Appendix

Real-time Observation of Flexible Domain Movements in Cas9

Saki Osuka, Kazushi Isomura, Shohei Kajimoto, Tomotaka Komori, Hiroshi Nishimasu, Tomohiro Shima, Osamu Nureki, and Sotaro Uemura

Contents:
Appendix Figure S1 - Fluorescence anisotropy and lifetime of dyes on Cas9 constructs.
Appendix Figure S2 - Dwell time histograms of the HNH domain in three positions during flexible movements.
Appendix Figure S3 - DNA sequence used in this study.

Appendix Figure S1 - Fluorescence anisotropy and lifetime of dyes on Cas9 constructs.

A-C Plots of the inverse fluorescence anisotropies (γ) of Cy3 and Cy5 on Cas9 constructs against T/η . Here, absolute temperature (T) = 298 K, and the viscosities of the sample (η) corresponding to 0, 0.001, 0.01 and 0.1% methyl cellulose solutions were 0.89, 1.64, 8.39 and 75.89, respectively. The plots are summaries of three individual experiments for each construct (A: D435C-E945C, B: S355C-S867C, C: S867C-N1054C). The y-intercepts were calculated by extrapolating the plots to a linear function, yielding the estimated anisotropy values. The values for Cy3 anisotropy (upper panels) were 0.34 ± 0.006 in D435C-E945C, 0.38 ± 0.004 in S355C-S867C and 0.41 ± 0.004 in S867C-N1054C (mean ± SEM, n = 3), and the

values for Cy5 (lower panels) were $\gamma = 0.27 \pm 0.005$ in D435C-E945C, 0.29 ± 0.006 in S355C-S867C and 0.32 ± 0.009 in S867C-N1054C (mean ± SEM, n = 3). In the case of low anisotropy, the orientation factor, κ^2 , is close to the dynamic isotropic limit of $\kappa^2 = 2/3$. Otherwise, κ^2 is widely distributed in the range of $0 \le \kappa^2 \le 4$. Thus, the high anisotropies of Cy3 and Cy5 obtained, which are close to the theoretical maximum value of 0.4, obscured the value of κ^2 so that we were unable to estimate accurate distances between the two fluorochromes on Cas9 molecules from the FRET efficiency.

D-F Representative time traces of the fluorescence lifetime of Cy3 on Cas9 constructs (D: D435C-E945C, E: S355C-S867C, F: S867C-N1054C). The time trace data (gray) were fitted to double-exponential decay curves (black) to calculate the fluorescence lifetimes.

G Summary of Cy3 lifetimes calculated from three individual experiments for each construct. The grey triangles and diamonds represent the fast (τ_1) and slow (τ_2) components of the lifetime. The mean lifetimes (τ_{mean} , black circle) were 0.78 ± 0.01 for D435C-E945C, 0.71 ± 0.05 for S355C-S867C and 0.71 ± 0.01 for S867C-N1054C (mean ± SEM, n = 3). Bars are SEM. The lifetimes obtained were shorter than normal dye tumbling time (1-10 ns). Therefore, the high anisotropy of the dye on Cas9 constructs (A-C) is most likely due to the short fluorescence lifetimes (D-G).

Appendix Figure S2 - Dwell time histograms of the HNH domain in three positions during flexible movements.

A-C Dwell time distributions of the HNH domain in the I (A), D* (B) and D (C) positions in fluctuating S355C-S867C molecules. Assays were performed in the presence of Mg²⁺, sgRNA and target DNA. By fitting the distributions to a single exponential decay function (red curves), the mean dwell times were determined as 1.22 ± 0.07 s for the I position (n = 399), 1.61 ± 0.08 s for the D position (n = 124). Data are shown as the mean \pm SEM.

EcoRI	100
yaa Leactydeeg tegtiitta caacy tegtigad tigggaaaaceerigge ta aceaacitaategeerigag caca teeeeritege cagetydeg t	200
	200
	400
	500
agacgaaagggcetegtgatacgeetattttataggttaatgteatgte	500
gaacteetattigttattittetaataeg gaaattaggigegettiggetgg attaaatatgtatteegeteatgagacaataaceetgataaatget	000
Target sequence PAM	
${\tt caataatattgaaaaaggaaggatatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccag$	700
aaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcg	800
$\verb ccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcgcgtcgccgcgcaagagcaactcgcgtcgccgcgcaagagcaactcggtcgccgcgcaagagcaactcgcgccgcgccgcgcaagagcaactcgcgccgcgcaagagcaactcgccgccgccgccgccgccgccgccgccgcccgc$	900
atacactatteteagaatgaettggttgagtaeteaecagteaeagaaaageatettaeggatggeatgaeagtaagagaattatgeagtgetgeeataa	1000
ccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatggggggatcatgtaactcg	1100
ccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagggtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactatta	1200
actggcgaactacttactctagcttcccggcaacaattaatagactggatgga	1300
$\verb"gctgg"$ tttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttat	1400
${\tt ctacacgacggggggtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtt$	1500
${\tt tactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaac$	1600
$\tt gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttt$	1700
aaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatact	1800
${\tt gttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccacactctgtagcaccgctagttagcaccgctgctagcacacactctgtagcaccgctgctgctgctagttaggccgtagttaggccaccacttcaagaactctgtagcaccgctacatacctcgctcg$	1900
$\tt gtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccag$	2000
${\tt cttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggta$	2100
agcggcagggtcggaacaggagagcgcacgagggggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagc	2200
gtcgatttttgtgatgctcgtcagggggggggggggcgtatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctca	2300
$cat {\tt gttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgag$	2400
gagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctcccccgcgcgttggccgattcattaatgcagctggcacgggtttcccg	2500
actggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactca	2600
${\tt tggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagcttgcatgcctgcaggtcgactctagaggatccccgggt$	2700
accgagete	2709

Appendix Figure S3 - DNA sequence used in this study.

The pUC119 plasmid containing the 20-nt target sequence (blue) and the NGG PAM (red) was linearized by *Eco*RI (green) and used as the target DNA. The longest off-target matching sequence to the sgRNA was 4-nt with a PAM sequence (grey highlight). Since Cas9 binding to such a short matching sequence is highly unstable (Singh *et al.*, 2016), we concluded that almost all Cas9 in the sgRNA/DNA-Cas9 ternary complex observed was bound to the target sequence in the DNA.