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Supplementary Figures

Supplementary Figure 1: cPCA discovers different subgroup struc-
tures with different values of α in a synthetic dataset. The data has
dimensionality 30. The target data contains four subgroups, red, blue, green,
black, each with 100 points. For each of the first 10 features, all points are sam-
pled from N (0, 10); for each of the second 10 features, green/blue are sampled
from N (3, 1) and red/black from N (−1.5, 1); for each of the last 10 features,
green/black are sampled from N (−1.5, 1) and red/blue from N (1.5, 1). The
background data contains 400 points sampled from the same distribution; each
of the first 10 features from N (0, 10), the second 10 from N (0, 3), and the third
10 from N (0, 1). After this, a random rotation is applied to the both datasets
to make it non-trivial to find the directions that separate the subgroups in the
target dataset. We remark that the purpose of the synthetic dataset is to demon-
strate the behavior of cPCA; it is not meant to capture the complexity found
in the structure of biological (e.g. genomic) datasets. The results of cPCA with
different values of α are shown above, where α = 0 corresponds to PCA. (a)
PCA is unable to resolve the subgroups since the variance along the the last 10
dimensions is significantly larger than the rest. (b) With a small α, the last 10
dimensions are removed by the background data. cPCA selects cPCs from the
first 10 dimensions that have larger target variance than the second 10, allowing
us to discriminate between green/blue and red/black. (c) With an interme-
diate value of α, cPCA selects cPCs among the first 20 features, allowing us to
separate all four subgroups. (d) with a very large α, cPCA will only select the
second 10 features that have the smallest background variance, allowing us to
discriminate between red/blue and green/black.
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(a)

(b)

Supplementary Figure 2: Mice Protein Expression Dataset (a) Here, we
show the full results of applying cPCA to the mice protein expression dataset.
(b) How likely is it that cPCA is discovering these clusters by chance? We
can get an idea by shuffling the foreground and background data, as well as
the labels for the foreground data, and running cPCA again. A representative
simulation is shown here. With this random shuffling, the subgroup structure
no longer shows up. This indicates that it is unlikely that cPCA discovered the
clusters in (a) by chance.
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Supplementary Figure 3: A comparison of 10 dimensionality-reduction
techniques on the synthetic data in Supplementary Figure 1. The re-
sult shows that cPCA is the most effective technique to discover and separate
subgroups within the data. The methods for comparison are PCA, supervised
PCA[1], linear discriminate analysis (LDA)[2], quadratic discriminate analy-
sis (QDA)[3], LR+PCA (PCA performed on most useful features for linear
regression) , multidimensional scaling (MDS)[4], principal component pursuit
(PCP)[5], factor analysis (FA)[6], and independent component analysis (ICA)[7].
All methods except PCP uses the implementation in sklearn[8]. PCP uses the
implementation in its own paper[5].
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Supplementary Figure 4: A comparison of 10 dimensionality-reduction
techniques on the Mice protein data in Supplementary Figure 2. The
result shows that cPCA is the most effective technique to discover and sepa-
rate subgroups within the data. The methods are the same as those used in
Supplementary Figure 3.
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Supplementary Figure 5: More results on the Single Cell RNA-Seq
Dataset. (a) Results on a dataset consisting of a mixture of 2 cell samples.
(b,c) Each cell sample is plotted separately for the scatterplot corresponding
to the third panel (α = 28.9) in (a). (d) Results on a dataset consisting of a
mixture of 4 cell samples. (e-h): Each cell sample is plotted separately for the
second panel (α = 3.5) in (d).
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(a) (b) (c) (d)

Supplementary Figure 6: Results of cPCA on the Mexican Ancestry
Dataset with different values of α.
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Supplementary Figure 7: The geometry in a simultaneously diagonal-
izable system in Supplementary Example 1 The set of target-background
variance pairs U is plotted as the teal region for some randomly generated target
CX and background data CY . It consists the convex hull of the brown triangles,
which are variance pairs for the common eigenvectors of CX and CY . The set of
most contrastive directions Sλ is the lower-right brown line, and the boundary
of U is the blue dashed line.
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Supplementary Figure 8: A simulation example for kernel cPCA in
Supplementary Example 2. (a) the data on the first two dimension x1, x2,
and the two subgroups in the target data (red/ green) are not linearly separable.
(b) the data on two non-linear features φ(x1) = x21, φ(x2) = x22, where the two
subgroups become linearly separable. (c-f) The results by (c) PCA, (d) cPCA,
(e) kernel PCA, (f) kernel cPCA.
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Supplementary Methods

Algorithm 1 cPCA for a Given α

Inputs: target data {xi}ni=1; background data {yi}mi=1; contrast parameter
α; the number of components k.

