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Appendix A: Details of the MCMC algorithm

In this appendix, we detail an MCMC algorithm for the restricted conjunctive MIRT (RC-

MIRT) model. As in any adaptation of the MLTM, the item/person parameters to be estimated are

a, g, b = vec([b1, . . . , bJ ])T = (bT1 , . . . , b
T
J )
T and θ = vec([θ1, . . . ,θN ])T = (θT1 , . . . ,θ

T
N )

T , where

vec stands for the “vectorized” operator and forms a vector by stacking the columns of the matrix

inside. To start the exposition, given a set of values from the (r − 1)th iteration, the rth iteration

of the MCMC algorithm proceeds in the following steps.

Step 1. Σθ|θ,Y

Because the discrimination parameters are fixed to 1, the complete covariance matrix of ability,

Σθ, can be freely estimated. Thus, sample Σθ conditional on θ(r−1) and Y by assuming that

the prior distribution of Σθ is inverse-Wishart distributed because θ follows a multivariate normal

distribution with mean µ. Given prior parameters (Iν , ν), we thus have

p(Σθ|θ(r−1)) ∼ InvWish
(
θ(r−1)Tθ(r−1) + Iν , N + ν

)
,

where θ(r−1) is of dimension N ×K, N is the examinee sample size, and ν is generally set to K.

Step 2. θ|Y , a, g, b,Σθ

Sample θ(r)i conditional on Y i, b(r−1), a(r−1), g(r−1), and Σ
(r)
θ via a Metropolis step. For each θ(r)i =

1
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(θi1, . . . , θiK)T , i = (1, . . . , N), generate a candidate θ∗i from a multivariate normal distribution with

mean θ(r−1)i and covariance matrix Σ
(r)
θ . Then set θ(r)i = θ∗i with probability

α(θ
(r−1)
i ,θ∗i ) ≡ min

{
1,

φ(θ∗i ;µ,Σ
(r)
θ )L(Y i|b(r−1), a(r−1), g(r−1),θ∗i )

φ(θ
(r−1)
i ;µ,Σ

(r)
θ )L(Y i|b(r−1), a(r−1), g(r−1),θ(r−1)i )

}
,

where φ(·, ·) is the multivariate normal density, Y i is the ith row of the response matrix, and L(Y i)

is the likelihood of the response vector, Y i, and computed by means of

L(Y i|b, a, g,θi) =
J∏
j=1

[
aπij + g(1− πij)

]yij[1− (aπij + g(1− πij)
)]1−yij .

Otherwise, set θ(r)i = θ
(r−1)
i . Note that µ, the prior mean vector of abilities, is chosen to be a vector

of 0s for model identification.

Step 3. b|Y ,θ, a, g

Sample b(r)j conditional on Y j , θ(r), a(r−1), and g(r−1) via a Metropolis step. For item j, generate

a candidate b∗j from a multivariate normal distribution with mean b(r−1)j and covariance matrix C,

where C is chosen to restrain the acceptance rate to an adequate level, usually between 20% to

40%. If qjk = 0, then bjk = 0 and will not be updated. Otherwise, accept b(r)i = b∗i with probability

α(b
(r−1)
j , b∗j ) ≡ min

{
1,

L(Y j |b∗j ,θ(r), a(r−1), g(r−1))φ(b∗j ;µb,Σb)

L(Y j |b(r−1)j ,θ(r), a(r−1), g(r−1))φ(b
(r−1)
j ;µb,Σb)

}
, (A1)

where Y j is the jth column of the response matrix, and L(Y j) is computed via

L(Y j |b, a, g,θi) =
N∏
i=1

[
aπij + g(1− πij)

]yij[1− (aπij + g(1− πij)
)]1−yij .

The parameters µb and Σb can take on any form, but they are typically fixed to a vector of zeros

and an identity matrix, respectively.
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Note that the proposed RC-MIRT model has one (and only one) item parameter for each item on

each dimension on which that item loads. If using a two-parameter version of the conjunctive MIRT

model, such as in Babcock (2011), then one must specify the diagonal elements of Σθ to establish

model identifiability. Rather than estimating the covariance matrix, Σθ, one would instead proceed

by estimating the correlation matrix, Rθ. Edwards (2010) recommended estimating correlation

matrices by means of a Metropolis hit-and-run algorithm. In that algorithm, one should specify the

prior distribution on the correlation terms as a standard normal distribution truncated between −1

and 1 to avoid using complicated priors, such as those introduced in Babcock (2011).

