Supplementary Information

Electrically Controlled Drug Release Using pH-Sensitive Polymer Films

S. Ephraim Neumann, Christian F. Chamberlayne, Richard N. Zare*

*Correspondence to:

Dr. Richard N. Zare Stanford University Department of Chemistry 333 Campus Drive - Room 133 Stanford, CA 94305-5080, USA Tel: +1-650-723-3062 Email: rnz@stanford.edu

Supplementary Figure 1: Release of FL for EGT and every synthezied *co*-PMMA with FL as drug surrogate for 10 pulses of -1.5 V for 20 s each every 6 min.

Supplementary Figure 2: Leakage of FL for EGT and every synthezied *co*-PMMA with FL as drug surrogate for an hour, measured every 6 min.

Supplementary Figure 3: Timed release pattern of FL after a single electric stimulus of -1.5 V for 60 s for every synthesized *co*-PMMA.

Supplementary Figure 4: Pulsed release and leakage with -1.5 V for 20 s each of (a) CM, (b) INS, (c) MX, and (d) FL-Na with **P5** as carrier-polymer.

Supplementary Table 1: Molar masses (M_w and M_z) for EGT and every synthesized *co*-PMMA, measured by GPC.

Polymer	Eudragit	P3	P4	P5	P6	P7	P8	Р9
Ratio (AA:MMA)	1:2	1:3	1:4	1:5	1:6	1:7	1:8	1:9
$M_{\rm w}$ / g mol ⁻¹	1.816·10 ⁵	$7.374 \cdot 10^4$	$6.959 \cdot 10^4$	$5.734 \cdot 10^4$	5.256·10 ⁴	$5.129 \cdot 10^4$	$5.167 \cdot 10^4$	$5.894 \cdot 10^4$
	(± 0.200 %)	(± 0.226 %)	(± 0.332 %)	(± 0.409 %)	(± 0.433 %)	(± 0.604 %)	(± 0.237 %)	(± 0.183 %)
<i>M</i> ₂ / g mol⁻¹	$1.506 \cdot 10^{6}$	2.257·10 ⁵	2.956·10⁵	1.509·10 ⁵	1.430·10 ⁵	1.386·10 ⁵	1.373·10 ⁵	1.591·10 ⁵
	(± 0.486 %)	(± 0.565 %)	(± 0.911 %)	(± 1.195 %)	(± 1.182 %)	(± 1.524 %)	(± 0.561 %)	(± 0.468 %)