Centering the data {xi}ni=1, {yi}mi=1.
Calculate the empirical covariance matrices:

CX =
1

n

n∑
i=1

xix
T
i , CY =

1

m

m∑
i=1

yiy
T
i .

Perform eigenvalue decomposition on

C = (CX − αCY ).

Compute the the subspace V ∈ Rk spanned by the top k eigenvectors of C.
Return: the subspace V .

Algorithm 2 cPCA with Auto Selection of α

Inputs: target data {xi}ni=1; background data {yi}mi=1; list of possible con-
trastive parameters {αi}; the number of components k; the number of α’s to
present p.

for each αi do
Compute the subspace Vi using Algorithm 1 with the contrast parameter
set to αi.

end for
for each pair Vi, Vj do

Compute the principal angles θ1 . . . θk between Vi, Vj
Define the affinity d(Vi, Vj) =

∏k
h=1 cos θh

end for
With Dij = d(Vi, Vj) as an affinity matrix between subspaces, do spectral
clustering on D to produce p clusters.
for each cluster of subspaces {ci}pi=1 do

Compute its medoid, V ∗i the subspace defined as

V ∗i
def
= arg minV ∈ ci

∑
V ′∈ci

d(V, V ′)

Let α∗i be the contrast parameter corresponding to V ∗i .
end for
Return: α∗1 · · ·α∗p and the subspaces V ∗1 · · ·V ∗p .
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Supplementary Notes

1  Supplementary Note 1: More Empirical Results

1.1 Different Alphas Reveal Different Subgroups

In Supplementary Figure 1, we present an example with synthetic data. In this
example, cPCA discovers different subgroup structures with different values of
α. See the figure caption for more details.

1.2 Data-Dependent Standardization

Because the PCA calculates the directions in a dataset with the highest covari-
ance, it is highly sensitive to the units used to measure each feature. As a con-
sequence, when different units are used to measure different features, it is com-
mon to standardize the data by dividing each column of the data matrix by its
standard deviation, thereby ensuring that each feature has unit variance[9, 10].
However, this procedure has a drawback: noisy features with low variance are
inflated to have the same variance as the most significant features; in fact, some
sources suggest that standardization should not be used unless low-variance
features are removed first[11].

As an alternative, cPCA can be used as a dimensionality-reduction technique
directly, without standardization, in cases when a reference, signal-free dataset
is available as a background. By searching for features that contrast between the
target and background, cPCA automatically provides a data-dependent stan-
dardization by eliminating those features that are equally noisy in both the
target and background. We illustrate this with an example.

MHealth Measurements. The MHealth public dataset[12] consists of mea-
surements from a variety of sensors (e.g. accelerometers, EKG, and gyroscopes)
when subjects perform a series of different activities. In this example, our target
dataset consists of sensor readings from a subject who is, at times, jogging and,
at times, performing squats – two very different activities. We may wonder
whether the sensor data can be used to visually distinguish these two activi-
ties. In Supplementary Figure ??a, we show the result of applying PCA on the
unstandardized data: the two activities cannot be distinguished visually.

We then take as a background dataset sensor readings from the subject
when the subject is lying still. We assume this to be a signal-free reference, be-
cause most sensor readings will reflect their baseline noise levels. By performing
cPCA, we see the two activities resolve clearly into two separate subgroups, as
shown in Supplementary Figure ??b – with no standardization needed. For this
experiment, a larger range of initial values of α was used (0.1-106).
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2  Supplementary Note 2: Theoretical Analysis

2.1 cPCA returns most contrastive directions

For any direction v ∈ Rdunit, its target-background variance pair (λX(v), λY (v))
fully determines its significance for cPCA. Intuitively, we might say that for any
two directions v1,v2 ∈ Rdunit, v1 is a better contrastive direction than v2 if it
has a larger target variance and a smaller background variance. Let us formalize
this notion:

Definition 1. (Contrastiveness) For two directions v1,v2 ∈ Rdunit, v1 is more
contrastive than v2 with respect to the target and the background covariance
matrices CX and CY , written as v1 � v2, if one of the following is true:

(1) λX(v1) ≥ λX(v2), and λY (v1) < λY (v2)

(2) λX(v1) > λX(v2), and λY (v1) ≤ λY (v2).

