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SUMMARY

The advent of mass cytometry increased the number
of parameters measured at the single-cell level
while decreasing the extent of crosstalk between
channels relative to dye-based flow cytometry.
Although reduced, spillover still exists in mass
cytometry data, and minimizing its effect requires
considerable expert knowledge and substantial
experimental effort. Here, we describe a novel
bead-based compensation workflow and R-based
software that estimates and corrects for interference
between channels. We performed an in-depth
characterization of the spillover properties in mass
cytometry, including limitations defined by the linear
range of the mass cytometer and the reproducibility
of the spillover over time and across machines. We
demonstrated the utility of our method in suspension
and imaging mass cytometry. To conclude, our
approach greatly simplifies the development of new
antibody panels, increases flexibility for antibody-
metal pairing, opens the way to using less pure
isotopes, and improves overall data quality, thereby
reducing the risk of reporting cell phenotype artifacts.

INTRODUCTION

High-dimensional, single-cell flow cytometry has been broadly

adopted by researchers and clinicians to analyze complex bio-

logical samples (Behbehani et al., 2012; Chevrier et al., 2017;

Levine et al., 2015; Perfetto et al., 2004). Fluorescence-activated

cell sorting (FACS) has dominated this field for decades, and,

with the constant improvement of probes and laser systems,

18-color FACS experiments are now routine, and 30-color cy-

tometers have recently become commercially available (Chatto-

padhyay and Roederer, 2012). Due to the overlapping excitation

and emission spectra of the fluorescent dyes, signals are

measured not only in the primary channel, but also in neighboring

channels. This spillover is correlated with the original signal in an

approximately linear manner and can be corrected via a process
612 Cell Systems 6, 612–620, May 23, 2018 ª 2018 The Authors. Pub
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called compensation (Bagwell and Adams, 1993). As the number

of parameters measured increases, however, it becomes more

difficult to optimize artifact-free staining panels, mostly due to

the spreading error affecting channels to different extents upon

compensation, which complicates the detection of proteins of

low abundance (Chattopadhyay and Roederer, 2012).

Mass cytometry, which uses metal isotopes as reporter to

label antibodies, allows analysis of at least 40 parameters simul-

taneously (Bandura et al., 2009; Bendall et al. 2011; Chattopad-

hyay and Roederer, 2015). This technology has recently been ex-

ploited for imaging by coupling a laser ablation system to amass

cytometer (Bodenmiller, 2016; Giesen et al., 2014; Angelo et al.,

2014). Imaging mass cytometry (IMC) enables the analysis of tis-

sue sections stained with metal-tagged antibodies to generate

highly multiplexed images at subcellular resolution (Bodenmiller,

2016; Giesen et al., 2014).

Although the amount of spillover observed in mass cytometry

is generally small, spillover can considerably complicate inter-

pretation of data and potentially lead to false conclusions. For

example, signal crosstalk can result in incorrect identification

of cells as expressing an intermediate level of a marker (Takaha-

shi et al., 2016). In experiments conducted to date, the effects of

spillover have been minimized by selecting only highly pure iso-

topes and by carefully designing antibody panels to optimize the

signal to background ratio in each channel (Takahashi et al.,

2016). Generating a low crosstalk antibody panel is complex

and time consuming, however. It requires that the approximate

antigen abundance is known for each marker used in the panel,

which is not possible in many types of experiments. Further, with

a purely experimental approach to avoid spillover, antibody-

isotope conjugates are not easily transferable between panels.

As spillover is proportional to the originating signal, it can be

reduced by decreasing antibody concentrations, but this also

reduces the signal-to-noise ratio, which limits its application. In

practice, the above-mentioned strategies are not sufficient to

completely prevent crosstalk between channels as shown in a

recent study in which data from spillover-affected channels

were excluded to avoid potentially misleading conclusions (Lun

et al., 2017). Spillover-related issues have not yet been

reported in IMC, but since the source and the measurement

of metal signal in suspension mass cytometry and IMC are iden-

tical, both systems are expected to be affected in a similar

manner.
lished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Here we present a comprehensive workflow to estimate and

systematically correct for signal spillover across all the channels

used in a givenmass cytometry experiment. Polystyrene capture

beads were single stained with each antibody used in the exper-

iment. To increase the throughput, the beads were then pooled

and analyzed simultaneously in the mass cytometer. Mixing is

critical to efficiency as it allows assessment of spillover in chan-

nels within minutes. The CATALYST R/Bioconductor package

and an interactive Shiny-based web application were developed

to accurately deconvolute the different bead populations, esti-

mate spillover signal in all channels, and compensate the data.

We demonstrate the utility of the approach in correction of

signal interference in suspension mass cytometry and IMC ex-

periments. Our approach will greatly facilitate the development

of antibody panels, increase the flexibility of antibody-metal

pairing, increase the number of usable isotopes, and enable

generation of high-quality data devoid of spillover artifacts on

samples with unknown and likely variable levels of antigen.

RESULTS

Mass Cytometry Spillover Is Linear and Can Be
Corrected Using Compensation
Fluorescent flow cytometry is affected by signal interference

between channels. Since spillover signal is a defined fraction

of the source signal, it can be corrected mathematically (Bag-

well and Adams, 1993; Loken et al., 1977). In mass cytometry,

the interference between channels is reduced but is still present

due to instrument properties (abundance sensitivity), isotopic

impurities, and oxidation (Figure 1A). To determine whether

channel crosstalk observed in mass cytometry can be cor-

rected in a manner similar to the one used for flow cytometry,

we first determined whether the crosstalk in mass cytometry

experiments is linear. We stained peripheral bloodmononuclear

cells (PBMCs) with anti-CD44 conjugated to 143Nd using

antibody concentrations ranging from 0.01 to 1 mg/mL (Fig-

ure 1B). As expected, signal was observed in other mass chan-

nels including �1 (142Nd), +1 (144Nd), +2 (145Nd), +3 (146Nd),

and +16 (due to the oxidation product 143Nd16O measured

in 159Tb). The signal in the source and in the spillover channels

could be fit by a linear model with a coefficient of determination

(R2) greater than 0.99 in all cases (Figure 1C, left panels). More-

over, we showed that a signal over 200 counts was sufficient to

provide an accurate estimate for spillover as low as 1%, calcu-

lated as the ratio of the spillover signal to the main signal for

each concentration (Figure 1C, right panels).

