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A.1 Proofs

The notation used in these proofs was introduced in Section 2.
Let l be a GP indexed by η, with mean 0 and covariance function Cη. Let E1, E2, E3

be any finite disjoint sets of values of η. Define Σij = Cη(Ei, Ej) for 1 ≤ i, j ≤ 3. Since all
finite-dimensional distributions of l are Gaussian, it is seen that

•
E[l(Ei)|l(Ej)] = ΣijΣ

−1
jj l(Ej), (15)

•
V ar{E[l(Ei)|l(Ej)]} = ΣijΣ

−1
jj Σji, (16)

•
l(Ei)|l(Ej) ∼MVN (E[l(Ei)|l(Ej)],Σii − V ar{E[l(Ei)|l(Ej)]}) (17)

Notice that V ar[l(Ei)|l(Ej)] is the variance of the error from prediction of l(Ei) using the
BLUP E[l(Ei)|l(Ej)].

Proposition 1: Under the above assumptions,

V ar[l(E1)] ≥ V ar[l(E1)|l(E3)] ≥ V ar[l(E1)|l(E2), l(E3)],

where A ≥ B iff A− B is non-negative definite.
Proof: Follows from properties of a multivariate normal density.

Proposition 2: Let B be a finite set of β-points and Z be a finite set of ζ-points. De-
fine Z∗ = {ζ∗}∪Z. If the covariance function for l is separable in a sense of Equation (4),
then

E[l([β∗, ζ∗])|l(B ⊕ Z∗)] = E[l([β∗, ζ∗])|l(B ⊕ ζ∗)]. (18)

Proof: Without loss of generality, assume that σ2 = 1 (because of Equation (15)), and
that ζ∗ is the first element of the list Z∗.

Notice that, under the assumed separability,

• V ar[l(B ⊕ Z∗)] = Cη(B ⊕ Z
∗,B ⊕ Z∗) = Cβ(B,B) ⊗ Cζ(Z

∗,Z∗), where ⊗ is the
Kronecker product,

• Cov[l(B ⊕ Z∗), l(β∗ ⊕ ζ∗)] = Cη(B ⊕ Z
∗, β∗ ⊕ ζ∗) = Cβ(B, β

∗)⊗ Cζ(Z
∗, ζ∗).
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•
[V ar(l(B ⊕ Z∗))]−1Cov[l(B ⊕ Z∗), l(β∗ ⊕ ζ∗)] =

Cβ(B,B)
−1Cβ(B, β

∗)⊗ Cζ(Z
∗,Z∗)−1Cζ(Z

∗, ζ∗) =

Cβ(B,B)
−1Cβ(B, β

∗)⊗ e1,

where e1 is the first standard basis vector for (|Z∗| + 1)-dimensional vector space.
[This is true since Cζ(Z

∗, ζ∗) is the first column of Cζ(Z
∗,Z∗), by definition of Z∗.]

Therefore, E[l(η∗)|l(B ⊕ Z∗)]

= l(B ⊗ Z∗)TCβ(B,B)
−1Cβ(B, β

∗)⊗ e1

= [Cβ(B, β
∗)TCβ(B,B)

−1 ⊗ eT1 ] · l(B ⊗ Z
∗)

= vec{eT1 · unvec[l(B ⊕ Z
∗)] · Cβ(B,B)

−1Cβ(B, β
∗)}

= l(B ⊕ ζ∗)TCβ(B,B)
−1Cβ(B, β

∗).

In this equation, vec(·) is the vectorization operator defined for a m × n matrix A as
vec(A) = [AT

1 , . . . , A
T

n ]
T, where Ai is the ith column of A. The jth column of unvec[l(B⊕

Z∗)] is the column vector l(B ⊕ ζ (j)), where ζ (j) is the jth element of Z∗. We are using
the identity vec(ABC) = (CT ⊗ A) · vec(B) for any matrices A,B,C of such dimensions
that the product ABC is defined (Harville 1997, chap. 16).

The proof follows by observing that E[l(η∗)|l(B ⊕ Z∗)] does not depend on Z, and is
equal to E[l(η∗)|l(B ⊕ ζ∗)], which can be verified by taking Z to be an empty set.

A.2 Details of Inference and Fitting

In the first subsection, we outline the exact steps that need to be taken to carry out
Bayesian inference using the proposed interpolants. The later subsections provide details
for fitting DOSKA and INDA.

A.2.1 Steps for Bayesian Inference with the Proposed Interpolants

This section is an adaptation of the procedure of Bliznyuk et al (2008) for Bayesian
inference using RBF approximation to computationally expensive posterior density.

Step 1. Select the β-knots on a HPD region for β. For details, see Bliznyuk et al
(2008) and Bliznyuk et al (2010, submitted).