We should note that the above definition provides a partial order for the
directions in Rdunit. Then it is natural to say a direction v is most contrastive if
there is no other direction more contrastive than v. Formally

Definition 2. Define the set of most contrastive directions Sv and the corre-
sponding set of target-background variance pairs Sλ to be:

Sv def
= {v ∈ Rkunit : @ v′ ∈ Rdunit, s.t. v′ � v},

Sλ def
= {(λX(v), λY (v)) : v ∈ Sv}.

It is also convenient to define U to be the set of target-background variance

pairs for all directions in Rdunit, i.e. U def
= {(λX(v), λY (v))}v∈Rd

unit
. In order to

illustrate the quantities defined above, we provide a toy example in Figure 5 by
randomly generating the matrices CX and CY . In Figure 5, the teal region
forms the set U , and the brown curve corresponds to elements in Sλ. Note that
Sλ forms the lower-right boundary of U , which can also be inferred from the
above definition.

Now let us consider directions that are returned by cPCA. Without loss of
generality, we will focus our attention on the top cPC selected by cPCA (for
different values of α).1 For any contrastive analysis method to be reasonable,
one would naturally require that the directions it generates lie in Sv. We show
that this is indeed the case for cPCA. Furthermore, we show that the set of
top cPCs with different values of α is actually identical to Sv. In other words,
cPCA recovers all contrastive directions, yielding its optimality. This is stated
as below (with proof provided in Supplementary Note 4.1):

1This is because, after selecting the first k cPCs, the (k + 1)-th cPC is obtained by maxi-
mizing vT (CX −αCY )v over the space orthogonal to the first k cPCs. By rotating the space
such that the first k components correspond to the first k dimensions, and then truncating
the first k dimensions, the problem of selecting the (k + 1)-th cPC is reduced to the same
problem as finding the top cPC but with dimensionality k − d.
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Theorem 1. Let ScPCAv be the set of top cPC of cPCA and let ScPCAλ be the
corresponding set of target-background variance pairs:

ScPCAv
def
= {v : ∃α ≥ 0 s.t. v ∈ argmax

v′∈Rd
unit

λ(v′)− ασ(v′)},

ScPCAλ
def
= {(σ(v), λ(v)) : v ∈ ScPCAv }.

For Sv, Sλ in Definition 2, we have

ScPCAv = Sv, ScPCAλ = Sλ.
Remark 1. (A geometric interpretation of α) For the direction v selected by
cPCA with the contrast parameter set to α, its variance pair (λX(v), λY (v))
corresponds to the point of tangency of Sλ with a line of slope 1/α. For example,
the left blue triangle in Figure 5 corresponds to the cPCA direction with α =
0.92, and it is the point of tangency of the red curve V(S) and the blue line
with slope 1.08(= 1/0.92). As a result, by varying α from zero to infinity, cPCA
selects directions with variance pairs traveling from the lower-left end to the
upper-right end of Sλ.

This interpretation can be derived from the following observation. Consider
any sequence αn ↓ α. Then there exists a sequence vn such that vn is the
solution to (1) with alpha value αn, and λX(vn) ↑ λX(v), λY (vn) ↑ λY (v). By
Lemma 2,

1

αn
≤ λY (vn)− λY (v)

λX(vn)− λX(v)
≤ 1

α
,

giving

lim
n→∞

λY (vn)− λY (v)

λX(vn)− λX(v)
=

1

α
.

This implies that (λX(v), λY (v)) is the point of tangency of Sλ and the slope- 1
α

tangent line.

Example 1. (Simultaneously diagonalizable matrices) A closed form represen-
tation of Sλ can be derived for the special case where the matrices CX and CY
are simultaneously diagonalizable. We derive it here to provide some intuition
for the topology of the target-background variance pairs.