Applying these spillover coefficients on the single-stained

cells removed the spillover (Figure 1D, middle panels). However,

this strategy substantially modified the structure of the data by

introducing artificial negative values (Figure 1D, compare orange

and blue boxes), which specifically influenced channels strongly

affected by spillover. Negative ion counts are not present in un-

compensatedmass cytometry data, and, more importantly, data

with negative values require different treatment than strictly

non-negative abundance data. A recent study aimed at unmixing

signals in multispectral fluorescent flow cytometry made similar

observations and suggested use of approaches that specifically

incorporate a non-negativity constraint such as the non-negative

least-squares (NNLS) approach (Novo et al., 2014). This method
calculates the optimal non-negative solution for the compensa-

tion problem using the least-squares criterion. Applied to our

data, the NNLS approach removed the spillover without chang-

ing the data structure, making empty but spillover-affected

channels look similar to empty channels not affected by spillover

(Figure 1D, compare green and blue boxes). Taken together, our

data show that spillover in mass cytometry is linear and can be

corrected while preserving the data structure using the NNLS

approach.

Systematic Correction of Spillover in Mass Cytometry
Inspired by methods used in flow cytometry, in which controls

stained with single antibodies are used to estimate signal cross-

talk, we developed an approach to systematically correct for

signal interference in mass cytometry experiments. A 36-anti-

body panel was designed to detect the main immune cell popu-

lations in PBMCs (Table S1). This panel was not optimized to

avoid spillover effects and contained identical antibodies in

different mass channels to facilitate the identification of spillover

artifacts. In parallel to multiplexed sample staining, control sam-

ples stained with individual antibodies were generated by stain-

ing polystyrene antibody-capture beads (Figure 1E). After stain-

ing, beads were pooled and run as a single sample in the mass

cytometer.

To apply our approach for semi-automatic spillover correc-

tion in mass cytometry, we created an R/Bioconductor pack-

age, CATALYST, and a web application (Figures S1A and

S1B). In the first step, the FCS file containing data on the

bead sample is deconvoluted to identify the individual single-

antibody-positive bead populations using a new R implementa-

tion of the debarcoding algorithm from Zunder et al. (2015).

Each bead is assigned to a specific population based on the

dominant signal, and the purity of the bead populations is further

increased by automatically applying estimated sample-specific

cutoffs (Figure S1C). Upon debarcoding, the purity of the bead

populations was assessed to ensure that no beads had been

wrongly assigned and that no antibody exchange had occurred

during the bead mixing, which could influence the spillover es-

timate (Figure S2A). In a second step, the spillover matrix is

calculated based on the spillover observed for single-stained

populations. Due to the mass cytometry data structure, charac-

terized by an absence of negative values and a low background,

we observed that spillover estimation was more accurate when

the spillover was assessed at the single-bead level rather than at

the bead-population level (Figures S2B–S2D; see the STAR

Methods for details). By default, the method only takes into

account interference between channels expected to interact

based on abundance sensitivity, metal impurity, and oxidation

(Figures S2E and S2F), but also allows the user to check for un-

expected spillover. In a final step, the compensationmatrix from

the solved linear system (NNLS or ‘‘classical’’) is applied to the

bead and cell samples to remove interfering signal. This work-

flow provides a fully integrated and easy to use experimental

and computational solution for compensation of mass cytome-

try spillover.

Cellular Metal Load Influences Signal Spillover
The spillover matrix generated by our bead approach

revealed that the total amount of spillover originating from a
Cell Systems 6, 612–620, May 23, 2018 613
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Figure 1. Properties of Mass Cytometry Spillover and Description of a Single-Stained Bead-Based Compensation Workflow

(A) Schematic view of sources of signal interference that affect mass cytometry.

(B) Histogram showing signal intensity upon staining of PBMCs with the indicated concentrations of anti-CD44 antibody.

(C) The panels on the left display, as scatterplots, themedian intensities of signals obtained in themain channel (143Nd) and spillover-affected channels for PBMCs

stainedwith anti-CD44 antibody. Linearmodels are shown as blue lines. For each relationship, the coefficient of determination is indicated. The panels on the right

display the spillover percentage calculated for each concentration. The blue lines indicate the spillover as assessed based on the highest antibody concentration.

(D) Scatterplots showing the signals of the anti-CD44 antibody in the main channel and in the spillover-affected channels before compensation (left column), after

compensation with the conventional fluorescent flow cytometry approach (middle column), and after compensation with the NNLS method (right column).

The green box shows how the NNLS compensation better preserves the data structure of a channel unaffected by spillover (blue box) than standard flow cy-

tometry compensation does (orange box).

(E) Depiction of theworkflow used to correct for spillover. Staining of control antibody-capture beads and samples are performed in parallel. Single-stained beads

are pooled, and mass cytometry data are acquired on the beads and the samples. The CATALYST R package enables identification of the single-positive bead

populations, calculates the compensation matrix, and applies the matrix to correction of sample data for spillover.
single channel ranged from 0% for 165Ho to over 8% for
148Nd, oxidation ranged from 0% to 2%, and spillover due

to mixed effects of impurity and abundance sensitivity may

reach 4% (Figure 2A). Signal interference due to abundance

sensitivity alone was virtually absent on the machine used.

To assess the stability of the spillover matrix over time and
614 Cell Systems 6, 612–620, May 23, 2018
instruments, we collected data on single-stained beads

on different mass cytometers over months (Figure S3).