Step 2. Fit DOSKA as discussed in Section 3 or INDA as discussed in Sections 2.2-2.4
or Appendix A.2.3.
Use the interpolants of the full log-posterior to define the approximate posterior
density via Equation 2.

Step 3. Sample π̃ using an MCMC algorithm.
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A.2.2 Fitting of DOSKA

Unlike many popular RBF interpolants that involve no basis function parameters, success-
ful application of kriging requires estimation of parameters θ of the correlation function
Cβ. In this section we review two methods of estimation, maximum likelihood and K-fold
cross-validation. We assume that one has (i) knots D = B ⊕ Z in a high-probability
region of π and (ii) values of l at these points. For consistency with the assumption of
zero mean Gaussian process made about l, we re-center l by subtracting from it the mean
of l(B⊕Z), as was done in Rasmussen (2003). This does not influence the interpretation
of the log-posterior l since it is only known up to an additive constant.

The assumption that l is a realization of a Gaussian process allows one to write down
the likelihood of l(B ⊕ Z). This is a multivariate normal density with mean 0 and co-
variance matrix σ2 · Cβ(B,B) ⊗ Cζ(Z,Z), by separability of Cη and our choice of knots
D. Thanks to the Kronecker product representation, the log-likelihood can be evaluated
efficiently.

An alternative K-fold cross-validation criterion (KfCV) reuses subsets of the “data”
l(D) for validation, thereby guarding against overfitting. In our setting, its form is

F (θ) :=

K∑

i=1

‖l̃i,θ(Bi ⊕Z)− l(Bi ⊕ Z)‖
2
F , (19)

where
l̃i,θ([β

∗, ζ∗]) := Cβ(β
∗,B−i; θ) · Cβ(B−i,B−i; θ)

−1 · l(B−i ⊕ ζ∗), (20)

{B1, . . . ,BK} is a partition of B, B−i := B\Bi is the set difference and, for a matrix A,

‖A‖2F =
∑

i,j A
2
i,j (squared Frobenius norm of A). To compute l̃i,θ(Bi⊕Z) for a given value

of θ, it is necessary to obtain a factorization of Cβ(B−i,B−i; θ) and to evaluate l(B−i ⊕ ζ)
for all ζ ∈ Z. The overall cost of factorizing Cβ(B−i,B−i; θ) for all i can be made equal to a
small multiple of |B|3, as opposed toO(K ·|B|3) in a näıve implementation, if one computes
QR or Cholesky factorizations of Cβ(B−i,B−i; θ) by downdating a single factorization of
Cβ(B,B; θ) for each i (Golub and Van Loan, 1996, sec. 12.5). For example, for the choice
K = |B|/4 that we use, computational savings can be enormous if |B| is large.

Many of the popular correlation functions are differentiable in θ, and so both F and
the negative of the log-likelihood function can be minimized efficiently by numerical op-
timization. In our experiments, both of these criteria often had multiple minimizers, so
multiple starting points for optimization are necessary.

In preliminary experiments to determine which method requires the fewest knots for
a given level of accuracy, we had more success with KfCV. In particular, on Rasmussen’s
test problem 2 discussed below in Section 4, for higher values of dim(β), the MLE required
roughly twice as many β-knots as KfCV. For this reason, we use the KfCV criterion in
the experiments of this paper.

A.2.3 Fitting INDA using RBF Interpolation

We now describe the procedure for fitting INDA using RBF interpolation with the cubic
basis function and a linear polynomial tail q(β) = (1,βT) · c. Discussion of fitting for
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other choices of basis functions is in Powell (1996).
Define the matrix Φ ∈ R

N×N by: Φi,j = φ(‖β(i) − β(j)‖2), for i, j = 1, . . . , N . Let
P ∈ R

N×(p+1) be the matrix with (1, {β(i)}T) as the ith row for i = 1, . . . , N . The
coefficients for the RBF surface that interpolates GE,k, the kth component of GE , at the
points β(1), . . . , β(N) are obtained by solving the system

(
Φ P

P T 0

)(
a

c

)
=

(
Gk

0

)
, (21)

where Gk =
[
GE,k(β

(1)), . . . , GE,k(β
(N))

]T
, a ∈ R

N and c ∈ R
p+1.

The interpolation matrix on the left-hand side of equation (21) is invertible if and only
if the rank of P is p+ 1 (Powell 1992). For the case of a cubic RBF with a linear tail,
this holds if and only if the set of (distinct) design points contains p+ 1 points that are
affinely independent. For stability purposes, we solve equation (21) by means of matrix
factorizations, as described in Powell (1996).

Notice that, for all k, the linear systems of equations have the same interpolation ma-
trices, and, consequently, only a single matrix factorization is required to simultaneously
solve the interpolating equations for multiple right-hand sides.