Let Q be the unitary matrix that diagonalize CX and CY , i.e.

CX = QΛXQ
T , CY = QΛYQ

T ,

where ΛX = diag(λX,1, · · · , λX,d), ΛY = diag(λY,1, · · · , λY,d). Let q1, · · · ,qd
be the eigenvectors. Any unit vector can be written as v =

∑
i

√
ciqi, for

c1, · · · , cd ≥ 0,
∑
i ci = 1. Then the target and the background variances can

be written as

λX(v) = vTCXv =
∑
i

ciλX,i,

λY (v) = vTCY v =
∑
i

ciλY,i.

12



Since the variance pair (λX(v), λY (v)) is a convex combination of the variance
pairs of eigenvectors {(λX,i, λY,i)}di=1, the set of variance pairs {(λX(v), λY (v))}v∈Rd

unit

is the convex hull of {(λX,i, λY,i)}di=1. Also Sλ is the lower-right boundary of
the convex hull of {(λX,i, λY,i)}di=1. We visualize this in Supplementary Figure
7 using randomly generated the simultaneously diagonalizable matrices CX and
CY .

As a result, Sv can be written as follows. Let q(1), · · · ,q(k) ∈ {qi}di=1 be the
eigenvectors whose variance pairs (λX,(j), λY,(j)) lie on the lower-right boundary

of the convex hull of {(λX,i, λY,i)}di=1, indexed in the ascending order of λX,(j).
Then

Sv = {v : v =
√
cq(j) +

√
1− cq(j+1), for 0 ≤ c ≤ 1, 1 ≤ j ≤ k − 1}.

This implies that Sv is a union of (k − 1) curved line segments of the form√
cq(j)+

√
1− cq(j+1), which is itself a curved line segment in the k dimensional

subspace spanned by q(1), · · · ,q(k).

2.2 Convergence rate of the sample cPC

So far, the analysis concerns only the population cPC calculated based on the
population covariance matrix C = CX − αCX . In practice, we only have finite
number of samples, say n data points from the target data and m data points
from the background data. Let ĈX and ĈY be the sample covariance matrices
and let Ĉ = ĈX −αĈY . Then the sample cPC’s are eigenvectors of Ĉ. Here we
characterize the convergence rate of the sample cPC to the population cPC.

Since the sample cPC corresponds to the eigenvector of the sample covariance
matrix Ĉ, the convergence property of the sample cPC is the same as that
of the sample eigenvectors for a covariance matrix, which is well studied in
previous literature[13, 14, 15]. In short, under mild assumptions, the sample
cPC will converge to the population cPC when the sample size is larger than
the dimensionality. We state this formally in the following theorem (with proof
provided in Supplementary Note 2):

Theorem 2. (Convergence rate of the sample cPC) Let v̂∗ be the first sample
cPC and v∗ be the first population cPC 2. Assume that the entries of the target
and the background data are sub-Gaussian with some fixed parameter, and the
gap between the first and the second eigenvalue of C are bounded away from 0.
Then,

1− |(v̂∗)Tv∗| = Op(

√
d

min(n,m)
),

where Op denotes that the equation holds with high probability.

2Similar results can be shown for other cPC’s by assuming an eigenvalue gap and using
Wedin’s Theorem.
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2.3 A probabilistic interpretation

Suppose the target and the background data follow a Gaussian distribution.
Then they can be written as linear combinations of standard Gaussian vectors

Zi, Ui, Zi′ , Vi′
i.i.d.∼ N (0, I), as well as noise vectors εi, εi′

i.i.d.∼ N (0, σ2I). The
linear subspace can be determined as follows: Let WY ∈ Rd×pY be the subspace
unique to the background data, W ∈ Rd×p be the rest of the subspace of the
background data, and WX ∈ Rd×pX be such that W

⋃
WX span the subspace

of the target data. Then one can write

xi = WZi +WXUi + εi

yi′ = WZi′ +WY Vi′ + εi′ ,

where we note that span(W
⋃
WX)

⋂
span(WY ) = ∅.