Although the spillover matrix was stable over months, our

results showed that for optimal compensation the spillover

matrix should be acquired simultaneously with the sample of

interest.
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Figure 2. Spillover Estimation and Current Limitations of Compensation due to Saturation Effects

(A) Spillover matrix calculated based on single-stained beads. Values on the diagonals are 1. By default, spillover is calculated only in potentially affected

channels, which includeM±1, those corresponding to known isotopic impurities, andM+16 (Figure S2D). Numbers in the cells indicate percentages of spillover by

channels in rows into channels in columns. Numbers in the last column show the total amount of signal received in the corresponding channels.

(B) Scatterplots showing signal due to anti-HLA-ABC labeled with 172Yb and anti-CD3 labeled with 173Yb from pooled single-stained beads and multiplexed-

stained PBMCs before and after compensation with standard flow cytometry methods (middle) and NNLS (bottom).

(C) Dot plots showing the median counts in each channel potentially affected by spillover for uncompensated data, compensated data, and NNLS-compensated

data obtained upon analyses of single-stained beads andmultiplexed-stained PBMCs. For multiplexed-staining, cells were stained with two panels where half of

the channels were left empty, see (Table S1) to enable spillover assessment in absence of staining. For each dataset, the average sum of squares is shown on top

of the graph.

(D) Dot plots showing the spillover in percent for the indicated relationships assessed on cells stained with increasing amount of barcoding reagents and identical

antibody concentration. A linear model was fit to each relationship (blue lines), and the slope is indicated above each plot.

(E) Dot plots showing the spillover in absolute counts for the indicated relationships assessed on cells stained with increasing amount of barcoding reagents and

identical antibody concentration.

(F) Scatter plot showing the relationship between the original signal and the most affected spillover channel for the indicated antibody-metal pairs on a linear

scale. The dotted line and the red line show how the linear relationship is lost above 5,000 dual counts.
As expected, the application of the spillover matrix to beads

stained with individual antibodies revealed virtually perfect

compensation using both traditional and NNLS approaches
(Figures 2B and 2C). When this matrix was applied to

the multiplexed-stained cell samples, the spillover was also

corrected for, but traditional compensation systematically
Cell Systems 6, 612–620, May 23, 2018 615



overcompensated the data (Figures 2B and 2C). One possible

explanation for the difference observed in spillover between

single-stained beads and multiplexed-stained cells might be

the difference in total ion load, with high loads leading to detector

saturation effects. Indeed, we found that an increased amount of

barcoding, simulating higher ion loads, was associated with a

progressive decrease of spillover, both in terms of percentage

and absolute count (Figures 2D and 2E). For spillover below

two counts, the signal interference was completely abolished

(Figure 2E). Moreover, above 5,000 dual counts in a given chan-

nel, the linear relationship was progressively lost (Figure 2F).

Together, this set of data revealed some limitations of spillover

correction due to the physical properties of mass cytometry

measurement and showed that maintaining the signal within

the linear range of the instrument and using the NNLS compen-

sation addresses these issues.

CompensationCorrects for Spillover-Mediated Artifacts
in Mass Cytometry
Analyzing the PBMCs stained with the 36-antibody panel using

the dimensionality reduction algorithm t-SNE (Amir et al., 2013;

van der Maaten and Hinton, 2008) enabled us to identify the

main immune cell populations based on individual marker

expression (Figure S4A). The proteins CD3, CD8, and HLA-DR

were each detected with antibodies conjugated to two different

metal labels. In uncompensated data, we observed different

signal profiles that depended on the metal isotope used to label

the antibody (Figure 3A, left panel). After compensation, the sig-

nals observed for the same antibodies conjugated with different

metal isotopes were virtually identical (Figures 3A, right panel

and S4B). This was further demonstrated by displaying the

same relationships on scatterplots, which highlighted how

compensation simultaneously removed artefactual signal and

reconstituted the data structure observed in channel stained

with the same antibody but not affected by spillover (Figure 3B).

Thus, compensation removes artifacts and therefore prevents

data misinterpretation.

Applying the PhenoGraph clustering algorithm (Levine et al.,

2015) to our dataset led to the identification of 20 PBMC subsets

(Figure S4C). Comparison of heatmaps of signals in uncompen-

sated versus compensated data highlighted how marker expres-

sion signatures of the different clusters can be misinterpreted

without spillover correction (Figure 3C). Lack of compensation

caused several clusters to be wrongly identified as having inter-

mediate abundances of certain antigens even though the signal

was actually due to channel crosstalk. In particular, an intermedi-

ate level of CD3-173Yb was observed on all the non-T cell subsets

(Figure 3C). Further, most T cell and natural killer cell subsets

were wrongly identified as expressing intermediate levels of

HLA-DR-171Yb. Artifacts caused by crosstalk were particularly

strong in channels 154, 158, 161, 163, 168, 171, 173, and 174.

Characterization of newly identified clusters or signaling

network inference often involves the systematic correlation anal-

ysis of markers at the single-cell level to identify co-regulated

proteins or genes, and this approach can be strongly affected

by channel interference. Analysis of marker correlations within

each cluster before and after compensation systematically

reduced spurious correlations (Figures 3D and 3E). A systematic

analysis over all the clusters showed that, in our dataset,
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between 25% and 45% of the significant marker correlations

within clusters were actually due to spillover (Figures 3D and

3E, Spearman correlation, p < 0.005). Collectively, this set of

analyses showed that spillover can be responsible for various

artifacts, which were removed with our compensation approach.

Spillover Observed in IMC Can Be Corrected Using a
Similar Compensation Approach
In IMC, tissue stained with metal-tagged antibodies is ablated

with a laser, and the tissue aerosol is analyzed in a mass cytom-

eter (Giesen et al., 2014). Images generated with the IMC system

provide subcellular resolution and are high dimensional; informa-

tion has been collected from 32 different channels (Bodenmiller,

2016; Giesen et al., 2014). To determine how signal interference

affects IMC measurements, metal isotopes were arrayed on a

slide and measured by IMC. Using this approach, we demon-

strated that a linear relationship exists between the original

signal and the interfering signals (Figure 4A). This indicated

that spillover in IMC could be corrected using the bead-based

compensation approach applied to suspensionmass cytometry.

