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SUPPLEMENT C: INFERENCE OF THE MICROSCOPE
PARAMETERS

By Jan-Otto Hooghoudt and Rasmus Waagepetersen

In this supplementary material to “Towards Bayesian Inference of the
Spatial Distribution of Proteins from Three-Cube FRET Data” we present
a detailed account of the results we have obtained concerning inference of
the microscope parameters, when each parameter is singly introduced as a
free parameter in the model. In Section 1 we state the approach and applied
settings and subsequently we discuss inference of σ2 in Section 2, GD and
GA in Section 3, MD in Section 4 and of G and K in Section 5.

In order to explain many of the results, we often will refer to the equations
for µiDD, µ

i
DA and µiAA as defined previously in the main article. Therefore

these relations are restated here with an equation number for easy referenc-
ing throughout this supplementary material:

µiDD = MD

∑
d∈XD∩Ci

(1− PdA),(1)

µiDA = GMD

∑
a∈XA∩Ci

∑
d∈XD

Pda,(2)

µiAA = MD/K n(XA ∩ Ci).(3)

Throughout this supplementary material we refer to a point pattern type by
its point pattern name or number as defined in Table 1 in the main article.

1. Approach and settings. By including the microscope parameters
in the Bayesian inference the joint posterior distribution—equation 3.1 in
the main article—reads as

(4) p(xD,xA, θ, ψ|y) ∝ p(y|xD,xA, ψ)p(xD,xA|θ)p(θ)p(ψ),

with p(ψ) the prior density of the miscroscope parameters. The support
of the microscope parameters is on R+ and therefore a natural choice for
the proposal distribution for a microscope parameter ωj is the lognormal
distribution, which ensures that a proposal value ωp

j is strictly positive. De-

noting by φ(z, µ, σ2) the density function of a normally distributed variable
z with mean µ and standard deviation σ, the proposal density function for
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ωp
j conditionally under its current value ωc

j is

q(ωp
j |ω

c
j ) =

1

ωp
j

φ(ln[ωp
j ] | ln[ωc

j ], τ2j ),

with τ2j a tuning parameter, controlling the percentage of accepted proposals
within a MCMC run. A proposal ωp

j is now generated by drawing a random

normal number ε ∼ N(0, τ2j ) and setting ωp
j = ωc

j exp(ε). We note that as
φ(·) is symmetric around its mean it follows that

q(ωc
j |ω

p
j )

q(ωp
j |ωc

j )
=
ωp
j

ωc
j

.

Applying (4), the Metropolis-Hastings ratio related to a proposal u ∼ qj(·|ωc
j )

for the j-th microscopic parameter is

(5)

(
p(y|ψp,xc)

p(y|ψc,xc)

) (
p(ψp

j )

p(ψc
j )

) (
q(ψc

j |ψ
p
j )

q(ψp
j |ψc

j )

)
,

with ψc = (ωc
1 , · · · , ωc

6) containing the current values for the microscope
parameters and ψp containing the elements

ψp
k =

{
ωc
j k 6= j

u k = j.

The expressions for the first two terms in (5) are specified under step 10 in
Section 1 of Supplement B (Hooghoudt and Waagepetersen, 2017) while the
third term equals ωp

j /ω
c
j . Supplement B provides a detailed description of

the MCMC sampler used for sampling from the posterior distribution (4).

1.1. Set up of the various simulation experiments. Below we give a short
description of each of the simulations that have been carried out and state
the settings that have been used. In order to study the effect a relatively
low or high signal-to-noise ratio has on the inference, each simulation has
been performed for three synthetic values of MD (1, 5, 20). In the next we
denote the prior mean of a parameter by adding the superscript “pm” to
the parameter.