Let WX,⊥ be the subspace of WX that is perpendicular to the subspace
span(W ) and let WX,‖ be that parallel to span(W ). With some technical deriva-
tion detailed in Supplementary Note 4.4, one can reach that

v∗ = argmax
v

vT
(
WX,⊥W

T
X,⊥ +WX,‖W

T
X,‖ + (1− α)WWT

)
v. (1)

Now (1) is readily interpretable. When α is small, v∗ represents a trade-off
between the space unique to the target data span(WX,⊥) and the space shared
between the two datasets span(W ). After α reach a threshold, v∗ becomes the
first eigenvector of WX,⊥W

T
X,⊥, i.e. the first principal component of the space

unique to the target data. Spefically, in the special case when span(WX) is
orthogonal to span(W ), this threshold is 1. In other words, when α ≥ 1, v∗

remains the first PC of the space unique to the target data, span(WX,⊥).
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3  Supplementary Note 3:  Extension: Kernel cPCA
We extend cPCA to kernel cPCA, following the analogous extension of PCA to
kernel PCA[16]. Full details are in Supplementary Note 4.5.

Consider the nonlinear transformation Φ : Rd 7→ F that maps the data to
some feature space F . We assume that the mapped data, Φ(x1), · · · ,Φ(xn),
Φ(y1), · · · ,Φ(ym), is centered, i.e.

∑n
i=1 Φ(xi) =

∑m
j=1 Φ(yj) = 0. (The gen-

eral case is considered in Supplementary Note 4.5.)
The covariance matrices for the target and the background can be written

as

C̄X =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T , C̄Y =

1

m

m∑
j=1

Φ(yj)Φ(yj)
T .

cPCA on the transformed data solves for the eigenvectors of (C̄X−αC̄Y )v, where
the k-th eigenvector is the k-th cPC, but this is inefficient if the dimensionality
of F is large.

We next describe the kernel cPCA algorithm, which allows us to efficiently
perform contrastive analysis on the transformed data.

LetN = n+m and denote the data as (z1, · · · , zN ) = (x1, · · · ,xn,y1, · · · ,ym).
Define the kernel matrix K to have the ij-th element Kij = Φ(zi) · Φ(zj), and
write it in form of a block matrix as

K =

[
KX KXY

KY X KY

]
, (2)

whereKX ∈ Rn×n, KY ∈ Rm×m are the sub-kernels corresponding to x1, · · · ,xn,
and y1, · · · ,ym, respectively.

As derived in Supplementary Note 4.5, instead of directly calculating the
eigenvectors of (C̄X − αC̄Y )v, we can consider its dual representation v =∑N
i=1 aiΦ(zi), and solve ai’s via the following eigenvalue problem for non-zero

eigenvalues:

λa = K̃a, (3)

where the first eigenvector a(1) corresponds to the first cPC, and

K̃ =

[
1
nKX

1
nKXY

− α
mKY X − α

mKY

]
.

To make ‖v‖ = 1, we require aTKa = 1. Finally, we can project the data onto
the k-th cPC by

[v(k) · Φ(z1), · · · ,v(k) · Φ(zN )] = Ka(k).

Note that in the above calculation, the kernel can be constructed via some kernel
function h(·, ·) as Kij = h(zi, zj), and the projected data can be computed as
Ka(k). As a result, by kernel cPCA, we can actually perform cPCA in the
feature space without explicitly computing the non-linearly transformed data.
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Example 2. (A toy example) In this dataset, d = 10, and the first two di-
mensions x1, x2 contain the subgroup structure in the target data. As shown
in Supplementary Figure 8a, the two subgroups can not be linearly separated
directly. However, Supplementary Figure 8b shows that they can be linearly
separated if we project the data on the non-linear features φ(x1) = x21 and
φ(x2) = x22.

We tested PCA, cPCA, kernel PCA, kernel cPCA, using the polynomial ker-
nel K(x,y) = (xTy + 1)2 for the latter two to address the non-linear mapping.
As shown in Supplementary Figure 8c-f, both cPCA and kernel cPCA recover
the subspace that contains the subgroup structure, but only kernel cPCA pro-
duces a subspace where the two subgroups are linearly separable.