We used the CATALYST package to calculate a spillover matrix

based on the pixel values of the individually spotted heavy

metals (Figure S5A). Comparing individual spillover values

obtained in suspension and IMC, we found that spillover due

to abundance sensitivity and impurities were in the same range

for all metals except for 148Nd and 176Yb, which came from

different isotope batches for the IMC experiment than those

used for the suspension analysis (Figures S5B–S5D). Values

observed for oxidation in the M+16 channel were systematically

lower in IMC than in suspension mass cytometry. This was ex-

pected given that the tissue aerosol is transported in an argon

and helium gas stream and no water is used for sample introduc-

tion, thus much less oxygen is present in the plasma of the mass

cytometer to generate oxides (Figure S5E).

Based on this spillover matrix, a breast cancer tissue section

imaged by IMC was compensated at the pixel level using a

custom written CellProfiler module (Carpenter et al., 2006).

This compensation approach specifically removed the low signal

due to spillover (Figure 4B). The carbonic anhydrase antibody,

which was labeled with 166Er, showed a predominantly membra-

nous signal. No antibodies were labeled with 167Er (the +1 chan-

nel) to enable assessment of the spillover. In the uncompensated

data, there was a perfect, but lower intensity image of the 166Er

channel in the 167Er channel. Thus, without compensation, the

channel 167Er is not suitable for detection of a low-level marker.
168Er was used to label an antibody against Ki67, a protein tightly

regulated during cell-cycle progression. Even though the spill-

over from 166Er into 168Er is only estimated to be 0.2%, due to

the low background in IMC, the carbonic anhydrase signal was

still clearly visible in the Ki67 channel. This could lead to the

misinterpretation that Ki67 is localized in the cytoplasm and on

the membrane. Upon compensation, the shadow images of

the 166Er channel in the 167Er and 168Er channels were removed

(Figure 4B).

IMC images are often segmented to identify individual cells in

the images enabling single-cell data analysis (Giesen et al., 2014;

Schapiro et al., 2017). After segmentation, the single-cell mask

mean signal intensities for the channels of interest were calcu-

lated using a customized CellProfiler module and subsequently
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Figure 3. Correction of Spillover Artifacts in Mass Cytometry Data Using Compensation

(A) t-SNE map displaying data on a subset of 20,000 PBMCs analyzed with our 36-antibody panel and colored by marker expression for three pairs of antibodies

labeled with two different metal isotopes before (left) and after (right) spillover correction based on NNLS compensation. The percentages of spillover affecting

each channel in the uncompensated dataset are indicated.

(B) Scatterplots showing the relationships between the channels displayed in (A) and the channels responsible for most of the spillover before and after

compensation. The same relationship is shown for the same antibody in channels not affected by spillover.

(C) Heatmaps showing the expression of the indicated markers in the different clusters before compensation (upper panel) and after NNLS compensation

(lower panel). Dashed boxes highlight regions in the plot that changed upon compensation.

(D) Plots showing the frequency of significant correlations (Spearman, p < 0.005) betweenmarkers for each cluster containingmore than 200 cells. Frequency was

set to 1 for the uncompensated values.

(E) Correlation heatmap across all markers for cluster 12 before (upper panel) and after NNLS compensation (lower panel). The clustering is based on

uncompensated data.
analyzed and compensated in R using the CATALYST package

(Figure 4C). A scatterplot of this image clearly shows the

spillover artifact and how our compensation approach applied

to the single-cell data largely removed it (Figure 4D). Together,
this set of data indicates that spillover observed in IMC data

can be, and should be, corrected using the compensation

approach developed for correction of suspension mass cytome-

try data.
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Figure 4. Spillover Affects IMC Data and Can Be Corrected Using Our Compensation Strategy

(A) Binning the signals of an imaged 166Er metal spot (to the 95th percentile of the 166Er pixel values) into 20 bins with equal pixel numbers shows a linear

relationship between 166Er and 167Er over several orders of magnitude (upper panel). The relationship between 166Er and 168Er appears linear but saturates at the

higher counts (lower panel).

(B) Representative image section of a breast cancer tissue sample imaged by IMC. Top row shows uncompensated images of 166Er (used to label antibody to

carbonic anhydrase), 167Er (no antibody labeled with this metal), and 168Er (used to label anti-KI67). The bottom row shows corresponding NNLS compensated

images. For visualization, a 3 3 3 pixel median filter was used to reduce noise. Scale bars, 20 mm. Red arrows indicate part of the image where low signal was

removed by compensation.

(C) Segmentation mask shown on representative images described in (B). The mean pixel intensities of the signals observed in the indicated channels per cell are

displayed.

(D) Scatterplots from single-cell segmentation data from the IMC images before (left) and after (right) compensation. Arcsinh transformed ion counts (cofactor of

2) are shown.
DISCUSSION

Relative to fluorescence leakage in flow cytometry, channel

interference is considerably reduced in mass cytometry, but it

is not absent. Two reports have highlighted the challenges posed

by spillover to mass cytometry data analysis and interpretation

(Lun et al., 2017; Takahashi et al., 2016). Although issues related

to channel interference in IMC analyses have not yet been re-

ported, our observations show that imaging and suspension

mass cytometry are similarly affected by signal interference

between channels. The main issue is the virtually absent

background signal in mass cytometry, which enables the reliable
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detection of signals at low counts (�10 counts). Given the dy-

namic range over four orders of magnitude in mass cytometry,

even a few percent signal spillover from a high ion count channel

into a low ion count channel can easily result in difficulties in data

interpretation. Moreover, high-dimensional mass cytometry data

are commonly analyzed using unsupervised approaches, which

present many advantages but involve a risk of misinterpretation

of the data due to such artifacts. Currently, mass cytometry is

transitioning from an emerging to a well-established technology,

and this step requires the development of common standards

and improved data quality assessment. Here, we present a

combined experimental and computational approach that can



be used both in suspension and IMC to ensure accurate correc-

tion of signal spillover.