A All microscope parameters are fixed in the inference procedure (the
MCMC run) and set to the values of their synthetic counterparts ap-
plied to create the synthetic channel data. The synthetic value of the
parameters G,K,GD, GA is set to 1 and the synthetic value of σ2 is
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set to 25. Synthetic channel data is generated for a grid G which di-
vides the window W = 1×1µm2 in 10×10 equally sized square pixels.
Accordingly the dimension of a pixel is 0.1 × 0.1 µm2. The Poisson
point process intensities θD and θA are free parameters and their prior
means are set approximately equal to the intensities of the synthetic
patterns, i.e. θpmD = θpmA = 1000/µm2. In this simulation, inference is
made on the spatial configuration of donors and acceptors and on the
Poisson point process intensities θD and θA. Interest is in assessing
how the accuracy of the posterior L-function depends on the underly-
ing point pattern type. The outcomes of Simulation A are disussed in
the main article in Section 4.3 and its subsections.

B Settings as in Simulation A, but σ2 is a free parameter. The prior
mean value of σ2 is set equal to the synthetic value of 25. Interest is
in studying the inference for the parameter σ2. Results are discussed
in Section 2.

C-G Settings as in Simulation A, but GA, GD,MD, G,K are respectively
(each separately) a free parameter in the model. Prior mean of the
free parameter is always set equal to the synthetic value of 1. Results
for GA and GD are discussed in Section 3, for MD in Section 4 and
for G and K in Section 5.

H Settings as in Simulation A, but MD, G,K,GD, GA, σ
2 are free param-

eters with their prior means set equal to the corresponding synthetic
values. Interest is in studying the inference of all the microscope pa-
rameters in the setting that they are all free. Results are discussed in
Section 4.4 in the main article.

In Table 1 the settings of each of the simulations are summarized.

1.2. Hyper parameters of the priors. The Gamma distribution is used as
the prior density for the microscope parameters. Following the reasoning as
outlined for setting the Poisson priors in Section 3.1 in the main article, we
also set the shape parameter of the microscope parameters equal to 4. In our
simulations we specify the prior mean of each of the microscope parameters
(see Table 1). Then, if the value of the mean is denotedm the scale parameter
β follows from β = m/α = m/4.

1.3. Markov chain Monte Carlo settings. The total number of steps in
each MCMC run is set to 1e7. A proposal update is made in each step to
remove/add a donor or acceptor point to/from the current point pattern. A
posterior point pattern is written to disk after every 1e5 steps. A proposal
update for the microscope parameters (in case free) and for the Poisson point



4

Within the MCMC run Synthetic value

Simulation MD G K GD GA σ2 MD G K GD GA σ2

A ? ? ? ? ? ? 1,5,20 1 1 1 1 25

B ? ? ? ? ? F 1,5,20 1 1 1 1 25

C ? ? ? ? F ? 1,5,20 1 1 1 1 0.1

D ? ? ? F ? ? 1,5,20 1 1 1 1 0.1

E ? ? F ? ? ? 1,5,20 1 1 1 1 0.1

F ? F ? ? ? ? 1,5,20 1 1 1 1 0.1

G F ? ? ? ? ? 1,5,20 1 1 1 1 0.1

H F F F F F F 1,5,20 1 1 1 1 25

? fixed parameter set equal to the synthetic value.
F free parameter with its prior mean equal to the synthetic value.

Table 1
Parameter settings as defined for the various simulations. All simulations are performed
on a window W = 1 × 1µm2 and a grid dividing W in 10 × 10 square pixels with a width

of 0.1 µm. In each simulation the Poisson intensities are free parameters with a prior
mean value of 1000/µm2. For Simulations C–G we have set the synthetic value of σ2

(almost) equal to zero, in order to get the most accurate inference regarding
GA, GD,K,G and MD as possible.

process intensities is made every 2.5e3 steps. We store the parameter and
intensities values to disk every 1e4 steps. So, for each complete MCMC run,
one thousand values of the microscope parameters and Poisson intensities,
and one hundred point patterns are stored to disk. The initial values of the
point process intensities and the free microscope parameters are always set
equal to their respective prior means.