Initial values. The MCMC algorithm can only proceed after specifying appropriate, initial values

for several of the unknown parameters. The initial values play an important role in any MCMC

algorithm, as they help determine the performance of a chain. We propose slightly informative initial

values. Specifically, to determine the initial value of b(0)j , assume bj1 = bj2 = · · · = bjk = bj for

qjk 6= 0 and θ = 0. Then,
(

1
1+exp(bj)

)Kj = pj , where Kj and pj are the total number of attributes

measured by and the proportion of examinees who correctly responded to item j, respectively.

After solving the above equation for bj , replace bjk = bj in
∑J

j=1

( exp(θik−bjk)
1+exp(θi−bjk)

)qjk = J × pi,

and solve for each θik, where pi is the proportion of items correctly answered by examinee i and

θi1 = θi2 = · · · = θik.

Estimating a and g parameters.

To estimate RC-MIRT a and g parameters using MCMC, we need to define a binary variable,

Wij , such that

Wij =


1 if person i knows the correct answer to item j

0 if person i doesn’t know the correct answer to item j
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Then the conditional probability of Wij = wij given Yij = yij is

P (Wij = 1|Yij = 1) ∝ aπij (A2)

P (Wij = 0|Yij = 1) ∝ g(1− πij) (A3)

P (Wij = 1|Yij = 0) ∝ (1− a)πij (A4)

P (Wij = 0|Yij = 0) ∝ (1− g)(1− πij) (A5)

where

πij =

K∏
k=1

(
exp(θik − bjk)

1 + exp(θik − bjk)

)qjk
. (A6)

If estimating a and g parameters, also add the following two steps to the Markov chain update:

Step 1. W |Y , a, g

Sample W (r)
ij conditional on Yij , π

(r−1)
ij , a(r−1), and g(r−1) based on Equations (A2)–(A5).

Step 2. a, g|Y ,W

Sample a(r) and g(r) conditional onWij and Yij . To determine the appropriate posterior distribution

of a(r) and g(r) given the rth iteration of the algorithm, let R(r) =
∑J

j=1

∑N
i=1 I(w

(r)
ij = 0) be the

estimated number of guesses for all people across all items, where I(w(r)
ij = 0) is an indicator function

that equals 1 if person i guessed on item j. Moreover, let S(r) =
∑J

j=1

∑N
i=1 I(yij = 1)I(wij = 0)

be the number of correct responses obtained by guessing. Because P (Yij = 1|Wij = 0) = g for

all persons and items due to a strict assumption of the MLTM, S ∼ Binom(R, g). Assuming a

conjugate Beta prior on g with prior parameters αg and βg, then

g(r) ∼ Beta(S(r) + αg, R
(r) − S(r) + βg). (A7)
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Similarly, let U (r) =
∑J

j=1

∑N
i=1 I(w

(r)
ij = 1) be the estimated number of items that are known

across all people. If V (r) =
∑J

j=1

∑N
i=1 I(yij = 1)I(wij = 1) is the number of correct responses

obtained without guessing, then V ∼ Binom(U, a). Assuming a conjugate Beta prior on a with

prior parameters αa and βa, then

a(r) ∼ Beta(v(r) + αa, u
(r) − v(r) + βa). (A8)
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Appendix B: Details of the MH-RM algorithm

Assume that a researcher wants to estimate item parameters for the RC-MIRT model given a

set of data and using the MH-RM algorithm, and that this researcher acquires reasonable initial

values. If b(r−1) is the vector of item parameter estimates after the (r − 1)th loop, then the rth

iteration proceeds as follows.

Step 1. Stochastic imputation.

Draw mr sets of missing data {θ(r)s , Σθ; s = 1, . . . ,mr}, where mr is chosen by the researcher and

allowed to depend on the iteration number. These missing data are combined with the observed

responses, Y , to form mr arrays of complete data
(
Z

(r)
s = (Y , θ

(r)
s , Σθ); s = 1, . . . ,mr

)
. One

should use the MH sampler described in the previous section to mechanically update θ (conditional

on Y , b(r−1), and Σ
(r−1)
θ ) and Σθ (conditional on θ(r−1) and Y ). A general rule in choosing the

number of parameters to update via MCMC is that one should impute the least missing data needed

to simplify complete data calculations. Using this logic, one might argue that θ form such a minimal

set. However, we decided to impute both θ and Σθ for two reasons. First, Σθ is required only for

determining the distribution used to sample θ via the Metropolis-Hastings step and does not affect

futher analyses. Second, as will be clarified shortly, including Σθ as an estimation component of

the Robbins-Monro step results in a full-rank Hessian matrix and thus, a more difficult and costly

matrix inversion. In a pilot study, we found that imputing only θ (as compared to imputing both

θ and Σθ) does not improve the estimation accuracy of b enough to justify the extra complexity of

adding Σθ to the estimation step.