In this study, we performed a comprehensive analysis of

channel interference and showed that spillover is a linear func-

tion of the primary signal and therefore can be corrected using

signal compensation similarly to flow cytometry. However, we

found important differences between flow cytometry and

mass cytometry data that prevented a direct transposition of

the method used in flow cytometry. First, we found that

assessing the spillover coefficient in single-stained beads using

summary statistics at the population level tended to over-

compensate the single-stained controls. Second, we observed

that traditional compensation, by introducing negative values,

changed the original structure of the data, characterized by a

low background and an absence of negative events. This artifact

is not critical in fluorescent flow cytometry data as there are

negative values in uncompensated data, but it has important

consequences in mass cytometry data, in which negative

events do not exist. The presence of physically impossible

negative counts also changes the statistical properties of the

data, as data can no longer be interpreted as abundances.

Although not widely acknowledged, this problem has been

already addressed in flow cytometry compensation methods

used in multiparametric data analysis (Novo et al., 2014). Third,

we observed that the usage of a compensation matrix based on

single-stained beads tended to overcompensate the spillover

observed in multiplexed-stained cells, likely due to a detector

saturation effect observed at higher ion counts, which more

strongly affect low abundance signals than high abundance

signals.

Our bead-based compensation workflow, including R-based

software and a web tool, will makemass cytometry more reliable

and easy to use. In many situations, this approach will avoid

artifacts and improve the sensitivity of mass cytometry by

increasing the signal-to-noise ratio. It will also open the way to

using less pure isotopes, thereby increasing the number of epi-

topes that can be measured simultaneously. It should be noted

that spillover compensation also has some limitations. Although

a signal in the range of around 200 counts was sufficient to pro-

vide a good estimate of spillover as low as 1%, working with high

signal intensities prevents the use of compensation, since the

linearity between the main signal and the spillover is progres-

sively lost above 5,000 dual counts. Moreover, since the

increasing total ion load on multiplexed stained cells reduces

the spillover, the estimate provided by single-stained beads is

less accurate for high levels of total ion load, further indicating

that the staining level should be kept as low as possible. We

note that loss of weak signal due to total ion load aswell as signal

nonlinearities outside the linear detection range seem to be a

general property of CyTOF data, but are particularly noticeable

when analyzing a linear effect such as spillover. Finally, as it is

the case in fluorescent flow cytometry, compensation in mass

cytometry also results in a higher spread of the negative data

affected by spillover. Therefore, minimizing spillover by careful

design of the antibody panel and working at non-saturating anti-

body concentration will still be required.

Additional measures could further improve the correction of

channel crosstalk in mass cytometry. For long measurements,

running compensation beads together with the sample would
ensure that any variation occurring over time due to signal drift

is captured. Compensation beads could then be used both for

spillover compensation and for channel-specific signal drift

normalization in each channel independently. To run beads

and samples together, it would be advantageous to have a

second ‘‘bead-identification’’ channel on the beads to enable

reliable detection and exclusion of bead-sample doublets. To

facilitate a general use of this method in the mass cytometry

community, single metal-coated beads should ideally be made

available commercially and provided with each batch of anti-

body. Using beads directly coated with metal isotopes would

mean that antibodies are not needed for non-antibody-based

probe measurements.

To conclude, the work presented in this study improves mass

cytometry and IMC data quality. The approach simplifies the

development of new antibody panels and increases flexibility

for antibody-metal pairing. Use of the NNLS-based compensa-

tion method will reduce incorrect cell phenotype assignments

and will greatly facilitate analysis of complex and poorly charac-

terized tissues such as tumor samples.
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Institute of Surgical Pathology
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Deposited Data

Mass cytometry data This paper https://doi.org/10.17632/v58yj49pfr.1

Imaging mass cytometry data This paper https://doi.org/10.17632/v58yj49pfr.1

Software and Algorithms

FlowJo v10.0.7 N/A https://www.flowjo.com/

Cytobank Kotecha et al., 2010 https://www.cytobank.org/

Concatenation tool Cytobank, Inc https://support.cytobank.org/hc/en-us/

articles/206336147-FCS-file-

concatenation-tool

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-

normalization/releases

Single cell debarcoder Zunder et al., 2015 https://github.com/nolanlab/single-cell-

debarcoder

t-SNE van der Maaten and Hinton, 2008 https://github.com/jkrijthe/Rtsne

PhenoGraph Levine et al., 2015 https://github.com/jacoblevine/

PhenoGraph

CATALYST This paper http://bioconductor.org/packages/

CATALYST

Python 3.4.3 Python Software

Foundation.

www.python.org

Ilastik 1.1.19 Sommer et al., 2011 www.ilastik.org

R 3.3.2 R Core Team, 2016 https://www.R-project.org

CellProfiler Kamentsky et al., 2011 www.cellprofiler.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bernd

Bodenmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell and Tissue Preparation
PBMCs were isolated using histopaque (Sigma Aldrich) density gradient centrifugation of buffy coats from healthy donors obtained

from the Zurich Blood Transfusion Service (www.zhbsd.ch). Cells at the interphase were harvested, washed twice in PBS, immedi-

ately fixed in 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature, and stored at -80 �C.
Tissue sections for imaging analyses were obtained from the archives of the Institute of Surgical Pathology of the University

Hospital Zurich as Formalin-fixed paraffin-embedded tissue samples. This project was approved by the local Commission of Ethics

(ref. no. StV 12-2005).

METHOD DETAILS

Antibodies and Surface Staining
Provider, clone, and metal tag of each antibody used for suspension mass cytometry analysis are listed in Figure 2A. Antibody

conjugations were performed using the MaxPAR antibody conjugation kit (Fluidigm) according to manufacturer’s instruction. After

labeling, the concentration of each antibodywas assessed using a Nanodrop (ThermoScientific) and adjusted to 200 mg/mL in Candor

Antibody Stabilizer. To determine the optimal concentration for PBMC staining, each conjugated antibody was titrated between 0.25

and 4 mg/mL. All antibodies used in this study were managed using the cloud-based platform AirLab (Catena et al., 2016).

