Supporting Information

Table of Contents

Table S1. Relative sialidase activities of Pd2,6ST S232L/T356S/W361F towards different sialosides. S2
Figure S1. Sequential saturation mutagenesis and blue-white colony screening of Pd2,6ST mutants for enhanced $\alpha 2$ –6-sialidase activity
Figure S2. Effect of CMP concentration on Pd2,6ST S232L/T356S/W361F neosialidase reaction rate
Figure S3. HRMS detection of intermediate CMP-Neu5Ac formation by Pd2,6STS232L/T356S/W361F neosialidase activity
Figure S4. HPLC detection of Pd2,6ST S232L/T356S/W361F neosialidase activity towards egg yolk sialoglycopeptide
Figure S5. HRMS detection of Pd2,6ST S232L/T356S/W361F neosialidase activity towards egg yolk sialoglycopeptide
¹ H and ¹³ C NMR spectra of Neu5Acα2–6GalβX (1)S8

Compound number	Compound abbreviation	Relative sialidase activity
2	Neu5Ac α 2–6Gal βp NP	1.0
3	Neu5Acα2–3GalβpNP	2.5×10^{-3}
4	Neu5Ac α 2–8Neu5Ac α 2–3Gal β pNP	3.3×10^{-3}
5	Kdn α 2–6Gal βp NP	$9.8 imes 10^{-4}$
6	Neu5Gcα2–6GalβpNP	1.2×10^{-1}
7	Neu5Acα2–6GalNAcβpNP	1.9

Table S1. Relative sialidase activities of Pd2,6ST S232L/T356S/W361F towards different sialosides.

Figure S1. Sequential saturation mutagenesis and blue-white colony screening of Pd2,6ST mutants for enhanced α 2–6-sialidase activity.

Figure S2. Effect of CMP concentration (0.1, 0.2, 0.5, 1, 2, 5, 10, and 25 mM) on Pd2,6ST S232L/T356S/W361F neosialidase reaction rate.

Figure S3. A) HRMS detection of intermediate CMP-Neu5Ac formation by the neosialidase activity of Pd2,6ST S232L/T356S/W361F. **B**) and **C**) are enlarged m/z regions in **A**). Signals for M-1 molecular ions of Neu5Ac (Calcd. 308.0987, found 308.0976), CMP (Calcd. 322.0440, found 322.0435), CMP-Neu5Ac (Calcd. 613.1400, found 613.1356), and Neu5Ac α 2–6Lac β MU (Calcd. 790.2411, found 790.2372) were observed.

S4

Figure S4. HPLC detection of Pd2,6ST S232L/T356S/W361F neosialidase activity toward egg yolk sialoglycopeptide. **A**) no-enzyme control; **B**) neosialidase enzymatic reaction; **C**) enzymatic reaction mixed with egg yolk sialoglycopeptide substrate standard.

Figure S5. HRMS detection of Pd2,6ST S232L/T356S/W361F neosialidase activity towards egg yolk sialoglycopeptide. Signals for (M+3)/2 ions were observed for the disialyl (Calcd. 1433.0924, found 1433.0910) in the no-enzyme control (**A**) and asialo glycopeptides (Calcd. 1141.9969, found 1141.9967) in the neosialidase reaction (**B**). Monosialylated glycopeptide was not detected. Structures of the glycopeptides are shown.

