
Appendix A: Formulation for the Four-Level Two-Order HIRT Model 

    As stated in the main document, the ML-HIRT model is not necessarily limited 

to three levels; more than three levels are possible in real testing situations. For 

example, students may be sampled from specific groups (e.g., classes), and those in 

the same class would share the same teacher and curriculum, so the measurements in 

the same class can no longer considered to be independent. In this case, the students 

are nested within classes, and a between-class model (Level 4) can be formulated by 

treating the regression coefficients at Level 3 as random variables for classes. 

Accordingly, the Level-2 and Level-3 models can be rewritten as  
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respectively, where the subscript c is incorporated in the formulations to represent the 

random effects associated with different classes of students and to indicate the 

predictors that depend not only on person n but also on class c, and the definitions of 



the other parameters are the same as in the main document. As a result, the Level-4 

model can be expressed as 
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where c is a set of observed class-level variables for class c, dk is the vector of 

class-level regression coefficients for the dkth coefficient at Level 3, and cd is the 

class-level regression residual vector for the dth growth factor, which is assumed to be 

mutually independent of the other levels’ residuals. The estimation of the four-level 

model is straightforward because no further constraints need to be imposed on these 

equations; however, it becomes computationally burdensome because many parameter 

values need to be estimated.  



Appendix B: Simulation Process for the ML-HIRT Model 

The generated values resulted from an analysis of the empirical example 

consisting of dichotomous items, using a linear growth approach for the purposes of 

demonstration. The simulation process consisted of the following steps. First, the 

random intercept ( 0) and random slope ( 1) were generated by incorporating the 

Level-3 predictor (i.e., region; urban regions were coded as 1 and rural regions were 

coded as -1) and by assuming that the Level-3 residuals follow a multivariate normal 

distribution, using the true values for Level 3, together with Equations 5 and 6. More 

specifically, the random intercept and random slope for the set of examinees from 

urban regions can be expressed as )(0)(0 ς190.0β urbannurbann  and 

)(1)(1 ς032.0396.0β urbannurbann , respectively. The random intercept and random 

slope for the set of examinees from rural regions can be expressed as 

)(0)(0 ς190.0β ruralnruraln  and )(1)(1 ς032.0396.0β ruralnruraln , respectively. The 

Level-3 residual variances were assumed to be homogenous for the two regions, and 

the residuals were generated from a mean vector of zero and a variance–covariance 

matrix of 
039.0073.0

428.0
. Second, a linear growth model was used to regress the 

second-order latent traits against the time-based predictors with random regression 

coefficients from Level 3 across the four occasions, using the true values related to 

Level 2, together with Equations 3 and 4. Finally, the first-order latent traits for each 



occasion were specified through the combination of the second-order latent trait with 

the corresponding weights of the first-order traits (i.e., factor loadings) and Level-1 

residuals, using Equation 2. The item responses of the examinees were generated 

according to Equation 1 once the latent traits and item parameters had been 

determined. 



Appendix C: Prior Distribution and Convergence Monitoring 

Before implementing Bayesian estimation, a prior distribution must be specified 

for each parameter in the ML-HIRT model. In both simulations, normal prior 

distributions with means of 0 and variances of 4 were assumed for the location and 

regression parameters, log-normal prior distributions with means of 0 and variances of 

1 were assumed for the slope parameters, a beta prior distribution with both 

hyperparameters equal to 1 was assumed for the pseudo-guessing parameter, normal 

prior distributions with means of 0.5 and variances of 10 were assumed for the factor 

loadings, a gamma prior distribution with both hyperparameters equal to 0.01 was 

assumed for the inverse of the residual variances, and a Wishart distribution with a 

diagonal scale matrix and two degrees of freedom was assumed for the inverse 

variance–covariance matrix. 

