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Supplementary information 1: algorithm

Building and testing of models in r includes the 
following steps

1. We subset data including Nindividuals with N 
variables/parameters into two sets:

a. set I, a set of controls to construct 2DKDE for all 
pairs of analytes;

b. set II, a set of controls and cases to build the 
network and topological models.

2. Training set I is used to construct the 2DKDE 
matrix filled for every pair of analytes by calling the 
kde2d function from the Massx package. The size of the 
matrix is chosen to be Nbins ×  Nbins, Nbins = 16  but 2DKDE 
values are known to be independent of this parameter [1]. 
We generate Nbins ×  Nbins contour matrices.

3. The networks are generated for each individual 
in a data frame of set II. This network is a graph formed 
by N nodes/analytes and binary edges between them. 
Edges can be between continuous-continuous, continuous-
categorical, or categorical-categorical parameters (not 
used in this analysis). In each, graph nodes are formed by 
analytes, continuous or categorical, and the binary edge is 
calculated as following:

a. For each individual, the value of the edge 
between two continuous analytes (i, j), i, j = 1, ..., N 
forming nodes is calculated from the contourmatrix for 
this pair of parameters. Here we have two cases:

i. If the sample, i.e., a pair of parameters (xi, yj) 
from data set II corresponding to an individual, is within 
the matrix of the density estimation, the edge is equal to 
the volume under the densities that are higher than the 
density where the sample is within the distribution.

ii. We estimate distance as the normalised ratio 
between two distances, DDmaxedge  where  2 2( ) ( )max i max j maxD x x y y= − + −  
and  is the distance between the nearest point on the 
contour matrix (xnearest, ynearest) which lies on the straight line 
between the point with the maximal density (xmax, ymax) and 
investigated sample point (xi,  j) and is the closest point to  
(xi,  yj). 

Note that alternatively this distance can be 
estimated from the linear regression (original version of 
the parenclitic analysis [2, 3]) or from the Mahalonobic 
distance [4]. Using the linear regression for each pair of 

analytes, mi and mj, we build a linear regression based on 
the control group set I:

m xmj i j i j i= +α β, ,� ( )4

where αi,j and βi,j are regression coefficients. Next we 
build complete weighted graph for each cancer-positive 
and negative sample from set II, excluding the control 
group of set I, such that each vertex corresponds to a 
particular analyte, and edges are weighted according to
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where xi and xj are respective analyte levels for the 
sample (i, j), and σi,j is the standard deviation of errors 
in the linear regression model for control objects. In the 
second case, we implement the Mahalanobis distance [4], 
which, essentially, measures separation between data sets. 
In particular, the edge weight  is as:

w x S xi j i j i j

T

i j i j i j, , , , , ,( ) ( )= −( ) −−µ µ1 6
 

where, as before, xi and xj are analyte levels in an 
investigated sample, μi and μj are the analyte levels in the 
control data set I, (xi,j = xi,xj),  μi,j  = (E(mi), E(mj)) and Si,j 
= cov(mi,mj), where E(.) is the expectation and  the  cov(.) 
covariance.

b. Distances between continuous-categorical 
variables are calculated by generating a density estimation 
of the continuous data using points from training data set 
I with the value of the categorical variable equal to the 
value of the investigated individual. It means that we 
estimate the deviation only from the corresponding group 
characterised by the same value of the categorical. Then 
the distance is calculated as above.

c. Edges between categorical data points are not used 
in this version but can be potentially calculated from a density 
estimation of the continuous data by selecting a significant 
pair of variables (e.g. most predictive pair by AUC) and 
using the points from training data set I with the value of 
the categorical equal to these values of the investigated 
individual. Again in this way we estimate the distance from 
the group with the same categorical only evaluated on the 
plane of the most predictive continuous analytes.

d. A threshold is applied to the distances and they 
are coded 1 (higher than threshold) or 0. A copy of the 



network is saved in a new data frame (distance) that 
contains only those that are greater than the threshold 
value. This is used for calculating some of the topological 
indexes later.

4. Each individual is represented by calculating 
the topological indices for the original and binary graph, 
both representing the same patient. The number of edges 
in constructed graphs makes a straightforward machine 
learning classification task intractable in practice, also 
manifesting a huge imbalance between the number of 
features and available samples. Therefore, we utilize a 
number of topology metrics, widely used for characterising 
complex networks [5–7] a network of chemicals linked 
by chemical reactions, and the Internet, a network of 
routers and computers connected by physical links. While 
traditionally these systems have been modeled as random 
graphs, it is increasingly recognized that the topology 
and evolution of real networks are governed by robust 
organizing principles. This article reviews the recent 
advances in the field of complex networks, focusing on the 
statistical mechanics of network topology and dynamics. 
After reviewing the empirical data that motivated the 
recent interest in networks, the authors discuss the main 
models and analytical tools, covering random graphs, 
small-world and scale-free networks, the emerging theory 
of evolving networks, and the interplay between topology 
and the network’s robustness against failures and attacks. 
A. Quantities of interest in percolation theory 60 B. 
General results 60 1. The subcritical phase (p\u03fdp c, 
appropriately generalised for weighted graphs G: = (V, E) 
with |E| vertices and  edges:

a.  Mean, standard deviation and maximal values of 
edge weights.