1.4. Tuning parameters of the proposal distributions.. To generate pro-
posals for the microscope parameters we have used the following values for
the tuning parameter τ in the lognormal distribution. To generate proposals:
for MD we used τ = 0.04; for G and K we used τ = 0.05; and for σ2, GA and
GD we used τ = 0.1. In all cases the applied setting result in acceptance
probabilities between 0.1–0.6 depending on the value of MD. Higher val-
ues of MD—corresponding to a higher signal-to-noise ratio—result in lower
acceptance rates.

2. Inference of the measurement noise. In Figure 1 the posterior
means of the measurement noise standard deviation (σ̄) for the replicated
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Fig 1. Boxplot of the posterior mean measurement noise standard deviation of the forty
replicated runs, for each of the point pattern types (referred to by their type number as
denoted in Table 1 in the main article), for MD = 1 (upper), MD = 5 (middle) and
MD = 20 (lower). Results are from Simulation B; σ2 is a free parameter. The horizontal
lines are drawn at the synthetic value of σ which is 5.

runs (from Simulation B) are summarized for each of the point pattern
types by a boxplot. Results are shown for MD equal to 1, 5 and 20. Clearly,
the dimer and clustered point pattern types generated with γDA = 8 (type
number: 2,4,6 and 8) show values for σ̄ larger than the synthetic value of 5
for all three values of MD. Further, saliently, the bias grows significantly for
larger values of MD. For all other point pattern types, σ̄ is consistently close
to five for all three values of MD. We conclude that for modestly clustered
point patterns (dimer and clustered types generated with γDA = 2) as well
as for the Poisson and repulsive types, the inference of σ performs well.
The results found for the dimer and clustered point patterns generated with
γDA = 8 are surprising. We investigate this issue in the next section.

2.1. Persistent bias in posterior DA-channel intensity. To understand
the cause of the offset between the posterior mean measurement noise stan-
dard deviation and its synthetic value we will study the posterior mean
pixel deviance—as defined below—over replicated runs for each point pat-
tern type, for the case that all microscope parameters are fixed to their syn-
thetic value (that is settings as in Simulation A). We start by defining the
deviance as used in this supplementary material. For a random variable Z,
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distributed with mean µ and variance σ2 and for which n observations have
been made, we refer to the quantity DEV(Z) = (1/n)

∑n
i=1((Zi − µ)/σ)2

as the deviance. By the definition of the variance: σ2 = E[(Z − E[Z])2], the
expected value of the deviance is one, that is E[DEV(Z)] = 1. Applying the
deviance definition to the pixel intensities in the three channels (equations
(2.1)–(2.3) in the main article), and defining n to be the number of pixels
in a channel image, we define the deviance for each of the three channels as

DEVDD ≡ DEV(YDD|µDD) =
1

n

n∑
i=1

(Y i
DD − µiDD)2

GDµiDD + σ2
,(6)

DEVk ≡ DEV(Yk|µk) =
1

n

n∑
i=1

(Y i
k − µik)2

GAµik + σ2
; k = DA,AA.(7)

In Figure 2 the posterior mean of the channel deviance for the replicated
runs (results from Simulation A) are summarized by aid of a boxplot for each
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Fig 2. Boxplot of the posterior mean deviance of the forty replicated runs for each of the
point pattern types (referred to by their type number as defined in Table 1 in the main
article) and for each of the three channels. Upper plots: DA-channel, middle plots: DD-
channel and lower plots: AA-channel, for MD = 1 (left figures) and MD = 20 (right
figures). Results are from Simulation A.
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of the point pattern types and each of the three channels. For MD = 1 the
posterior mean deviance in the DA-channel, plot a), is clearly above one for
the point patterns with type number: 2, 4, 6, 8 (that is the patterns generated
with a γDA = 8), while it is on the target value of one for all other types.
Also for MD = 20 the posterior mean deviances in the DA-channel, plot b),
are persistently above one for the strongly clustered types (type number:
2, 4, 6, 8), while now also the deviance related to the strongly repulsive
patterns (Rep.h2 and Rep.s2, type number 11 and 13) are slightly above
target. In contrast, in the DD-channel, plot c) and d), and AA-channel, plot
e) and f), the posterior mean deviance for all point pattern types are close
to one for MD = 1 as well as for MD = 20. In short, our main observation
from the various deviance plots is that for the strongly clustered and strongly
repulsive point patterns, the inference procedure has—also for a high signal-
to-noise ratio (high MD)—significant problems to get on target in the DA-
channel.