The multivariate potential scale reduction factor (Brooks & Gelman, 1998) was 

used to determine the number of iterations, assuming three parallel chains for five 

randomly selected simulated data sets for all of the analytical models. The results 

showed that 15,000 iterations were sufficient to reach stationarity, with the first 5,000 

iterations defined as the burn-in because all of the multivariate potential scale 

reduction factors were close to 1.2. In addition, the Geweke convergence diagnostic 

(Geweke, 1992) was used to compare the mean of the parameter’s posterior 



distribution from the first 10% of the chain to that from the last 50% of the chain. 

Additionally, a Z statistic was calculated for statistical hypothesis testing, and the 

results showed that all Z statistics did not fall in the critical region, suggesting that no 

evidence was found against convergence. The history plots of the generated sequences 

displayed good convergence: the three chains mixed very well, and there was no 

change point or trend in the plot. The trace plots indicated that all of the estimated 

parameters became stationary at 15,000 iterations. 



Appendix D: Parameter Recovery for Different Times and Different Item Types 

The item parameter recoveries for different times were compared to assess the 

estimation accuracy for common and unique items on different occasions. As shown 

in Table D1, for the large sample of 4,000 examinees, the RMSE values ranged from 

0.033 to 0.461 (M = 0.127) for the difficulty parameters and from 0.019 to 0.275 (M = 

0.095) for the slope parameters for occasion 1, from 0.029 to 0.263 (M = 0.088) for 

the difficulty parameters and from 0.024 to 0.215 (M = 0.095) for the slope 

parameters for occasion 2, from 0.033 to 0.286 (M = 0.118) for the difficulty 

parameters and from 0.019 to 0.215 (M = 0.081) for the slope parameters for occasion 

3, and from 0.043 to 0.337 (M = 0.139) for the difficulty parameters and from 0.019 

to 0.215 (M = 0.085) for the slope parameters for occasion 4. The differences in 

parameter recovery for the different occasions were negligible. It can therefore be 

concluded that the item parameter estimation was nearly independent of the occasion. 

Similar results were obtained for the small sample of 1,000 examinees, although the 

RMSE values were slightly larger for the small sample. 

The lower panel of Table D1 shows the differences in RMSE between the unique 

and common items across occasions. When the sample size was 4,000, the unique 

items were found to have slightly larger mean RMSE values (0.142 and 0.108 for the 

difficulty and slope parameters, respectively) than the common items (0.104 and 



0.079 for the difficulty and slope parameters, respectively), indicating that the 

common items could be estimated more precisely than the unique items. The same 

conclusions were obtained for the sample size of 1,000, although the parameter 

estimation was inferior to that for the larger sample. 



Table D1. RMSE of Item Parameter Estimates for Different Administration Occasions 

and Different Item Types in the 3P-ML-HIRT Model 

 Sample Size 

 True Values 4,000 1,000 

Parameter Difficulty Slope Difficulty Slope Difficulty Slope 

Administration        

Occasion 1 Mean -0.580 1.057 0.127 0.095 0.243 0.163 

 SD 1.473 0.446 0.096 0.048 0.162 0.081 

 Max 2.791 2.210 0.461 0.275 0.658 0.363 

 Min -4.224 0.244 0.033 0.019 0.056 0.031 

Occasion 2 Mean 0.295 1.039 0.088 0.095 0.170 0.167 

 SD 0.743 0.431 0.053 0.051 0.108 0.092 

 Max 1.547 2.371 0.263 0.215 0.493 0.370 

 Min -2.133 0.410 0.029 0.024 0.056 0.031 

Occasion 3 Mean 0.619 0.961 0.118 0.081 0.242 0.137 

 SD 1.192 0.426 0.080 0.045 0.166 0.072 

 Max 2.928 2.059 0.286 0.215 0.701 0.359 

 Min -1.955 0.244 0.033 0.019 0.056 0.040 

Occasion 4 Mean 0.989 0.918 0.139 0.085 0.262 0.138 

 SD 1.078 0.407 0.081 0.045 0.167 0.072 

 Max 3.367 2.059 0.337 0.215 0.670 0.359 

 Min -1.955 0.244 0.043 0.019 0.056 0.031 

Item Type        

Common Mean 0.679 0.948 0.104 0.079 0.199 0.135 

 SD 0.988 0.393 0.074 0.440 0.147 0.715 

 Max 2.928 2.059 0.283 0.215 0.620 0.359 

 Min -2.367 0.244 0.033 0.019 0.056 0.031 

Unique Mean -0.472 1.085 0.142 0.108 0.279 0.183 

 SD 1.456 0.472 0.090 0.502 0.160 0.900 

 Max 3.367 2.371 0.461 0.275 0.701 0.370 

 Min -4.224 0.352 0.029 0.041 0.060 0.057 

Note: RMSE = root mean square error. 

