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S1T.1 Supplementary methods
S1T.1.1 Properties of the model for network dynamics

S1T.1.1.1 Distinct equivalent formulations of the model for network dynamics

The model formulation that I present in the main text considers that the activity state of a gene i may
be sti = 1 if i is active and sti = 0 if i is inactive. Dynamics is guided by gene interactions summarized
in a matrix G. In this matrix, a positive entry gij > 0 means that gene j promotes the activation of gene i
and a negative entry gij < 0 that gene j inhibits the expression of gene i. An entry gij = 0 means that the
activity of gene j has no direct effect on gene i. The main text explains that genes change their activity state
according to:

st+1
i = σi

 N∑
j=1

gijs
t
j − θi

 ,where : σi(x) =


1, if x > 0

sti, if x = 0

0, if x < 0

, and : θi =

∑N
j=1 gij

2
(1)

The model just mentioned can be rephrased in a distinct formulation. In this alternative version, an active
gene i has an activity state equal to +1 and the activity state of an inactive gene is -1. Dynamics is given by:
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st+1
i = σi

 N∑
j=1

gijs
t
j

 ,where : σi(x) =


1, if x > 0

sti, if x = 0

−1, if x < 0

(2)

The latter formulation is a version of a model first put forward by A. Wagner [1, 2]. Because the two
formulations are equivalent, a gene responds in the same way in any of them, either becoming active or
inactive, when exposed to the same combination of active/inactive regulators.

S1T.1.1.2 Generalization to other single GAPs

The model has important attributes that make it specially useful for the study of gene regulatory networks.
One of this attributes concerns properties of ensembles of networks that build one arbitrary stationary GAP
A from a specified initial system state a0 [3]. Ciliberti et al. found that an important parameter is the number
d of genes with different activity states in GAP A and initial system state a0. Consider a second arbitrary
stationary GAP B and another initial system state b0, that also differ in the activity of d genes. For networks
that build GAP A from the initial condition a0, there is a one-to-one transformation into networks that build
GAP B from b0.

In brief, the transformation of a network, with a matrix representation GA, that yields A from a0 to an
equivalent network GB that produces B from b0 involves the following steps [3]:

• Rearrange the order in which genes appear in a0 and A so that genes with different activity state in
the initial state and the stationary GAP appear in the same position as genes with different activity
state in the pair b0 and B. We may call a0

′
and A′ such rearranged initial state and GAP, respectively.

Rearrange the columns and rows of GA accordingly to obtain a new matrix G′A. The rearrangement
determines the correspondence between genes in the original network and genes in the new network.

• For every gene that appears in position i in the rearranged GAP A′ and that has a different activity
state as the i-th entry in GAP B, multiply by -1 all the entries in the i-th column and in the i-th row of
the rearranged matrix G′A.

The original and the new networks have the same dynamic and variational properties. Consider the
transformation that we just performed from a network GA that produces A from a0 to a network GB that
produces B from b0. Consider as well, for example, an arbitrary initial system state x0 that leads to A in
the original network and that differs from A in the activity of k genes. Then, an initial system state y0 exists
in the new network that leads to B and that differs from B in the activity of the k genes that correspond
(according to the rearrangement that we performed) to those that differ between x0 and A. Moreover, for
every mutation that in GA produces an effect relative to A there is a corresponding mutation that produces
the same effect in GB relative to B.

We can perform the same transformation to any network in the ensemble of networks that produceA from
a0, as explained by Ciliberti et al. [3]. Remember thatB and b0, that we used to perform the transformation,
were arbitrary, with the only restriction of having the same number of differences d as a0 and A. Therefore,
observations that are valid for the set of networks that produceA from a0 are also valid for the set of networks
that produce any stationary GAP from an initial state that differs in the activity of d genes.