A.3 Definitions of the Posterior Densities and of GE

From Section 5 we have that [Y |w, γ] = MVN(Hw,ΣY ) and that [w|γ] = MV N(µw,Σw).
The prior [γ] will be specified later.

Using the standard trick of completing the square, we get that

−2 · log[w|Y, γ] + c = (w − b)TΨ−1(w − b)− bTΨ−1b+ Y TΣ−1
Y Y + µT

wΣ
−1
w µw,

where
Ψ−1 = HTΣ−1

Y H + Σ−1
w (22)

and
b =

{
HTΣ−1

Y H + Σ−1
w

}−1
(HTΣ−1

Y Y + Σ−1
w µw), (23)

so that [w|γ, Y ] is MVN(b,Ψ).
By using the identity

[Y, w, γ] = [Y |w, γ][w|γ][γ] = [w|γ, Y ][γ|Y ][Y ]

and manipulating the expressions, it can be seen that

log[γ|Y ] = c+ log[γ]−
1

2
log |ΣY | −

1

2
log |Σw| −

1

2
log |Ψ−1| (24)

−
1

2

(
−bTΨ−1b+ Y TΣ−1

Y Y + µT

wΣ
−1
w µw

)

where c do not depend on w or γ. We assume that µw = 0, so the last term in log[γ|Y ]
vanishes.
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To finish the specification of the model, we put a uniform priors on σ’s (non-uniform
on σ2) as suggested by Gelman (2006), and uniform priors on the correlation parameters.
The priors are proper since the parameter space for γ is bounded.

The output of the expensive computation to evaluate [γ|Y ] under this specification
consists of the third, (possibly, fourth), fifth, sixth and seventh terms in equation (24)
(counting c). Since we also need to evaluate [w|γ, Y ] in order to compute [w, γ|Y ], we
need to save b and a Cholesky factor of Ψ−1; however, this makes saving of some of the
terms in the above expression for log[γ|Y ] unnecessary.

A.4 Estimation of the Total Variation Norm by Importance

Sampling

A Monte Carlo (MC) method to estimate the total variation (TV ) norm is presented in
this section.

For probability measures GX and GY with densities gX and gY the TV norm is defined
as

TV (GX , GY ) = sup
A∈R

|GX(A)−GY (A)| =
1

2

∫

R

|gX(t)− gY (t)|dt.

Notice that

∫

R

|gX(t)− gY (t)|dt =

∫

R

|gX(t)− gY (t)|

g(t)
g(t)dt ≈

1

M

M∑

i=1

|gX(Vi)− gY (Vi)|

g(Vi)
,

where V1, . . . , VM are i.i.d. from g. If the importance density is g = 1
2
gX+ 1

2
gY , the random

variable |gX(Vi)− gY (Vi)|/g(Vi) is supported on the interval [0, 2] and, as a consequence,
its variance is bounded by 1 from above. (The variance is much lower if the true TV norm
is small.) Hence, an MC estimate of the TV norm to a desired accuracy can be easily
obtained.

If the densities gX and gY are unknown, but the respective univariate samples x1, . . . , xn

and y1, . . . , ym are available, estimates of gX and gY can be used as in Algorithm 1 below.
(It is assumed that the sample quantiles for the two samples are consistent; independence
is not necessary.)

We use a pilot run to estimate the variance of Zi and choose M to make the MC error
of the estimated TV norm negligible. In our applications, xi’s and yi’s are produced by
MCMC runs from the cheap-to-evaluate approximate posterior densities whose length can
be chosen by the user to control the accuracy of g̃X and g̃Y .
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Algorithm 1 estimate TV norm

Require: x1, . . . , xn ∼ gX ; y1, . . . , ym ∼ gY ; M

1: estimate gX and gY using kernel smoothing by g̃X and g̃Y from x1, . . . , xn and
y1, . . . , ym

2: for i = 1, . . . ,M do

3: draw Bi ∼ Bernoulli(1/2)
4: if Bi = 0 then

5: set Vi ← xj with probability 1/n for j = 1, . . . , n
6: else

7: set Vi ← yj with probability 1/m for j = 1, . . . , m
8: end if

9: set

Zi ←
|g̃X(Vi)− g̃Y (Vi)|

g̃X(Vi) + g̃Y (Vi)

10: end for

11: return sample mean and sample variance of Z1, . . . , ZM
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Figure 4: Summaries for GRIMA: estimated TV norms between samples from RBF ap-
proximations to log[β|Y ] with 185 knots and with smaller numbers of knots. The sample
size is 3 · 104.
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Figure 5: Summaries for the approximation with 185 β-knots: estimated component-wise
TV norms between samples from the exact and approximate densities for DOSKA (∇) and
INDA (o). MCMC sample size is 105.
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