 



Appendix E: A Simulation with the Incorporation of Extreme Item Difficulty 

To test the hypothesis that the ranges of the item parameter values affect the 

estimation precision for the examinees, a simulation was performed in which a set of 

higher and lower item difficulty parameters was incorporated on the fourth testing 

occasion for the three tests, and the large sample size was used. Specifically, the same 

simulation design as described above in the large sample size was used, but four items 

with relatively low and high difficulty were added to each of the three tests for the 

fourth occasion. The difficulty parameter values were set to -5, -4, 4, and 5, 

respectively, for the four items. The values of all of the discrimination parameters 

were set to one because the mean discrimination parameter was nearly equal to unity. 

The values of all of the pseudo-guessing parameters were set to 0.147. Such extreme 

difficulty parameter values are not rarely observed in real testing situations. Table E1 

shows the person parameter recovery results for the four occasions in terms of the 

mean RMSE across replications for the second- and first-order latent traits. As 

expected, the mean RMSE decreased to 0.432, 0.557, and 0.700 for the three 

first-order latent traits and to 0.353 for the second-order latent trait for the fourth 

occasion. A much wider range of item difficulty parameters (for example, between -6 

and 9) is expected to provide more accurate latent trait estimation because the true 

latent traits were found between -5.40 and 8.94 on the fourth occasion.  



Table E1. Mean RMSE of Person Parameter Estimates for the 3PL-ML-HIRT Model 

Condition Occasion 1 Occasion 2 Occasion 3 Occasion 4 

1
st
-Order Latent Trait in Test 1 0.270 0.352 0.429 0.432 

1
st
-Order Latent Trait in Test 2 0.496 0.473 0.544 0.557 

1
st
-Order Latent Trait in Test 3 0.414 0.413 0.552 0.700 

2
nd

-Order Latent Trait 0.246 0.245 0.297 0.353 

Notes: Higher and lower item difficulty parameters were incorporated for the fourth 

measurement occasion. 



Appendix F: Two Empirical Examples 

Example 1: Basic Ability Assessment 

As an example with dichotomous items, the Basic Ability Assessment was 

administered in multiple-choice format to 4,007 junior high school students (2,418 

urban students and 1,589 rural students) from the seventh to the twelfth grades in four 

studies conducted in Taiwan (Chang, 2007). Three tests measured the students’ basic 

abilities, including analytical ability, reading ability, and mathematical ability, and 

these three tests can be considered to measure the first-order latent traits governed by 

a second-order latent trait describing overall basic ability. Because the items in the 

three tests were partially replaced by a new set of items as time progressed, the tests 

did not consist of exactly the same items for each measurement; instead, minimum 

requirements for the number of common items were satisfied, and the inclusion of 

more anchor items led to more precise parameter estimation. The test measuring 

analytical ability consisted of 18, 13, 13, and 9 items administered at four different 

times; the test measuring reading ability consisted of 10, 10, 6, and 7 items 

administered at four different times; and the test measuring mathematical ability 

consisted of 20, 19, 17, and 19 items administered on four separate occasions. There 

were 12 common items between occasions 1 and 2 for the three tests; 12 common 

items between occasions 2 and 3 for the three tests; 15 common items between 



occasions 3 and 4 for the three tests; and a total of 12 common items for all three 

occasions for the three tests. The region in which the students resided was treated as 

the regression predictor at Level 3 for specifying the variation in the growth 

trajectories. 