Now, let’s examine the properties of the model in the context of the evolutionary simulations presented
in this study. Consider simulations where networks evolve, as described in Methods in the main text, under
selection to maintain a single stationary GAPA. The default initial condition, in the absence of perturbations
is A itself (d = 0). Following the procedure described above, we can find a one-to-one transformation from
networks that maintain A to networks that maintain an arbitrary stationary GAP B. Perturbations of the
initial condition do not invalidate the relationship between a network GA that maintains A and a network
GB that results from the transformation of GA and that produces B. The probability of obtaining an initial
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condition that differs fromA in the activity of k genes for GA follows the same distribution as the probability
of obtaining for GB an initial condition that differs from B in the activity of the corresponding k genes.
Moreover, it is specially relevant for the simulation of evolutionary processes that the effect of a mutation in
network GA relative to GAP A is preserved in the network that results from the one-to-one transformation
GB , but relative to GAP B. Thus, in this set up, what is true for those scenarios in which A evolves is also
true for scenarios where any other stationary GAP takes the place of A.

S1T.1.1.3 Generalization to other pairs of GAPs

Many of the evolutionary simulations that I present involve selection for two stationary GAPs that we
may call A and B. I will call h to the number of genes with different activity states in GAPs A and B.
Consider a network that is able to maintain the two stationary GAPs (i.e. d = 0 for both GAPs). Consider as
well two other stationary GAPs, C and D, that also differ in the activity of h genes. There is also a one-to-
one transformation from networks that maintain A and B to networks that maintain C and D. Starting from
a network, with a matrix representation GAB , that produces GAPs A and B, the transformation involves the
following steps:

• Rearrange the order in which genes appear in A and B so that the h genes with different activity
state appear in the same position as those with different activity state in the pair of GAPs C and D.
Rearrange the columns and rows of GAB accordingly. I will refer to the rearranged GAPs and matrix
as A′, B′ and G′AB . That after this step G′AB has the same properties relative to A′ and B′ as GAB

relative to A and B is obvious since we are merely listing the genes in a different order in the matrix
and in the GAPs. This rearrangement defines which gene in the original network corresponds to which
gene in the new network.

• For every gene that appears in position i in the rearranged GAP A′ and that has a different activity
state as the i-th entry in GAP C, multiply by -1 all the entries in the i-th column and in the i-th row of
the rearranged matrix G′AB .

Multiplying row i’s entries by -1 guarantees that all the factors that kept gene i in an activity state opposed
to the one it should have in GAP C now keep it in the right activity state with the same strength. Multiplying
column i’s entries by -1 guarantees that the effects that gene i had on other network genes before changing
the i-th row will have the same sign and magnitude after changing that row. Thus the sequence of changes
that other genes follow is not perturbed. Consequently, the new matrix, GCD, maintains GAP C, just like
the original network maintained GAP A.

Now let’s see some of the properties of the transformation that we have just performed. Consider an
arbitrary initial condition in the original system x0. This initial condition will differ from GAP A in the
activity of some genes, that we may group in a set V . For the new network, we may define another set
V ′ that groups together the genes that correspond to genes in V , according to the rearrangement that we
performed in the first step of the transformation. We thus can build an initial system state y0 for the new
network by taking GAP C and changing the activity state of those genes in V ′. If we subject x0 to dynamics
driven by the original network GAB and y0 to dynamics driven by GCD we will observe that for every gene
that changes its activity state in the original network, the corresponding gene also changes its activity state
in the new network. This pattern follows throughout the two dynamic trajectories. Indeed, if GAB leads to
GAP A when network dynamics start from x0, then GCD will lead to GAP C when dynamics start from
y0. Moreover, if in the original system x0 leads to GAP B, then y0 will lead to GAP D. Therefore, the new
network, besides producing C, also yields D just like the original network produced A and B.

The transformation that we performed preserves all the properties that the original network has with
respect to GAPs A and B, but relative to GAPs C and D. Importantly, this relationship between GAB and
GCD does not only pertain to variations in initial conditions, but also to changes in gene interactions. If a
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mutation in GAB causes it to produce, instead of A, a GAP that differs from A in the activity of k genes,
then the corresponding mutation in GCD will cause it to produce a GAP that differs from C in the activity
of the k corresponding genes. Taken together, this means that the new network preserves the same dynamic
and variational properties of the original network GAB . Therefore, with the set up that I use, observations
that are valid for scenarios under selection for a specific pair of GAPs that differ in the activity of h genes are
also valid in scenarios where selection favours in the same manner any pair of GAPs with the same number
of differences between them.