Cell Barcoding
To assess the effect of total metal load on spillover, 0.3-0.8 x 106 cells from each tumor sample were barcoded using a 60-well

barcoding scheme consisting of unique combinations of four out of eight barcoding reagents as previously described (Zunder et al.,

2015). Six palladium isotopes (102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, Fludigm) were conjugated to bromoacetamidobenzyl-

EDTA (BABE) and two indium isotopes (113In and 115In, Fludigm)were conjugated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris–acetic

acid 10-maleimide ethylacetamide (mDOTA) following standard procedures (Zivanovic et al., 2013). For each concentration (20, 40, 80,
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160, and 320 mM), cells were stained in triplicate using three random barcodes. Cells were barcoded using the transient partial

permeabilization protocol described by Behbehani and colleagues (Behbehani et al., 2014). Upon barcoding, cells were pooled and

stained with the antibody mix.

Cell and Bead Staining
Before antibody staining, cells were incubated with FcR blocking reagent (Miltenyi Biotech) for 10 min at 4�C. One million of PBMCs

were stained with 100 ml of the antibodymix (Figure 2A) for 30min at 4�C. Cells were washed twice in cell stainingmedium (CSM, PBS

with 0.5% bovine serum albumin and 0.02% sodium azide) and resuspended in 1mL of nucleic acid Ir-Intercalator (Fluidigm) in 1.6%

PFA/PBS for 1 h at room temperature. Cells were then washed twice in PBS and twice in water. Before acquisition, cells were diluted

to 0.5 x 106 cells/mL in water. For bead-based compensation, aliquots of BD Compbead Ig k beads (BD Biosciences) were stained

individually with each of the antibodies used in the panel according tomanufacturer’s instructions. Briefly, for each channel assessed

in the panel, one full drop of BDCompbeadwas loaded in awell of a v-bottom 96well plate and stainedwith 1 mg of the corresponding

metal-labeled antibody. Beads were stained for 15 min at room temperature. After staining, beads were washed three times in CSM

and then pooled in a single tube. Beads were then fixed in 1.6% PFA/PBS for 1 h at room temperature. After fixation, beads were

washed twice in PBS and twice in water. Before acquisition, beads were resuspended in 500 mL of water. Bead and cell data

were acquired on a Helios mass cytometer (Fluidigm) using instrument-based dual-count calibration, noise reduction, and random-

ization. Cells were selected based on event length between 10 and 75 pushes. When required, exported flow cytometry standard

(FCS) files were uploaded into Cytobank, populations of interest were manually gated, and events of interest were exported as

new FCS files.

IMC
To assess signal interference in IMC, metal isotopes were diluted to a concentration of 0.05 mM in Trypan Blue and arrayed on an

agarose-coatedmicroscopy slide (2%agarose dried on slide). For each individual metal spot, an area of 400 x 5 pixels was ablated at

a frequency of 200 Hz using the Hyperion mass cytometry system (Fluidigm). Breast cancer tissue sections (ethic approval: StV 12-

2005) were stainedwith a combination of anti-carbonic anhydrase-166Er (polyclonal, R&DSystems) and anti-KI67-168Er (8D5, CST) as

previously described (Schapiro et al., 2017). Upon staining, a region was analyzed by IMC using the Hyperion system (Fluidigm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-Cell Deconvolution
In order to identify single-positive populations from beads acquired as a pool, we applied the single-cell deconvolution (SCD)

algorithm described in Zunder et al. (Zunder et al., 2015). In brief, events were preliminarily assigned to the sample for which their

signal was strongest. Subsequently, doublet events (i.e., events whose separation between the primary channels and second highest

signal fell below a threshold value) were excluded. We optionally allowed for i) population-specific separation thresholds and

ii) automated estimation of these thresholds. For the estimation of cutoff parameters, we considered yields upon debarcoding as

a function of the applied cutoffs. Commonly, this function will be characterized by an initial weak decline, where doublets are

excluded, and subsequent rapid decline in yields to zero. In between, low numbers of counts with intermediate barcode separation

give rise to a plateau. As shown in Figure S1C, to facilitate robust estimation of an optimal cutoff, we fit a linear and a three-parameter

log-logistic function (Finney, 1971) to the yields function:

fðxÞ= d

1+ expðbðlogðxÞ � logðeÞÞÞ
The goodness of the linear fit relative to the log-logistic fit was weighted as follows:

w=
RSSlog�logistic

RSSlog�logistic +RSSlinear

The cutoffs for both functions were defined as:

clinear = � b0

2b1
clog�logistic = argmin
x

��f 0 ðxÞ��
fðxÞ > 0:01

The final cutoff estimate c was defined as the weighted mean between these estimates:

c= ð1�wÞ � clog�logistic +w � clinear
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Estimation of the Spillover Matrix
To estimate the spillover matrix (SM), we made use of controls stained with individual antibodies. Because any signal not in a single-

staining experiment’s primary channel j results from channel crosstalk, each spill entry sij can be approximated by the slope of a linear

regression with channel j signal as the response and channel i signals as the predictors, where i ˛ wj .

In a population-based fashion, this slope can be approximated as the ratio between themedian signal of channel ipositive events in

channels j and i,mi +
j andmi +

i . The expected background signal in these channels was computed as the median (or trimmed mean)

signal of events that are i) negative in the channels i and j for which the spillover is investigated, ii) not assigned to interacting channels,

and iii) not unassigned. These medians were indicated as mi�
j and mi�

i , and subtracted:

sij =
mi +

j �mi�
j

mi +
i �mi�

i

Due to mass cytometry data structure characterized by a low background and the absence of negative events, we found that

the following single-cell derived estimate was accurate: Let i+ denote the set of cells that are positive in channel i, and scij be the

channel i to j spill computed for a cell c that has been assigned to this population. We approximated scij as the ratio between the signal

in the unstained spillover receiving and stained spillover emitting channel, Ij and Ii, respectively. Background signal was computed as

above and subtracted from all measurements:

scij =
Ij �mi�

j

Ii �mi�
i

Each entry sij in SM was then computed as the median spillover across all cells c ˛ i+:

sij =med
�
scij

��c˛ i +
�

On the basis of their additive nature, spill values were estimated independently for every pair of interacting channels. By default, the

current framework exclusively takes into account interactions that are sensible from a chemical and physical point of view: M±1

channels (abundance sensitivity), the M+16 channel (oxide formation), and channels measuring potentially contaminated metals

(isotopic impurities). Optionally, all n$(n�1) possible interactions may be considered, and estimates below a threshold can be set to 0.