Four questions were of particular interest in the model comparison in this study. 

First, do the items share a common slope parameter, and is the pseudo-guessing 

parameter necessary? To answer this question, the 1P-, 2P-, and 3P-ML-HIRT models 

(with linear growth) were fit to the data, and the fit of the model to the data was 

assessed using the Bayesian DIC. A smaller DIC value indicates a better fit of the 

model to the data. Second, is a higher-order structure necessary to account for the 

relationship between latent traits? To answer this question, the ML-HIRT model was 

compared with the ML-IRT model (i.e., all the test items measured a single latent trait) 

when fitting to the data set. Third, is a linear latent growth model sufficient to yield a 

good fit of the model to the data, or is a nonlinear (quadratic) growth model required 

to fit the data? To answer this question, two types of growth models, with linear and 

nonlinear growth, were fit and compared. Fourth, did the urban and rural students 

have systematically different growth trajectories? To answer this question, the 

ML-HIRT model with Level-3 predictors was compared with the same model without 

Level-3 predictors. 



With respect to the first question, the DIC value was 690,366 for the 

1P-ML-HIRT model, 680,933 for the 2P-ML-HIRT model, and 680,044 for the 

3P-ML-HIRT model. The 3P-ML-HIRT model with linear growth therefore yielded a 

superior fit because of its smaller DIC. With respect to the second question, when 

linear growth was considered, the 3P-ML-HIRT model yielded a better fit (DIC = 

680,044) than the 3P-ML-IRT model (DIC = 683,034), and a higher-order structure of 

latent traits was therefore necessary and was not neglected. To answer the third 

question, the 3P-ML-HIRT model with quadratic growth was compared with the same 

model with linear growth, and the results showed that the quadratic growth model 

yielded a better fit (DIC = 679,483). Finally, the quadratic-growth 3P-ML-HIRT 

model with Level-3 predictors was compared with the same model without Level-3 

predictors, and the results showed that the former yielded a better fit (as indicated by 

its smaller DIC value of 679,329). Because the Level-3 regression coefficients of the 

linear growth factor ( 1) and quadratic growth factor ( 2) were very small and were 

not significantly different from zero, only the variation in the random intercept ( 0) 

was considered for the urban and rural students. The parameter estimation is 

summarized as follows. The estimates were between -4.65 and 3.18 (M = 0.46) for the 

difficulty parameters and between 0.28 and 2.60 (M = 1.07) for the slope parameters, 

and the estimate was 0.16 for the pseudo-guessing parameter. The factor loadings 



were 1.00, 1.06, and 1.38 for analytical ability, reading ability, and mathematical 

ability, respectively. The grand mean of the random intercept ( 0) was 0.21 for the 

urban students and -0.21 for the rural students, indicating that the examinees in urban 

and rural regions exhibited different initial status conditions and that the growth 

slopes were not significantly affected by the type of region (urban versus rural).  

    Finally, to verify the fit of the best-fitting quadratic growth 3P-ML-HIRT model 

with Level-3 predictors and to provide absolute model-data fit evaluation, posterior 

predictive model checking (PPMC; Gelman, Meng, & Stern, 1996) was used to assess 

the deviation of the model from the data. In PPMC, a test statistic is chosen to detect 

the systematic discrepancy between the observed data and the replicated data, and the 

posterior predictive p-value is computed through a comparison of the two test 

statistics over a large number of iterations. If an extreme p-value (close to 0 or 1) is 

observed, the fit of the model to the data is judged to be poor. In this study, two 

statistics were employed to assess the fit of the resulting model to the data. The 

proportion correct for each item was computed (i.e., classic item difficulty), and the 

mean of the proportion correct across items for each testing occasion was used to 

compute the posterior predictive p-value. Another statistic was used to compare the 

raw score distributions of the observed data and the predicted data. The examinees 

were divided into three groups (low, middle, and high scoring) on the basis of their 



raw scores (with cutoffs of 16 and 32 for a 48-item test, for example), and the number 

of examinees in each scoring group on each testing occasion was computed to 

evaluate the model fit using the posterior predictive p-value. 

