anti-B-Tubulin Il (neuronal) 1:100 Sigma T8578
Guinea pig anti-Doublecortin 1:2000 Millipore AB2253
Mouse anti-MAP2 1:1000 fgggﬂzsnce Lemmon,
Goat anti-NANOG 1:50 Peirce Thermo Scientific PA5-18406
Mouse anti-Nestin 1:100 R&D Systems MAB1259
Mouse anti-Oct 3/4 1:100 STEMCELL Technologies 1550
Mouse anti-SOX2 1.50 R&D Systems MAB2018
Rabbit anti-Synapsin | 1:500 Millipore AB1543
Rabbit anti-TBR1 1:200 Abcam ab31940
Mouse anti-TRA-1-81 1:200 Cell Signaling Technology 4745
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