To generate the spillover matrix for imaging data, the single-stained images were imported into R and processed with the

CATALYST package using individual pixels instead of individual cells as a readout.

Calculation of Spillover and Compensation
As demonstrated in Figure 1C, spillover is linear and using single-stained beads enabled capture of the spillover due to the metal

impurities, the oxidation, and the abundance sensitivity. The intensity observed in a given channel j is a linear combination of real

signal and contributions from other channels that spill into it. If sij denotes the proportion of channel j signal that is due to channel

i and wj the set of channels that spill into channel j, then:

Ij;observed = Ij;real +
X
i˛wj

sij$Ii;real

In matrix notation, measurement intensities may be viewed as the convolution of real intensities with a squared spillover matrix of

dimensions p x p where p denotes the number of measurement parameters:

Iobserved = Ireal$SM

Note that for diagonal entries sii = 1 for all i ˛ 1, ..., n, where n denotes the number of measurement parameters, so that spill is

relative to the total signal measured in a given channel. Assuming the correctness of this relationship, the resulting system of linear

equations is traditionally solved exactly using linear algebra.

Although mathematically exact, the solution to this equation does not account for measurement error or for the fact that the real

signal would result in strictly non-negative counts. A simple and computationally efficient way to address this is to use non-negative

least squares (NNLS) (Novo et al., 2014). In brief, NNLS solves for Ireal such that the least squares criterion is optimized under the

constraint of non-negativity:

min
n
ðIobserved � SM$IrealÞT$ðIobserved � SM$IrealÞ

o

s:t:IrealR0

To arrive at such a solution we applied the Lawson-Hanson algorithm for NNLS as implemented in the ’nnls’ R package.

For the image pixel compensation, the spillover matrix was exported as a tiff image and used for compensation using a custom

written CellProfiler plugin (https://github.com/BodenmillerGroup/ImcPluginsCP) (Carpenter et al., 2006). The images were visualized

using ImageJ.
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Segmentation and Single-Cell Measurements
For segmentation, image stacks containing channels useful for segmentation were generated from the IMC raw data using the

‘imctools’ python package (https://github.com/BodenmillerGroup/imctools). The images were scaled up two fold using a CellProfiler

pipeline and re-exported as tiff files suitable for Ilastik pixel classification. Using Ilastik the pixels of the image were classified as

nuclei, cytoplasm/membrane, or background. The class information was exported as probability maps and used in CellProfiler for

single-cell segmentation. The multiplexed images were measured in CellProfiler using a customized CellProfiler plugin (https://

github.com/BodenmillerGroup/ImcPluginsCP). The single-cell data were then exported as csv files and imported into R for compen-

sation with CATALYST and plotting.

CATALYST R Package
An R package called CATALYST was developed to enable an automated compensation of mass cytometry data. Using flowCore

(Hahne et al., 2009) infrastructure, CATALYST provides a user-friendly R implementation of the normalization algorithm (Finck

et al., 2013) and of the single-cell debarcoding algorithm (Zunder et al., 2015). Furthermore, the package includes a function for

estimation of the SM from a priori identified single-positive populations. The matrix returned by this workflowmay be directly applied

to the measurement data or exported for further use (e.g., to FlowJo or Cytobank). The data processing pipeline can be run at the

command line or, alternatively, in an interactive shiny-based app as either a local version (requires installation of several R packages

in addition to CATALYST) or online. Detailed examples to facilitate the use of the different functions are included in the package

vignette.

DATA AND SOFTWARE AVAILABILITY

The accession number for the data (.fcs files) reported in this paper is MendeleyData: https://doi.org/10.17632/v58yj49pfr.1. The

scripts used to generate the key figures are available on Github (https://github.com/BodenmillerGroup/cyTOFcompensation). The

R package developed in this study, including installation instructions and source code is available from Bioconductor (http://

bioconductor.org/packages/CATALYST). The CellProfiler plugin developed to measure the multiplexed mass cytometry images is

available on Github (https://github.com/BodenmillerGroup/ImcPluginsCP). The online version of the CATALYST application is avail-

able via: https://catalyst-project.github.io/

ADDITIONAL RESOURCES

Links, installation instructions, example datasets, and vignettes are accessible from the CATALYST project page: https://catalyst-

project.github.io/. This address also provides a link to a file-size-limited online version of the interactive shiny based application.
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Figure S1. Description of the main functions of the CATALYST package. Related to Figure 1.

(A) Schematic of the workflow used in the CATALYST package to generate a compensated file based on beads stained with 

single antibodies. The graphical outputs generated during the process are indicated above the steps. 

(B) Screen shot depicting the main features available with the Shiny app. The compensation module is used as an example.

(C) Description of the automatic cutoff estimation for each individual population. The bar graphs indicate the distribution of 

cells relative to the barcode distance, and the dotted line corresponds to the yield upon debarcoding as a function of the 

applied separation cutoff. Data were fitted with a linear regression (blue line) and a three parameter log-logistic function (red 

line). The cutoff estimate is defined as the mean of estimates derived from both fits, weighted with the goodness of the 

respective fit (see STAR Methods). 
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Figure S2. Description of the specificities of spillover matrix calculation for mass cytometry data. Related to Figure 2.