Remark 2. It is often challenging to get kernel cPCA work effectively in prac-
tice. This is because kernel cPCA is implicitly performing cPCA in the trans-
formed feature space. However, the kernel generally induces a feature space with
many correlated features, creating a large null space in the background data.
Since cPCA does not have a penalty for directions in this null space and this
null space is large, the background dataset will not be very effective at canceling
out directions in the target. We plan to address this issue in the future work.
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4  Supplementary Note 4: Technical Proofs

4.1 Proof of Theorem 1

Proof. Since Sλ and ScPCAλ are continuous images of Sv and ScPCAv , it suffices
to just show ScPCAv = Sv.

We first show that ScPCAv ⊂ Sv. Consider any v ∈ ScPCAv that is the solution
of Equation (1) in the main article with alpha value α. For any u ∈ Rdunit, we
have

vT (CX − αCY )v ≥ uT (CX − αCY )u, (4)

which can be rewritten as

λX(v)− λX(u) ≥ α(λY (v)− λY (u)). (5)

Then there are three possibilities of the relations between the variance pairs of
v and u:

1. λX(v) > λX(u),

2. λX(v) = λX(u), λY (v) ≤ λY (u),

3. λX(v) < λX(u), λY (v) < λY (u).

In all three cases, u can not be more contrastive than v. Thus v ∈ Sv and we
can conclude that ScPCAv ⊂ Sv.

Next we show Sv ⊂ ScPCAv by contradiction. Suppose there exists v ∈ Sv
such that v /∈ ScPCAv . Let us define

vl ∈ argmax
u: u∈ScPCA

v ,λX(u)<λX(v)

λX(u)

vu ∈ argmin
u: u∈ScPCA

v ,λX(u)>λX(v)

λX(u).
(6)

The existence of vl can be argued by showing the set {u : u ∈ ScPCAv , λX(u) <
λX(v)} is both nonempty and compact. The nonemptiness is because λX(v) >
minu∈ScPCA

v
λX(u), which can be seen be contradiction. The compactness is

because both ScPCAv and ScPCAλ are compact by Lemma 1, and v /∈ ScPCAv .
The existence of vu can be shown in a similar fashion.

Furthermore, let α′ = λX(vu)−λX(vl)
λY (vl)−λY (vl)

. We next show that both vl and vu
are solutions to Equation (1) (main article) with alpha value α′.

Since vl, vu ∈ ScPCAv , as shown previously, vl, vu ∈ Sv. Then according to
Lemma 2,

sup
u: u∈Sv,

λX(u)<λX(vl)

λY (vl)− λY (u)

λX(vl)− λX(u)
≤ inf

u: u∈Sv,
λX(u)>λX(vl)

λY (vl)− λY (u)

λX(vl)− λX(u)

sup
u: u∈Sv,

λX(u)<λX(vu)

λY (vu)− λY (u)

λX(vu)− λX(u)
≤ inf

u: u∈Sv,
λX(u)>λ)X(vu)

λY (vu)− λY (u)

λX(vu)− λX(u)
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Then vu is inside the inf term in the first equation above, and vl is inside the
sup term in the second equation above, both of which have the corresponding
ratio 1/α′. Then,

sup
u: u∈Sv,

λX(u)<λX(vl)

λY (vl)− λY (u)

λX(vl)− λX(u)
≤ 1

α′
≤ inf

u: u∈Sv,
λX(u)>λX(vu)

λY (vu)− λY (u)

λX(vu)− λX(u)
(7)

To show that vl and vu are solutions to Equation (1) (main article) with
alpha value α′, it suffices to show that ∀u ∈ Sv,

vTl (CX − α′CY )v′l ≥ uT (CX − α′CY )u′

vTu (CX − α′CY )v′u ≥ uT (CX − α′CY )u′.

We consider three cases of u. For any u ∈ Sv such that λX(u) < λX(vl),
we also know λY (u) < λY (vl). According to (7),

λY (vl)− λY (u)

λX(vl)− λX(u)
≤ 1

α′
,

which is equivalent to

vTl (CX − α′CY )v′l ≥ uT (CX − α′CY )u′.

Moreover, since 1
α′ = λY (vu)−λY (vl)

λX(vu)−λX(vl)
, we also have that

λY (vu)− λY (u)

λX(vu)− λX(u)
≤ 1

α′
,

giving that

vTu (CX − α′CY )v′u ≥ uT (CX − α′CY )u′.