Step 2. Stochastic approximation.

Estimate the gradient and Hessian of the complete data log-likelihood with respect to b by averaging

gradients and Hessians across the mr sets of complete data. Specifically, calculate
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s̃(r) =
1

mr

mr∑
s=1

s(b(r−1)|Z(r)
s ),

where s(b(r−1)|Z(r)
s ) ≈ ∂l(b|Z)

∂b is a JK-by-1 vector with the [(j − 1)K + k]th element computed by

sjk =

N∑
i=1

(
yij − pij
1− pij

) −1
1 + exp(θ

(r)
ik − b

(r−1)
jk )

 , (B1)

with pij = (a− g)
∏K
k=1

(
exp(θik−bjk)

1+exp(θik−bjk)

)qjk
+ g.

Next, estimate the JK × JK Hessian matrix of b, H(b|Z) = −∂2l(b|Z)

∂b∂bt
. Most IRT models

assume local item independence, so that the partial derivatives with respect to parameters for two

different items are all 0, and consequently, the Hessian matrix for these models takes block diagonal

form. (Inverting a very sparse matrix is much easier than inverting a dense matrix.) Unfortunately,

the a and g parameters from Embretson’s MLTM model (Equation 2) are shared across all items,

so that the rows and columns of H corresponding to a and g will all be non-zero. For the sake

of estimation efficiency, assume that a = 1 and g = 0, so that H is block diagonal. Then the kth

diagonal term for the jth item of the Hessian matrix would be

Hj,kk =
d2l(b|Z)
db2jk

=

N∑
i=1

{(
yij − pij
1− pij

)(
exp(θik − bjk)

[1 + exp(θik − bjk)]2

)
−
(
pijyij − pij
[1− pij ]2

)(
1

[1 + exp(θik − bjk)]2

)}
, (B2)

and the k1, kth
2 off-diagonal term for the jth item of the Hessian matrix would be

Hj,k1k2 =
d2l(b|Z)
dbjk1dbjk2

= −
N∑
i=1

(
pijyij − pij
[1− pij ]2

)(
1

1 + exp(θik1 − bjk1)

)(
1

1 + exp(θik2 − bjk2)

)
.

(B3)

As in estimating the gradient, the Hessian is also estimated using the complete data sets, Z(r)
s ,
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s = (1, . . . ,mr), and the proximate parameter estimates, b(r−1). The estimated Hessian is then used

to approximate the conditional expectation of the complete data information matrix by calculating

Γ(r) = Γ(r−1) + γr

(
1

mr

mr∑
s=1

[H(b(r−1)|Z(r+1)
s )]− Γ(r−1)

)
,

where γr ∈ (0, 1] is a small constant such that
∑∞

r=1 γr = ∞ and
∑∞

r=1 γ
2
r < ∞ (Cai, 2010a). A

final adjustment to each s̃s and Hs must also be made due to the Q-matrix, which restricts many

entries in b to be 0. Let bc = Lb denote the constrained item parameter matrix, where L is a

JK × JK diagonal matrix with the jth set of K diagonal elements representing the jth row of the

Q-matrix. Treating bc as the target matrix of unknown parameters, one must modify the estimated

gradient and Hessian matrices to be s̃c = (s̃TL)T and Hc = LTHL, respectively, in all of the

above equations.

Practitioners could additionally modify the gradient and Hessian by assuming a prior distribution

on the unknown item parameters, b. Imposing a prior distribution on the item parameters would

allow a fairer comparison between the MH-RM and MCMC algorithms. Moreover, the empirical

likelihood function used to estimate parameters in MH-RM is strangely shaped (see Figure 2),

and a moderately informative prior distribution should improved the peakedness of the resulting

posterior distribution and better allow the MH-RM algorithm to find the corresponding maximum.