S1T.1.2 Distance between GAPs

In order to evaluate a network’s fitness, it is necessary to compare how similar is the GAP that each
developmental trajectory produces to a target GAP that is assumed to produce a biological function optimally
(see subsection ‘Evaluation of a network’s fitness’ in Methods).

GAP X

X2

GAP Y

Y1

(i)

X2...
...

t=n-2
t=n-1
t=n

t=n+1...
...

Y1 ...
...

t=m-2
t=m-1
t=m

t=m+1...
...

(ii)

X2 Y1

H(X2,Y1, 0) = 0 + 1 = 1

H(X2,Y1, 1) = 1 + 0 = 1

D(X ,Y) =
min{1,1}

8 = 1
8

(iii)

Fig A. Measuring the distance between GAPs with unequal periods. (i) Building versions of GAPs with
the same number of rows. (ii) Different pairing between system states that preserve the order in which they
appear. (iii) Assessing the number of differences for each of the possible associations and evaluating the
distance between GAPs.

In the more general case, two GAPs X and Y may not have the same period kX 6= kY . That is, there is
a different number of system states that are repeated indefinitely in each GAP. Fig A(i) shows an example in
which GAP X is stationary (kX = 1) and GAP Y is a limit cycle (kY = 2).
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In order to compare two GAPs of unequal sizes, one may describe a GAP X repeating any number
u ∈ Z+ of times its kX system states. I refer to the resulting row augmented matrix of size (kXu) × N as
Xu (Fig A(i)). One may do the same for the other GAP Y , thus building a row augmented matrix Yv of size
(kYv) ×N . Hence, to measure the distance between the two GAPs I first find u and v values such that the
sizes of the row augmented matrices Xu and Yv are the same (kXu = kYv). This step allows comparing
versions of the network GAP Y and GAP X with the same number of entries, even if their period does not
coincide. In the example of Fig A(i), u = 2 and v = 1.

Once one has versions of the GAPs Xu and Yv with the same number of rows R = kXu = kYv, the
next step is to evaluate how different they are. To do so, it is required to find which row of Xu corresponds
to which row of Yv. There are R forms of pairing the system states in the two GAPs without disturbing
the order in which they appear (coloured lines in Figs A(ii),(iii)). Each of them associates the i-th system
state in one GAP to the system state that in the second GAP appears in row i + j (mod R), with j ∈
{0, 1, . . . , R − 1}. For each manner j of pairing system states, H(Xu,Yv, j) is the sum of the number of
differences between corresponding rows (coloured equations in Fig A(iii)). Among all R distinct forms of
relating system states, I pick the one in which H(Xu,Yv, j) has the lowest value (Fig A(iii)). Doing this
allows to recognise similar GAPs that are described starting from different steps of the cycle. Finally, the
result is divided by the total number of compared entries to get a distance 0 ≤ D(X ,Y) ≤ 1:

D(X ,Y) = min({H(Xu,Yv, j) : j = 0, 1, . . . , kXu− 1})
kXuN

(3)

When the GAPs that will be compared have the same period, then it is not necessary to build any row
augmented matrix (see example in Fig B). When kX = kY , then u = v = 1 and the distance between the
two GAPs is merely:

D(X ,Y) = min({H(X ,Y, j) : j = 0, 1, . . . , kX − 1})
kXN

(4)

GAP X

GAP Y

(i)

GAP X...
...

t=n-2
t=n-1
t=n

t=n+1
t=n+2...

...

GAP Y ...
...

t=m-2
t=m-1
t=m

t=m+1
t=m+2...

...