Second, the same reasoning can be applied to the case of u ∈ Sv such that
λX(u) > λX(vu)

Third, for any u ∈ Sv such that λX(vl) < λX(u) < λX(vu), by definition
(7), u /∈ ScPCAv , and hence can not be the solution to Equation (1) (main article)
with alpha value α′. Therefore, vl and vu are solutions to Equation (1) (main
article) with alpha value α′.

Then both vl and vu are eigenvectors of CX−α′CY with the same eigenvalue.
Then there exists v′ in this eigenspace such that λX(vl) < λX(v′) < λX(vu).
We note that it is also the solution to Equation (1) in the main article with
alpha value α′ and is hence in ScPCAv . This contradicts the definition (6), which
completes the proof.

4.2 Ancillary Lemmas for Theorem 1

Lemma 1. ScPCAv and ScPCAλ are compact.
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Proof. (Proof of Lemma 1) Consider any sequence of directions vn in ScPCAv

that converges to v. There exists a corresponding sequence of alpha’s αn with
limit α, where vn is the solution of Equation (1) in the main article with αn.
Then

vT (CX − αCY )v = lim
n→∞

vTn (CX − αnCY )vn

= lim
n→∞

max
u∈Rd

unit

uT (CX − αnCY )u

= max
u∈Rd

unit

uT (CX − αCY )u,

giving that v ∈ ScPCAv . Hence ScPCAv is compact. Finally, being the continuous
image of a compact set, ScPCAλ is also compact.

Lemma 2. If v ∈ Sv and v is the solution to Equation (1) in the main article
with value α, then

sup
u: u∈Sv,

λX(u)<λX(v)

λY (v)− λY (u)

λX(v)− λX(u)
≤ 1

α
≤ inf

u: u∈Sv,
λX(u)>λX(v)

λY (v)− λY (u)

λX(v)− λX(u)
. (8)

Proof. (Proof of Lemma 2) For any u ∈ Sv, we have

vT (CX − αCY )v ≥ uT (CX − αCY )u,

which is equivalent to

λX(v)− λX(u) ≥ α(λY (v)− λY (u)). (9)

Since v,u ∈ Sv, λX(v) > λX(u) implies λY (v) > λY (u) and vice versa. As (9)
holds for all u ∈ Sv, this gives (8).

4.3 Proof of Theorem 2

Proof. According to the standard results for covariance matrix concentration,
e.g. Corollary 5.50 in [13], with probability at least 1 − 4e−d (we refer to this
as with high probability),

‖ĈX − CX‖op ≤ O(

√
d

n
) ≤ O(

√
d

min(n,m)
)

‖ĈY − CY ‖op ≤ O(

√
d

m
) ≤ O(

√
d

min(n,m)
),

where ‖ · ‖op denotes the matrix operation norm. Furthermore, we have that

‖Ĉ − C‖op = ‖(ĈX − αĈY )− (CX − αCY )‖op

≤ ‖ĈX − CX‖op + α‖ĈY − CY ‖op = O(

√
d

min(n,m)
).
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Finally, by Wedin’s theorem,

1− |(v̂∗)Tv∗| ≤ ‖Ĉ − C‖op
λ1(C)− λ2(X)− ‖Ĉ − C‖op

= O(

√
d

min(n,m)
),

where λ1(C) and λ2(C) are the first and the second eigenvalues of C and we
assume λ1(C)− λ2(X) is a constant bounded away from 0.

4.4 Proof regarding Supplementary Note 2.3

Proof. Next, the covariance matrices can be written as

CX = WWT +WXW
T
X + σ2I, CY = WWT +WYW

T
Y + σ2I.

Furthermore,

CX − αCY = WXW
T
X − αWYW

T
Y + (1− α)WWT + (1− α)σ2I.