In particular, assume that b is multivariate normally distributed with mean vector µb and covariance

matrix Σb. Then we would simply need to modify sBjk = sjk + (b
(r−1)
jk − µbk(Σ−1b )kk), HB

j,kk =

Hj,kk + (Σ−1b )kk, and HB
j,k1k2

= Hj,k1k2 + (Σ−1b )k1k2 . This modified, Bayesian version of MH-RM

will be referred to as Bayesian MH-RM in any subsequent simulations and discussion.

Step 3. Robbins-Monro update

Refine the estimate of b with a Robbins-Monro update, where
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b(r)c = b(r−1)c + γr(Γ
(r))−1s̃(r)c .

Note that a common choice of γr is 1/r, and then Γ(0) can be arbitrarily picked. Convergence

of the MH-RM algorithm is monitored by computing a window of successive differences, such as

{max |b(r)c − b(r−1)c |,max |b(r−1)c − b(r−2)c |, . . . ,max |b(r−W−1)c − b(r−W )
c |}, where W is the predeter-

mined window size (Cai, 2008, recommended setting W = 3). The algorithm terminates if and

only if all differences in the window are below a pre-specified small number, such as .001. Once the

estimates converge, the algorithm terminates and b is taken to be the final parameter estimates.
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Appendix C: The Role of the Q-matrix

This appendix shows how the covariance matrix of θ changes when Q-matrix displays a hierar-

chical structure (Rupp & Templin, 2008), that is, when each item loads either on the first dimension

or on both dimensions. Tests display hierarchical structure when an item loading on one dimension

implies that it also loads on the second dimension. If a test manifests hierarchical structure, then

t3 = 0, and the information matrix reduces to

I∗(θ) =


∑t1

j=1
pj1pj2(1−pj1)2

1−pj1pj2 +
∑t1+t2

j=t1+1 p
∗
j1(1− p∗j1)

∑t1
j=1

pj1pj2(1−pj1)(1−pj2)
1−pj1pj2∑t1

j=1
pj1pj2(1−pj1)(1−pj2)

1−pj1pj2
∑t1

j=1
pj1pj2(1−pj2)2

1−pj1pj2

 .

Now assume that p∗j1 ≈ pj1pj2, so that items that measure both dimensions have roughly the same

item response function as items that measure a single dimension. Then we have p∗j1(1 − p∗j1) ≈

pj1pj2(1− pj1pj2) = pj1pj2(1−pj1pj2)2
1−pj1pj2 ≥ pj1pj2(1−pj1)2

1−pj1pj2 . As a consequence of that simple inequality, it

can be shown that when

[∑t1
j=1

pj1pj2(1−pj1)(1−pj2)
1−pj1pj2

] [∑t1+t2
j=t1+1

pj1pj2(1−pj2)2
1−pj1pj2

]
[∑t1+t2

j=t1+1
pj1pj2(1−pj1)(1−pj2)

1−pj1pj2

] [∑t1
j=1

pj1pj2(1−pj2)2
1−pj1pj2

] ≥ 0.5 (C1)

then [I−1(θ)]11 ≤ [I∗−1(θ)]11. Therefore, replacing t2 items that load on both dimensions with

items that only on the first dimension results in increased estimation precision of θ1. Notice that

the inequality in Equation (C1) is sufficient but not necessary for the variance of θ̂1 to decrease.

Moreover, Equation (C1) is only violated when the items corresponding to t1 are very easy on the

first dimension and the items corresponding to t2 are very difficult on the first dimension. But with

a well-balanced item bank, inequality (C1) will normally be satisfied.
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Appendix D: Why correlation between ability dimensions (ρ) matters?

An oft-documented benefit of using multidimensional models is that one obtains greater precision

in estimating dimensional ability by “borrowing strength” from other dimensions (i.e., de la Torre

& Patz, 2005; Wang, Chen, & Cheng, 2004). Moreover, as is clearly shown in de la Torre and Patz

(2005), a higher correlation among the dimensions results in improved estimation accuracy. But

whereas moderate-to-large correlations between ability dimensions are helpful in θ estimation, they

impede item parameter estimation when using a non-compensatory MIRT model (Bolt & Lall, 2003,

Babcock, 2012) such as the MLTM discussed in this paper. One might wonder why high ability

correlations hinder estimating item parameters. A primary reason for the resulting difficulties in

item parameter estimation can (of course) be traced back to the Fisher information matrix. The

volume of the confidence ellipsoid of b̂j is proportional to the determinant of the item parameter