(ii)

GAP X GAP Y

H(X ,Y, 0) = 3 + 2 + 2 = 7

H(X ,Y, 1) = 0 + 1 + 0 = 1

H(X ,Y, 2) = 1 + 1 + 3 = 5

D(X ,Y) =
min{7,1,5}

12 = 1
12

(iii)

Fig B. Measuring the distance between GAPs with equal periods. (i) GAPs with the same number of
rows. (ii) Different pairing between system states that preserve the order in which they appear. (iii)
Assessing the number of differences for each of the possible associations and evaluating the distance
between GAPs.

This general case simplifies to an even more intuitive situation when both GAPs are stationary (kX =
kY = 1). In this case there is only one possible association between the single rows in each GAP. Thus, the
distance between the two GAPs is defined by the fraction of genes with different activity states:
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D(X ,Y) = H(X ,Y)
N

(5)

S1T.1.3 Mutation

Mutation merely affects the number of regulators that a gene has. Thus, a mutation changes an entry
in the matrix G that describes gene interactions. Other kinds of mutation, like gene duplication, are not
considered in this contribution. A gene i acquires a new regulatory interaction with probability µγN−Ri

N ,
where µ is the mutation rate per gene, γ is the propensity to gain interactions and Ri is the number of genes
that regulate gene i. In this case, the new regulator is chosen with uniform probability among the N − Ri

genes that did not regulate gene i before mutation and the new interaction is equally likely to be positive
or negative. The probability that a gene loses a regulatory interaction equals µ(1 − γ)Ri

N . The interaction
that is lost is then picked at random among those that regulate gene i. Note that the probability of losing
an interaction increases with Ri, while the probability of acquiring an interaction decreases. Also note that
these two probabilities are equal when Ri = Nγ. Therefore, mutation tends to pull the number of regulators
to Nγ, the expected number of regulators per gene. Thus, one may define how sparse or dense networks
tend to be by tuning γ.

The setup that I use to implement mutation assumes that the regulatory region of a gene with many dis-
tinct transcriptional regulators contains more transcription factor binding sequences than a gene with few
regulators. Thus, the probability that a random mutation wrecks a regulatory interaction increases with the
number of regulators. The setup also assumes that new functional transcription factor binding sequences
appear without disrupting those that already exist. Hence, a regulatory region with few functional binding
sequences will offer more opportunities for the appearance of new such sequences. The value of γ, that mod-
ulates how easy it is to gain or lose interactions, may be associated to biophysical parameters as specificity
or the length of transcription factor binding sequences. These parameters affect the number of distinct DNA
sequences that yield meaningful interactions with transcription factors [4, 5].

S1T.2 Supplementary analyses
S1T.2.1 Duration of evolutionary simulations

The possibility exists that, for some of the evolutionary scenarios addressed in the main text, modularity
or other network properties may still be evolving when the simulation stops. If this were the case, the poten-
tial of an evolutionary scenario to produce an increase in modularity may not be correctly assessed. One way
that I used to avoid this potential problem was to consider a duration of the evolutionary process that sur-
passes by far the number of generations that are typically required to achieve maximal fitness. For example,
the figure below (Fig C) shows how maximal fitness changes in populations that evolve in simulations that
consist of two distinct stages. In the first stage, that lasts 2,000 generations, selection favours the construction
of a single GAP (GAP I in Fig 3A in the main text). In the remaining 8,000 generations, selection favours
networks that can produce two different GAPs (GAPs I and II in Fig 3A in the main text) from different
initial conditions. The figure shows that more than 75% of the populations have reached a fitness equal to
one after 3,000 generations in the second stage (at generation 5,000), many generations before the simulation
finishes. Another strategy was limiting my analyses to those populations that have adapted successfully, as
they achieve a fitness that exceeds a threshold of 0.9. Nevertheless, one may still doubt whether taking these
measures was sufficient. I contend that this was the case for reasons explained in the next paragraph.

