Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from *Salvia miltiorrhiza* and their anti-inflammatory activities investigation

Hongwei Gao¹, Liting Huang¹, Fang Ding¹, Ke Yang¹, Yulin Feng^{2*}, Hongzhen Tang^{1*}, Qiong-ming Xu³, Jianfang Feng¹, Shilin Yang^{1,2}

¹Guangxi University of Chinese Medicine, Nanning 530000, China. ²State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China. ³College of Pharmaceutical Science, Soochow University, Suzhou 215123, China. Correspondence and requests for materials should be addressed to Y. Feng (fengyulin2003@126.com) or H. Tang (383744825@qq.com).

Figure 1S. The inhibitory nitric oxide (NO) release of TTS in LPS-stimulated RAW264.7 cells. (A). Cells were pretreated with 0% eluent, 45% eluent, TTC and TTS for 1 h before LPS (1µg/mL) co-culture for 24 h. The nitrite level of those sample were determined by Griess assay. (B) Cells were treated with 0% eluent, 45% eluent, TTC and TTS, respectively for 24 h. The cell viability was investigated by MTT assay. (C). Cells were individually treated with 0% eluent, 45% eluent, TTC and TTS for 6 h and then labeled with DAF-FM (1µM) for another 1 h. The NO release was determined by the flow cytometry. (D) The quantitative fluorescence intensity was statistically determined. **p*< 0.05 and ***p*< 0.01versus LPS-treated group.

Desorption (mg) Resin Dihydrotanshinone Cryptanshinone Tanshinone IIA Tanshinone I D101 9.24±0.71 20.16±0.39 25.46±0.56 32.94 ± 0.84 HPD100 8.83 ± 0.54 19.87 ± 0.73 25.41 ± 0.38 31.43 ± 1.34

Table S1. Dynamic desorption capacities of two resins.