Now let us consider the first cPC v∗. One can write

v∗ = argmax
v

vT (CX − αCY ) v

= argmax
v

vT
(
WXW

T
X − αWYW

T
Y + (1− α)WWT + (1− α)σ2I

)
v

= argmax
v

vT
(
WXW

T
X − αWYW

T
Y + (1− α)WWT

)
v

= argmax
v

vT
(
WXW

T
X + (1− α)WWT

)
v,

where the third equality is because vT (σ2I)v is homogeneous across all direc-
tions, and the forth equality is because the solution only lie in the null space
of WY . Furthermore write WX = WX,‖ + WX,⊥, for WX,‖ parallel and WX,⊥
perpendicular to the subspace spanned by W , we reach that the first cPC

v∗ = argmax
v

vT
(
WX,⊥W

T
X,⊥ +WX,‖W

T
X,‖ + (1− α)WWT

)
v. (10)

4.5 Derivation of Kernel cPCA

Assume for the moment that the mapped data, Φ(x1), · · · ,Φ(xn), Φ(y1), · · · ,Φ(ym),
is centered i.e.,

∑n
i=1 Φ(xi) =

∑m
j=1 Φ(yj) = 0. The non-centered case will be

considered in the end. The covariance matrices for the target data and back-
ground data are

Ā =
1

n

n∑
i=1

Φ(xi)Φ(xi)
T , B̄ =

1

m

m∑
j=1

Φ(yj)Φ(yj)
T .

20



The contrastive components should satisfy

λv = (Ā− αB̄)v, (11)

where the k-th eigenvector corresponds to the k-th contrastive principal com-
ponent. Let N = n+m and define the data z1, · · · , zN as

zl =

{
xl, if 1 ≤ l ≤ n

yl−n otherwise
.

As all contrastive principal components v lie in the span of Φ(z1, · · · , zN ),
there exists a = (a1, · · · , al) ∈ RN such that v can be written as

v =
N∑
k=1

akΦ(zk). (12)

Also, instead of (11), we can consider the equivalent system

λΦ(zl) · v = Φ(zl) · (Ā− αB̄)v, l = 1, · · · , N. (13)

Substituting (12) into (13), we have

λΦ(zl) ·
N∑
k=1

akΦ(zk) = Φ(zl) · (Ā− αB̄)

N∑
k=1

akΦ(zk), for l = 1, · · · , N.

(14)

Define the N ×N kernel matrix K by

Kij = Φ(zi) · Φ(zj), (15)

and further define the N ×N matrices KA,KB by

KA
ij =

{
Kij , if 1 ≤ i ≤ n

0 otherwise
,

KB
ij =

{
0, if 1 ≤ i ≤ n
Kij otherwise

Stacking all N equations together, the LHS of (14) is equal to λKa. It is
also not hard to verify the RLS is equal to K( 1

nK
A − α

mK
B)a. The we can

rewrite the linear system (14) as

λKa = K(
1

n
KA − α

m
KB)a. (16)

To find the solution of (16), we solve the eigenvalue problem

λa = (
1

n
KA − α

m
KB)a (17)
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for non-zero eigenvalues. Clearly all solutions of (17) do satisfy (16). Also, the
solutions of (17) and those of (16) differ up to a term lying in the null space of
K. Since the projection of the data on v is

[Φ(z1) · v, · · · ,Φ(zN ) · v]T = Ka, (18)

any term lying in the null space of K does not affect the projected result. Hence
to solve (16), we can equivalently solve (17). Finally, to impose the constraint
that ‖v‖ = 1, we equivalently require

aTKa = 1. (19)

Finally, as mentioned before, the projection of the data onto the q-th con-
trastive principal component can be written as Ka(q) as (18).

The centering assumption can be dropped as follows. Now assume that Φ(xi)
and Φ(yj) has some general mean µX = 1

n

∑n
i=1 Φ(xi) and µY = 1

m

∑m
j=1 Φ(yj).

Let the non-centered kernel matrix K be the same as (15), and let it be parti-
tioned into

K =

[
KX KXY

KY X KY

]
, (20)

according to if the elements zi and zj belong to the target or the background
data. Then the kernel matrix K can centered as

Kcenter =

[
KX,center KXY,center

KY X,center KY,center

]
, (21)

where

KX,center = KX − 1nKX −KX1n + 1nKX1n

KXY,center = KY X − 1mKY X −KY X1n + 1mKY X1n

KY X,center = KY X − 1mKY X −KY X1n + 1mKY X1n

KY,center = KY − 1mKY −KY 1m + 1mKX1m,

and 1n and 1m has all elements 1
n and 1

m respectively.
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