In case it existed, the problem of modularity still evolving by the end of the simulation would be more
severe in evolutionary scenarios where adaptation is more difficult and slow. The scenario where adapta-
tion was clearly less frequent than in all other scenarios was when there was selection for two GAPs and

6



●●●●
●●●●●●●

●

●
●●●●●●●
●

●

●●

●
●●●
●
●●●●
●
●

●●●●●●
●●●

●
●●●●●●●●
●

●

●●● ●●
●●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●
●
●

●

●●●●●●●
●●●●●

●

●●●
●●
●●●●●●●●
●●●●
●
●●
●●
●●
●●●●●
●●
●

●●●●
●
●●●
●
●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●
●●●●●●●●
●
●
●●●●●●●●
●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●

●

●●

●

●
●

●

●

●●●

●●
●

●

●

●

●

●

●●

●●●●●

●

●

●

●
●
●

●

●●

●●

●

●●●

●
●
●
●

●

●●●

●

●
●●
●

●

●●
●
●
●
●●●
●●●●●●●●●

●

●

●

●●●
●●

●●

●

●●

●

●●

●

●
●
●

●

●●
●
●●●●●

●

●●●●●

●

●
●●
●●●●
●
●●●●

●

●

●●●●●●●●

●

●
●

●

●●
●
●●●●

●●●

●●●●

●
●
●
●
●●●

●

●●●

●

●
●

●

●●●

●

●
●
●
●●●●●●●●

●

●

●

●
●
●
●●

●●

●
●

●

●

●
●

●

●
●

●

●●●●●●●●

●

●●●●●
●●
●●●●
●
●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●

●

●

●

●

●●●●●●
●
●●

●

●●

●
●

●

●
●

●

●

●●●●
●
●●●●●●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●●●●●●

●

●

●●●●●●

●

●●●●

●

●●●●

●

●●●

●

●●●●

●
●●

●

●

●

●●●

●

●●

●

●

●●●●

●

●

●
●●

●●

●

●

●
●

●

●●

●●

●

●●●

●●●●●●

●

●●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●●●●●

●

●●●●
●
●

●
●

●●●●

●

●●●
●

●

●

●

●●●●

●

●

●

●●

●

●

●

●●●●

●●

●●●●
●●

●

●●

●●

●

●

●

●

●
●

●●●

●

●

●●●

●
●

●

●

●
●

●●

●●

●

●●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●●

●

●

●

●●●

●

●

●

●●

●●●

●

●
●
●

●

●●

●

●●●●●

●

●●

●

●

●

●●●●●●

●

●

●

●

●
●

●●

●

●

●●

●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●●●●●●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●
●

●●

●●●

●

●

●
●

●●●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●●●●●

●

●●

●

●●●

●

●●

●
●

●●●●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●●

●●

●●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●●●●●

●●

●●●●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●●●●

●

●●

●●

●

●

●

●●●

●

●

●●

●●

●●●

●
●

●

●
●

●

●
●

●●

●
●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●

●
●

●●

●

●●●
●●
●

●●

●●

●●●

●

●

●

●

●●

●●

●●●

●●

●

●
●●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●●●●

●

●●●

●

●

●
●
●

●

●●●

●

●●●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●
●

●

●

●

●●●●

●

●●

●●
●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●●

●
●

●

●●

●●●

●

●●

●

●●●

●●●

●

●●

●●

●●●

●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●
●

●●●

●

●●●●●●●●

●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●●

●

●●● ●●●

●

●●

●●

●

●

●●●●

●

●●

●

●

●

●●

●●●

●

●●●

●

●●●

●

●●●●

●

●●

●

●●

●●● ●●●

●

●●

●

●

●

●
●

●

●

●

●

●●
● ●●●

●

●

●●

●

●

●

●●●

●● ●●●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●
●●
●●

●

●

●
●
●●

●

●
●●

●●

●●

●

●●●

●●

●●●

●

●●
●
●●●●

0 750 1750 2750 3750 4750 5750 6750 7750 8750 9750

0.2

0.4

0.6

0.8

1.0

Generations

M
ax

im
um

 fi
tn

es
s

Fig C. Evolution of maximum fitness in populations that successfully adapted. From generation 0 to
2000 there is selection for a single GAP. Afterwards, there is selection for two GAPs. Default parameter
values. Each box and the dots directly above and below it presents the distribution of maximum fitness at
generation t. The waist in each box indicates the median value at that time. The upper and lower border in
each box indicate the third and first quartile, respectively. Thus, the lower border in a gray box indicates the
fitness value that is surpassed by 75% of the data points. Dots denote outlier fitness values.