b.  Mean, standard deviation and maximal values of 
vertex degree.

c.  Mean, variance and maximal values of shortest 
path lengths.

d.  Alpha-centrality
e.  Mean, variance, and maximal values of the page 

rank.
f.  The distance  d(vi,vj) between the nodes vi,j ϵ V, 

defined as the sum of the edge weights in the 
shortest path.

g.  The diameter of the graph G as the maximal 
distance between a pair of vertices.

h.  The degree centrality CD (G) of the graph  defined 
as the normalised graph (G) degree centrality H (G) 
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where v* is the node with the maximal degree centrality, 
and H V Vmax = −( ) −( )1 2  is the maximal graph degree 
centrality, obtained for the star topology.

i. Graph or network efficiency [8] Ec (G) defined as
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j. Betweenness centrality CB (vk) of a node as the 
number of the shortest paths the particular node  belongs 
to:
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where σvi,vj is the number of the shortest paths 
between the nodes vi and vj, among which σvi,vj (vk) passing 
through vk.

k. Google maximal page rank index.
l. Robustness. This is the number of nodes that 

need to be removed for the network to be unconnected.
These quantities in one way or another should reflect 

the expected differences between the sample classes. For 
instance, increasing separation of data sets produces 
greater edge weights and may result in substantial 
decrease of the graph diameter. Likewise, nodes with large 
centrality scores signify their key role in class distinction 
and give us information on biological importance.

5. Topological indexes are calculated for networks 
at a range of thresholds (see 3. d.). The threshold at which 
each topological index provides the best classification of 
cases and controls (by AUC) in set II are collated and used 
to generate logistic regression models.

6. The best combination for logistic regression is 
chosen by comparing all possible combinations. To avoid 
overfitting the number of indices included in the model 
is found by forward-backward elimination or limited by 
a threshold. Categorical variables can be added as extra 
features for generating the logistic regression.

Supplementary information 2: generation of 
synthetic data

Data was generated to mimic the behaviour of 
ovarian cancer biomarkers obtained in the UKCTOCS 
screening trial [9]. The best biomarker currently used for 
ovarian cancer detection is CA125, and has been shown to 
follow a Bayesian Hierarchical Changepoint model [10]. 
The model is based on the principle that each woman 
without cancer has her own baseline level of CA125 and 
all her CA125 values fluctuate around this level. Assume 
that we have a set of N controls indexed as i = 1,…,N. 



The number of samples collected for each control is not 
necessarily the same so we use ki to denote the number 
of data points for the i-th patient. The j-th sample for the 
i-th patient is denoted Yi,j and is taken at Agei,j. The model 
for controls is specified as Yi,j~N (θi,θ

2). with constant 
mean  E(Yi,j│Agei,j) = θi and variance σ2. Previous studies 
indicate that 85% of cases of ovarian cancer generate a 
rise in CA125. Therefore the parameter Ii is included in 
the model for cases, which indicates whether a particular 
case produces an elevated CA125 (Ii = 1) or not (Ii = 0). 
The model for cases with Ii = 0 coincides with the model 
for controls, while in cases with increased CA125, marker 
levels increase sharply over time after the change-point 
τi at rate γi. Thus the mean for cases is modeled by a 
piecewise linear function: 

E Y Agei j Age I i i i j ii j i, | , ,,
( )=

+( ) = + −1 θ γ τ

where (...)+ is the positive part of the expression.
Three artificial biomarkers were generated: one 

followed a hierarchical distribution with the same 
parameters and prior distributions as for CA125 and 
two others followed the same distributions with slightly 
different priors. All parameters are fully described in [10].