(A) Scatter plot showing the bead purity upon deconvolution using the 161Dy population as a representative exampleand 
compared to unassigned beads. The top left graph of each panel corresponds to the total population; the other plots show 
the profile of the 161Dy+162Dy- population as gated in the first plot. The scale covers the range between 0 and 104 counts. 
(B) Scheme describing spillover estimates at the population level (upper panel) and at the single-cell level (lower panel). 
(C) Dot plots showing the median counts in each channel potentially affected by spillover for beads compensated based on 
population estimates versus single-cell estimates compared to uncompensated data. 
(D) Plots showing the spillover in percent for the main interactions as assessed at the population level and at the single-cell 
level (top panel) and the absolute difference (middle panel) and the relative difference (lower panel) in spillover percentages. 
(E) Spillover matrix showing the interactions estimated by default in CATALYST. Only those interactions expected to occur 
based on impurities, abundance sensitivity, and oxidation are taken into consideration. 
(F) Spillover matrix calculated for expected interactions versus all interactions using single-cell estimates (upper panels) 
versus population estimates (lower panels). 
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Figure S3. Compensation matrix stability over stainings, measurements, and instruments. Related to Figure 2.

(A) Scatter plot displaying the means and standard deviations of the spillover measured the same day (blue), after three 

days (green), and after four months (red). The origin of spillover (metal impurity versus oxidation) is indicated. 

(B) Spillovers observed in single-stained beads in absence of compensation and upon compensation with each of seven 

different matrices acquired at the indicated time points are displayed as a dot plot. For each dataset, the average sum of 

squares is shown on top of the graph. 

(C) Spillovers observed in single-stained beads without and upon compensation with each of four matrices acquired at the 

indicated time points on the indicated instruments are displayed as a dot plot. The compensation performed with the com-

pensation matrix provided by Fluidigm is also shown. For each dataset, the average sum of squares is shown on top of the 

graph. 

(D) Spillovers assessed for the individual relationships for the seven matrices acquired over 4 months, for the four matrices 

acquired on two different machines, and for the theoretical matrix provided by Fluidigm. Data are shown for M-1 and impuri-

ties (mean interaction > 0.5%), M+1 and impurities (>0.5%), impurities (>0.5%), and M+16 (all interactions). 
(E) Scatter plot showing the total amount of spillover in each individual channel for the seven matrices acquired over 4 

months, for the four matrices acquired on two different machines, and for the theoretical matrix provided by Fluidigm. 
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Figure S4. Interpretation of t-SNE maps in presence or absence of compensation. Related to Figure 3.

(A) t-SNE maps displaying data on a subset of 20,000 PBMCs analyzed with our 36-antibody panel are colored by 

marker expression for all the antibodies included in the analysis in absence of compensation. 

(B) t-SNE map generated as indicated in A after compensation based on NNLS. 

(C) t-SNE map colored by PhenoGraph clusters identified on uncompensated data. 
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Figure S5. Compensation matrix for IMC. Related to Figure 4.

(A) Spillover matrix calculated based on single isotope containing pixels. Values on the diagonals are one. Spillover is 

calculated only in potentially affected channels (Figure S2D). Numbers in the squares indicate percentages of spillover 

by channels in rows into channels in columns. 

(B-E) Signal interference for the indicated interactions shown for two independent IMC measurements of single isotopes 

spotted on a slide. Box plots show the spillover values obtained across the 11 replicates performed in flow mass cytom-

etry as described in Figure 5D. 
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Number Metal Isotope An�gen Clone Isotype
1 La 139 CD8a* RPA-T8 Mouse IgG1, κ
2 Pr 141 CD64* 10.1 Mouse IgG1, κ
3 Nd 142 CD23 EBVCS-5 Mouse IgG1, κ
4 Nd 143 CD68* Y1/82A Mouse IgG2b, κ
5 Nd 144 CD36 5-271 Mouse IgG2a, κ
6 Nd 145 CD4* RPA-T4 Mouse IgG1, κ
7 Nd 146 CD68 KP1 Mouse IgG1, κ
8 Sm 147 CD3* UCHT1 Mouse IgG1, κ
9 Nd 148 CD20 H1(FB1) Mouse BALB/c IgG2a, κ

10 Sm 149 CD20 L26 Mouse / IgG2a, kappa
11 Nd 150 CD68* Y1/82A Mouse IgG2b, κ
12 Eu 151 CD123 6H6 Mouse IgG1, κ
13 Sm 152 CD99 HCD99 Mouse IgG2a, κ
14 Eu 153 CD68* Y1/82A Mouse IgG2b, κ
15 Sm 154 CD15* HI98 Mouse IgM, κ
16 Gd 155 CD273 MIH18 Mouse IgG1, κ
17 Gd 156 CD93* R139 Mouse BALB/c IgG2b, κ
18 Gd 158 CD15 HI98 Mouse IgM, κ
19 Tb 159 CD192 K036C2 Mouse IgG2a, κ
20 Gd 160 CD45* HI30 Mouse IgG1, κ
21 Dy 161 CD66a/c/e ASL-32 Mouse IgG2b, κ
22 Dy 162 CXCR4* 12G5 Mouse IgG2a, κ
23 Dy 163 CD22 HIB22 Mouse IgG1, κ
24 Dy 164 CD7* M-T701 Mouse BALB/c IgG1, κ
25 Ho 165 CD4 RPA-T4 Mouse IgG1, κ
26 Er 166 CD32 FUN-2 Mouse IgG2b, κ
27 Er 167 CD16* 3G8 Mouse IgG1, κ
28 Er 168 CD14 RMO52 IgG2a κ, mouse
29 Tm 169 CD99* HCD99 Mouse IgG2a, κ
30 Er 170 CD7 M-T701 Mouse BALB/c IgG1, κ
31 Yb 171 HLA-DR* L243 Mouse IgG2a, κ
32 Yb 172 HLA-ABC W6/32 Mouse IgG2a, κ
33 Yb 173 CD3* UCHT1 Mouse IgG1, κ
34 Yb 174 CD8b SIDI8BEE Mouse IgG1, κ
35 Lu 175 HLA-DR* L243 Mouse IgG2a, κ
36 Yb 176 CD45 HI30 Mouse IgG1, κ

Table S1. Antibody panel used to establish a compensation workflow to correct for spillover in mass cytometry. 
Related to Figure 1, 2 and 3.

List of the 36 antibodies used in the panel in this study and information regarding the metal, the mass, the antigen, and 
the clone. Asterisks indicate antibody grouping for the experiment shown in Figure 2C. 
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