Fisher information matrix (as is the case in most applications of maximum likelihood). Therefore, we

conducted a small simulation to demonstrate the change in estimation precision for different values

of ρ. To do this, we generated sets of N = 2000 examinees from bivariate normal distributions

with varying correlations (ρ) between the dimensions. For each set of examinees, we calculated the

determinant of the item parameter Fisher information matrix for three two-dimensional items and

plotted the results in Figure C1.
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Figure C1: Determinant of the item information matrix as a function of ρ

As is obvious from Figure C1, the determinant of the item parameter Fisher information matrix

monotonically decreases as the correlation between the dimensions is increased regardless of the

actual item parameter values. For all three items, a larger correlation between the dimensions results

in a flatter likelihood surface and a more difficult item parameter estimation problem. Intuitively,

if an item measures multiple dimensions, then large correlations between those dimensions implies

nearly indistinguishable item parameters. This problem is identical to the well-known headache of

near-multicolinearity in estimating parameters of the linear regression model.
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Appendix E: Additional Results

Table E1: An illustration of a complex Q-matrix structure

item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

d1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0

d2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 2 2 3 2 2 3 2 3 3 3 2 2
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Table E2: Bias, MSE, Correlation, computation time (in seconds), and number of iterations (for
both MH-RM algorithm and Bayesian MH-RM (denoted as B MH-RM) algorithm) for the item
parameter bjk estimates given a J = 30 item test.

bias MSE Correlation time n.of iter

b1 b2 b3 b1 b2 b3 b1 b2 b3

J = 30 Simple Q ρ = 0.2 N = 1000 MCMC -0.01 0.01 0.00 0.01 0.01 0.01 1.00 1.00 1.00 492.02

MH-RM 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 79.50 84

B MH-RM 0.00 0.00 0.01 0.01 0.01 0.01 1.00 1.00 1.00 80.83 84

N = 2000 MCMC 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 966.64

MH-RM -0.01 0.00 -0.01 0.00 0.01 0.00 1.00 1.00 1.00 163.95 94

B MH-RM 0.00 0.00 -0.01 0.00 0.01 0.01 1.00 1.00 1.00 161.49 94

ρ = 0.5 N = 1000 MCMC 0.01 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 491.95

MH-RM 0.02 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 89.05 60

B MH-RM 0.01 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 91.08 62

N = 2000 MCMC 0.00 -0.01 -0.01 0.00 0.00 0.00 1.00 1.00 1.00 965.69

MH-RM 0.00 0.00 -0.01 0.00 0.00 0.00 1.00 1.00 1.00 179.50 66

B MH-RM 0.00 -0.01 0.00 0.00 0.00 0.00 1.00 1.00 1.00 180.77 66

ρ = 0.75 N = 1000 MCMC 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 491.98

MH-RM -0.01 -0.01 0.00 0.01 0.01 0.01 1.00 1.00 1.00 97.03 48

B MH-RM -0.01 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 87.21 44

N = 2000 MCMC -0.01 0.00 -0.01 0.00 0.00 0.00 1.00 1.00 1.00 965.70

MH-RM -0.01 0.00 -0.01 0.00 0.00 0.00 1.00 1.00 1.00 179.80 48

B MH-RM -0.01 0.00 -0.01 0.00 0.00 0.00 1.00 1.00 1.00 177.71 47

Complex Q ρ = 0.2 N = 1000 MCMC -0.05 -0.08 -0.07 0.12 0.10 0.13 0.96 0.97 0.97 552.77