Controls were generated from N(θi,σ
2), where 

θ µ σθ θi N~ ( , ),2  µθ θ θ~ ( , ),N m v2  σθ θ θ
2 ~ ( , ),IG a b  σ 2 ~ , ,IG a b( )

Here mθ = {2.75,3.05,3.72}, vθ = {0.1,0.082,0.04}, aθ = 

{2.04,2.04,2.04}, bθ = {0.065,0.065,0.065}, a = {13.95,13.95,13.95}, 
b = {0.97,0.97,0.98}, for artificial CA125 and two other 
artificial markers correspondingly. Biomarker behaviour 
in cases is the same as in controls apart from some 
extra parameters: log ~ ( , ),γ µ σγ γi N( ) 2 µγ γ γ~ ( , ),N m v2 , and 
probability of a changepoint πi. Here, µγ = { }0 4 0 248 0 218. , . , . ,  
θγ
2 0 165 0 172 0 141= . , . , . ,  aγ = { . , . , . },2 8 2 8 2 8 bγ = { . , . , . },1 58 1 58 1 58  

π i = { . , . , . }0 85 0 75 0 65  for the three markers respectively.
Based on these distributions, we have generated serial 

data for 3 artificial biomarkers: one mimics CA125 and 
two others mimic possible ovarian cancer biomarkers. 27 
other “random” analytes were also generated. A further 9 
categorical variables were also included: 1 was predictive 
in 80% of cases, 2 were predictive in 60% of cases with the 
rest having no disease-association. In total, 300 patients 
were generated, including 150 cases and 150 controls. 
Every patient had 9 annual serial measurements (within a 
9 year window) for each of the artificial biomarkers.
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Supplementary table 1: Demographics and clinical pathology of the ovarian cancer cohort

Cases Controls P
No. individuals 30 30
No. samples 59 59
Median age at sample draw–yrs (range) 65.2 (50.6–79.7) 64.6 (51.4–78.6) n.s.
Median time to spin–hrs (range) 22.1 (2.6–46.8) 22.6 (1.7–47.9) n.s.
Median time to diagnosis–months (range) 14.3 (2.9–97.5)
Median BMI at recruitment–kg/m2 (range) 25.0 (19.2–43.2) 24.8 (20.2–40.1) n.s.
HRT use at recruitment (no.) 6 8 n.s.
OCP use at recruitment (no.) 12 18 n.s.
Grade and morphology

High grade serous 23
High grade endometrioid 3
High grade not specified 3
High grade carcinosarcoma 1

FiGO Stage
I 7
II 9
III 14

Not significant, n.s..

Supplementary table 2: Demographics and clinical pathologies of ovarian cancer cases, separated into late (<14.5 
months to diagnosis) and early (>34.5 months to diagnosis) groups

Cases (late) Cases (early) P

No. individuals 30 29
No. samples 30 29
Median age at sample draw–yrs (range) 66.9 (55.8–79.7) 62.3 (50.6–55.8) n.s.
Median time to diagnosis–months (range) 3.8 (2.86–14.3) 58.7 (34.9–97.5) n.s.
Median BMI at recruitment–kg/m2 (range) 25.1 (19.2–43.2) 25.0 (19.2–43.2) n.s.
HRT use at recruitment (no.) 6 6 n.s.
OCP use at recruitment (no.) 12 12 n.s.
Grade and morphology

High grade serous 23 22
High grade endometrioid 3 3
High grade not specified 3 3
High grade carcinosarcoma 1 1

FiGO Stage
I 7 7
II 9 9
III 14 14

Not significant, n.s..



Supplementary Figure 1: parenclitic networks were generated for “controls” and “cases” from a synthetic data set. From 
years 1–4, all markers behaved randomly. At year 5, cases developed cancer and markers were modelled for a further 4 years. One marker in the 
data set mimicked CA125 and 3 others were partially predictive (blue nodes) (for full description, see Supplementary Information). Yellow nodes 
represent categorical data, green nodes are random markers in controls and red nodes are random markers in cases. Presented is a representative 
case and control with networks generated from years 1–9. In cases, but not controls, there is an increase in the number of connected nodes after 
the onset of cancer, furthermore, predictive nodes (blue) become more heavily connected and move towards the centre of the networks.



Supplementary Figure 2: parenclitic networks generated from synthetic data were described by 20 topological indexes at 4 
thresholds. Each individual had 9 samples with cancer being initiated in cases at year 5 (vertical dashed line). Presented are the mean topological 
value for each individual over their 9 samples. Cases are shown as solid lines and controls as dashed lines, colours indicate different thresholds. 
For further information as to how the thresholds are applied and indices generated, see Supplementary Information. At the initiation of “cancer” 
in cases, topological features change. For some thresholds, the magnitude of the change is different and thus there is no single threshold that fits 
all topological features.



Supplementary Figure 3: in late samples (<14.5 months to diagnosis), parenclitic analysis was performed across a range of 
thresholds and each network described by a number of topological features. The best threshold for each topology was determined 
by comparing AUC values. This figure shows the topology values at its optimal threshold for cases and controls from the OC data set. P-values 
were determined by Wilcoxon test.



Supplementary Figure 4: in early samples (>36 months to diagnosis), parenclitic analysis was performed across a range of 
thresholds and each network described by a number of topological features. The best threshold for each topology was determined 
by comparing AUC values. This figure shows the topology values at its optimal threshold for cases and controls from the OC data set. P-values 
were determined by Wilcoxon test.