The PPMC results showed that the quadratic growth 3P-ML-HIRT model with 

Level-3 predictors yielded a good model fit because all the posterior predictive 

p-values were far from 0 or 1. Overall, it may be concluded that the proposed model 

fit the data well, that the tests covered difficult and easy items, that the three factor 

loadings were similar, and that a regional effect was observed. 

Example 2: Assessment of Students’ School Adaptability 

In Taiwan, the number of female immigrants (mostly from Southeast Asia) has 

increased in recent decades because of marriage to local males. The school 

performance and adaptability of the offspring of these immigrants, who are often 

considered to have a higher probability of poor adaptability than other local students 

because of perceived cultural inferiority and biases, is a topic of interest. In the second 

polytomous item example, the adaptability of these immigrant students in elementary 

schools was investigated using the Students’ School Adaptability inventory (Wu et al., 

2008).  

An inventory measuring Students’ School Adaptability was administered to 565 

elementary school students in Taiwan between 2005 and 2007. The inventory 



comprised three tests, assessing the teacher–student relationship (4 items), peer 

relationships (7 items), and the curriculum/environment (7 items). All of the tests 

were in the form of four-point polytomous items. All of the items were constant 

across the three testing times. The three tests were therefore treated as measuring 

first-order latent traits governed by a common second-order latent trait representing 

the overall adaptability. 

Four questions related to ML-HIRT model selection were of specific interest. 

First, did the items share an identical slope parameter, and could a common set of 

threshold parameters be applied to all of the items (i.e., the RS-ML-HIRT model and 

the GR-ML-HIRT model)? Four common polytomous ML-HIRT models with linear 

growth were used to fit the data, and the resulting DIC values were 64,981.9 for the 

RS-ML-HIRT model, 64,513.2 for the GR-ML-HIRT model, 64,230.8 for the 

PC-ML-HIRT model, and 63,593.7 for the GPC-ML-HIRT model. The 

GPC-ML-HIRT model with linear growth therefore provided the best fit to the data. 

Second, the GPC-ML-HIRT model was compared to the GPC-ML-IRT model (i.e., all 

the test items measured a single latent trait) to determine whether the higher-order 

latent traits were necessary. The results showed that the GPC-ML-HIRT model 

yielded a better fit to the data (DIC = 63,593.7) than the corresponding ML-IRT 

model (DIC = 669,22.5) and that the three first-order latent traits can be governed by 



an overall performance of the school adaptability. Third, is a linear or nonlinear 

(quadratic) latent growth model more appropriate? Compared with the 

GPC-ML-HIRT model with quadratic growth (DIC = 63,596.1), the GPC-ML-HIRT 

model with linear growth fit the data better (DIC = 63,593.7). Finally, did the local 

and immigrant students display systematically different growth trajectories? Two 

linear growth GPC-ML-HIRT models with and without Level-3 predictors were 

compared, and the GPC-ML-HIRT model without Level-3 predictors (DIC = 63,593.7) 

provided the best fit, as its DIC value was smaller than that of the same model with 

Level-3 predictors (DIC = 63,596.4). In addition, the same PPMC methods used in the 

dichotomous-item example were adapted to assess the absolute model fit. The 

GPC-ML-HIRT model without Level-3 predictors was judged to provide a 

satisfactory fit to the data because all the posterior predictive p-values were 

substantially different from 0 or 1.  

    The estimates were between -2.82 and 1.86 (M = -0.87) for the location 

parameters and between 0.41 and 1.81 (M = 0.96) for the slope parameters. The 

estimates for the three factor loadings were 0.80, 1.11, and 1.00 for the 

teacher–student relationship, peer relationships, and the curriculum/environment, 

respectively. It may be concluded that a relatively wider range of location parameters 

was observed, that the three factor loadings were similar, and that the differences in 



the growth trajectories of the local and immigrant students were very small. In 

summary, the two examples illustrate successful applications of the ML-HIRT model 

to real data.  