the propensity to gain interactions was unrealistically high (γ = 0.7, described in section ‘The effects of
sparseness on the evolution of modularity’ in the main text). Thus, I ran other simulations where I allowed
evolution for 28,000 generations in the ‘difficult’ scenario instead of only 8,000 generations. I found that, as
expected, many more populations adapt successfully in the long evolutionary simulations. Notwithstanding,
the differences were very small and not significant when I compared the modularity (QN

P ) in successfully
adapted populations in short and long simulations. Specifically, mean ± SD QN

P was 1.292 ± 0.964 and
1.336±0.902 for short and long simulations, respectively. The differences were not significant, according to
a Mann-Whitney U test (U = 66, 490; p = 0.503). In sum, these results suggest that, even in such a difficult
scenario, evolution of modularity had come to a halt in successfully adapted populations.

S1T.2.2 Evolution of the raw modularity score Qopt

Several previous studies have approached the issue of evolution of modularity using the modularity score
that results from the application of algorithms that find the partition that maximizes intra-group connection
density [e.g. 6–10]. I refer to this score as Qopt. As explained in the main text, this score does not separate
the effects that sparseness alone has on modularity, which was the starting point of most of the analyses that
I present. Notwithstanding, here I refer to results that show how Qopt changes in the evolutionary scenarios
that I considered in the main text. The reader may find useful these analyses for comparisons to studies that
use this score.

First I consider the same scenario as in Fig 3 in the main text. In this scenario, populations first evolve
under selection for a single target GAP (GAP I in Fig 3A in the main text). In a second stage, selection
favours networks that produce two distinct GAPs from different initial system states (GAPs I and II in
Fig 3A). Previous research had already shown that Qopt increases significantly when networks evolve new
additional gene activity patterns [11]. With the parameters that I used in this paper, networks that evolved
under selection for a single GAP had a mean ± SD Qopt equal to 0.192 ± 0.043. After selection for two
GAPs Qopt was 0.235 ± 0.059. This increase was statistically significant (W = 90, 392;p < 2.2 × 10−16;
Fig D).
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Fig D. Evolution of the raw modularity score Qopt. Evolution of Qopt due to selection for new additional
GAPs. The scenario and parameters used for simulations in this panel is the same as in Fig 3 in the main
text.

When assessing distinct values for the propensity to gain interactions γ the results for Qopt are different
as those reported in the main text. This difference is expected because Qopt does not discard the effects that
sparseness alone has on modularity. Thus, as networks become more connected, the value of Qopt decreases
both in ancestral networks that produce a single GAP and in evolved networks with the capacity to produce
two GAPs from different initial system states (Fig E(ii)).

Another expected discrepancy occurs when networks are under selection for a single GAP, but they
evolve first with a high propensity to gain interactions γ = 0.4 and in a second stage the value of γ is halved.
Because Qopt does not discard the effects that sparseness has on modularity, Qopt increases significantly
after networks become sparser (W = 121, 110; p < 2.2 × 10−16; Fig E(i)). Specifically, it increases from
0.152±0.038 to 0.232±0.053. In contrast, when the effects of sparseness alone are removed, as in the main
text, the modularity score did not increase significantly.
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Fig E. Evolution of the raw modularity score Qopt in sparse and non-sparse networks. (i) Qopt

increases in sparse networks both in networks evolved under selection for a single GAP and in networks
selected to produce two GAPs. The scenario and parameters used for simulations in this panel is the same
as in Fig 4 in the main text. (ii) Qopt increases after networks become sparser. Throughout evolution
networks are under selection for a single GAP. In a first stage, the propensity to gain interactions, γ, equals
0.4. In a second stage, γ equals 0.2.
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