MH-RM -0.12 -0.12 -0.15 0.22 0.13 0.18 0.94 0.96 0.96 557.12 550

B MH-RM -0.14 -0.15 -0.16 0.18 0.17 0.19 0.95 0.96 0.95 440.81 436

N = 2000 MCMC -0.04 -0.01 -0.04 0.06 0.09 0.08 0.98 0.97 0.98 1087.74

MH-RM -0.13 -0.13 -0.16 0.19 0.20 0.17 0.96 0.95 0.96 891.39 476

B MH-RM -0.14 -0.14 -0.16 0.20 0.22 0.20 0.96 0.95 0.96 812.32 442

ρ = 0.5 N = 1000 MCMC -0.08 -0.09 -0.06 0.22 0.23 0.18 0.95 0.94 0.94 551.44

MH-RM -0.12 -0.14 -0.11 0.33 0.29 0.19 0.92 0.92 0.93 913.78 571

B MH-RM -0.20 -0.17 -0.14 0.36 0.33 0.25 0.92 0.92 0.91 752.88 468

N = 2000 MCMC -0.07 -0.09 -0.06 0.14 0.13 0.11 0.96 0.97 0.97 1088.72

MH-RM -0.15 -0.18 -0.16 0.24 0.26 0.25 0.94 0.94 0.95 1439.10 482

B MH-RM -0.18 -0.20 -0.17 0.29 0.31 0.28 0.92 0.93 0.93 1305.82 440

ρ = 0.75 N = 1000 MCMC -0.09 -0.08 -0.16 0.32 0.34 0.43 0.91 0.91 0.90 554.18

MH-RM -0.12 -0.13 -0.21 0.41 0.44 0.51 0.89 0.87 0.85 1497.51 682

B MH-RM -0.14 -0.14 -0.26 0.39 0.40 0.56 0.89 0.89 0.85 1164.89 531

N = 2000 MCMC -0.03 -0.11 -0.02 0.21 0.25 0.22 0.94 0.93 0.93 1091.40

MH-RM -0.11 -0.17 -0.17 0.32 0.45 0.44 0.89 0.87 0.89 2274.41 555

B MH-RM -0.14 -0.19 -0.18 0.35 0.39 0.42 0.90 0.87 0.88 2123.96 514
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Table E3: Bias, MSE, Correlation, computation time (in seconds), and number of iterations (for
both MH-RM algorithm and Bayesian MH-RM (denoted as B MH-RM) algorithm) for the item
parameter bjk estimates given a J = 45 item test.

bias MSE Correlation time n.of iter

b1 b2 b3 b1 b2 b3 b1 b2 b3

J = 45 Simple Q ρ = 0.2 N = 1000 MCMC 0.00 0.01 0.00 0.01 0.01 0.01 1.00 1.00 1.00 717.87

MH-RM 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 108.22 78

B MH-RM 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 106.09 76

N = 2000 MCMC 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1420.63

MH-RM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 210.95 87

B MH-RM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 205.53 85

ρ = 0.5 N = 1000 MCMC 0.01 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 718.08

MH-RM 0.01 0.00 0.01 0.01 0.01 0.01 1.00 1.00 1.00 115.78 55

B MH-RM 0.01 0.00 0.01 0.01 0.01 0.01 1.00 1.00 1.00 119.23 56

N = 2000 MCMC 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1419.71

MH-RM 0.00 0.01 0.00 0.00 0.00 0.00 1.00 1.00 1.00 236.57 60

B MH-RM 0.00 0.01 0.00 0.00 0.00 0.00 1.00 1.00 1.00 236.00 60

ρ = 0.75 N = 1000 MCMC 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 717.28

MH-RM 0.01 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 122.24 42

B MH-RM 0.00 0.00 0.00 0.01 0.01 0.01 1.00 1.00 1.00 118.53 41

N = 2000 MCMC 0.01 0.01 0.01 0.00 0.00 0.00 1.00 1.00 1.00 1420.27

MH-RM 0.01 0.01 0.01 0.00 0.00 0.00 1.00 1.00 1.00 252.04 47

B MH-RM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 245.56 46

Complex Q ρ = 0.2 N = 1000 MCMC -0.09 -0.03 -0.06 0.13 0.12 0.12 0.96 0.97 0.97 815.87

MH-RM -0.15 -0.10 -0.14 0.21 0.16 0.17 0.95 0.95 0.96 915.15 611

B MH-RM -0.20 -0.13 -0.17 0.23 0.19 0.19 0.95 0.95 0.95 705.39 471

N = 2000 MCMC -0.03 -0.04 -0.04 0.06 0.08 0.06 0.98 0.98 0.98 1618.52

MH-RM -0.16 -0.12 -0.12 0.13 0.14 0.13 0.97 0.98 0.97 1397.23 527

B MH-RM -0.18 -0.16 -0.16 0.14 0.18 0.15 0.97 0.97 0.97 1225.45 463

ρ = 0.5 N = 1000 MCMC -0.07 -0.09 -0.11 0.17 0.18 0.19 0.96 0.95 0.95 815.59

MH-RM -0.14 -0.12 -0.16 0.20 0.21 0.26 0.95 0.94 0.94 1526.35 654

B MH-RM -0.18 -0.18 -0.22 0.25 0.25 0.31 0.94 0.94 0.93 1203.88 515

N = 2000 MCMC -0.05 -0.05 -0.05 0.08 0.10 0.10 0.97 0.97 0.97 1612.69

MH-RM -0.13 -0.12 -0.16 0.17 0.17 0.16 0.96 0.96 0.95 2355.77 547

B MH-RM -0.16 -0.16 -0.15 0.18 0.18 0.20 0.95 0.95 0.94 2028.03 469

ρ = 0.75 N = 1000 MCMC -0.11 -0.15 -0.11 0.34 0.41 0.34 0.91 0.89 0.90 816.04

MH-RM -0.17 -0.16 -0.12 0.39 0.47 0.39 0.88 0.87 0.88 2551.96 799

B MH-RM -0.21 -0.23 -0.19 0.46 0.56 0.42 0.88 0.87 0.88 2000.09 626

N = 2000 MCMC -0.08 -0.08 -0.09 0.21 0.21 0.21 0.94 0.94 0.93 1620.53

MH-RM -0.14 -0.15 -0.12 0.38 0.41 0.37 0.90 0.91 0.88 3992.68 668

B MH-RM -0.14 -0.19 -0.18 0.38 0.42 0.41 0.91 0.90 0.89 3361.92 565
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Table E4: Standard error of parameter estimates

MCMC MH-RM B MH-RM
b1 b2 b3 b1 b2 b3 b1 b2 b3

J = 30 Simple Q ρ = 0.2 N = 1000 0.076 0.075 0.078 0.141 0.161 0.144 0.140 0.159 0.148
N = 2000 0.055 0.059 0.058 0.096 0.126 0.105 0.101 0.125 0.106

ρ = 0.5 N = 1000 0.087 0.078 0.081 0.210 0.183 0.177 0.201 0.180 0.172
N = 2000 0.058 0.059 0.055 0.149 0.126 0.154 0.143 0.127 0.154

ρ = 0.75 N = 1000 0.083 0.082 0.078 0.267 0.259 0.303 0.277 0.252 0.278
N = 2000 0.061 0.060 0.061 0.216 0.202 0.203 0.187 0.202 0.178

Complex Q ρ = 0.2 N = 1000 0.277 0.161 0.242 0.272 0.188 0.285 0.276 0.168 0.267
N = 2000 0.158 0.200 0.175 0.189 0.213 0.191 0.191 0.202 0.189

ρ = 0.5 N = 1000 0.326 0.326 0.305 0.297 0.309 0.276 0.319 0.310 0.246
N = 2000 0.185 0.186 0.180 0.267 0.222 0.234 0.261 0.214 0.238

ρ = 0.75 N = 1000 0.432 0.393 0.462 0.471 0.379 0.365 0.443 0.372 0.452
N = 2000 0.397 0.314 0.395 0.272 0.466 0.578 0.525 0.477 0.499

J = 45 Simple Q ρ = 0.2 N = 1000 0.081 0.081 0.079 0.146 0.150 0.166 0.145 0.145 0.165
N = 2000 0.059 0.058 0.059 0.105 0.094 0.105 0.103 0.099 0.103

ρ = 0.5 N = 1000 0.085 0.078 0.088 0.179 0.167 0.204 0.176 0.171 0.200
N = 2000 0.054 0.057 0.058 0.133 0.124 0.143 0.129 0.122 0.137

ρ = 0.75 N = 1000 0.083 0.081 0.078 0.217 0.270 0.220 0.217 0.251 0.223
N = 2000 0.059 0.057 0.056 0.207 0.204 0.189 0.192 0.200 0.169

Complex Q ρ = 0.2 N = 1000 0.252 0.258 0.296 0.235 0.229 0.281 0.222 0.228 0.261
N = 2000 0.186 0.207 0.188 0.186 0.225 0.194 0.176 0.221 0.192

ρ = 0.5 N = 1000 0.321 0.205 0.250 0.306 0.238 0.305 0.280 0.223 0.288
N = 2000 0.161 0.206 0.237 0.234 0.196 0.251 0.233 0.182 0.242

ρ = 0.75 N = 1000 0.348 0.379 0.335 0.400 0.380 0.332 0.319 0.377 0.317
N = 2000 0.296 0.293 0.311 0.386 0.384 0.461 0.384 0.326 0.379