To study this offset in the DA-channel further Figure 3 shows the poste-
rior mean pixel intensities µ̄ik, k = DD,DA,AA, versus the corresponding
synthetic pixel intensities Y i

k,synth for the three values of MD, and where
Yk,synth is generated from a Clu.28 point pattern type. The results are from
Simulation A; σ2 is fixed and set equal to the synthetic value of 25. Clearly,
the µ̄iDD’s and µ̄iAA’s get properly on target for higher values of MD (from
left to right in respectively the upper and lower plots). Also the µ̄iDA’s are
closer to target for higher values of MD, although for MD = 20 still a per-
sistent negative bias compared to the synthetic DA-channel pixel intensity
is observed (right middle plot). Similar scatter plots for point pattern types
Dim.18, Dim.28 and Clu.28, display a similar bias in the DA-channel (not
shown). Scatter plots for point pattern types Rep.h2 and Rep.s2, show a
positive bias in the DA-channel, that is µ̄iDA is mostly larger than Y i

DA

(not shown). We conclude that a persistent negative (positive) bias in the
posterior DA-channel pixel intensities is present when making inference on
synthetic channel data constructed from strongly clustered (repulsive) point
patterns.

By the previous analyses we can now explain the large offset observed
in Figure 1 between the posterior means of the measurement noise stan-
dard deviation and the synthetic value. Due to the bias in the DA-intensity
channel—values of DEVDA larger than one—the inference procedure with
σ2 a free parameter in the model (Simulation B), will increase σ2 in order
to get DEVDA on target. However, the increase in σ2 results in a further
increase in the bias of the posterior DA-pixel intensities, resulting again in
a further increase of σ2. This explanation is supported by Figure 4 in which
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Fig 3. Scatter plots of the posterior mean pixel intensities: µ̄i
k, versus the corresponding

synthetic pixel channel intensities Y i
k,synth k = DD, DA, AA, i = 1, . . . , n; n = 100.

With Yk,synth generated from a point pattern Xsynth of Clu.28 type. From left to right:
MD = 1, 5, 20; from above to below: DD-, DA- and AA-channel. For higher values of MD,
the posterior mean DD- and AA-channel pixel intensities get on target, while the posterior
mean DA-channel pixel intensities remain below target. Black line is reference line with
slope 1.

the posterior mean values of σ are plotted versus the corresponding syn-
thetic pixel intensities for the same Clu.28 point pattern as the results in
Figure 3 are based on, but now σ2 is a free parameter in the model (pos-
terior means are from Simulation B). Clearly, with σ2 a free parameter in
the model, the offset between posterior mean DA-intensity and synthetic
DA-channel intensity increases (compare Figure 4 middle plots, with cor-
responding plots in Figure 3). Further, due to the increase in σ2 now also
the posterior mean intensities in the DD- and AA-channel have difficulty to
get on target (compare Figure 4, upper and lower plots, with corresponding
plots in Figure 3).

In summary, due to a relative large offset between the Poisson point pro-
cess prior model and the strongly clustered and repulsive patterns, a persis-
tent bias exist between the posterior pixel mean intensities and the synthetic
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Fig 4. As Figure 3 but results are from Simulation B; σ2 is a free parameter. Due to
the bias of the posterior mean intensity in the DA-channel—see in Figure 3—with σ2 a
free parameter the inference procedure will start to increase σ2, which leads to a further
increase in the bias in the DA-channel. Because σ2 defines the measurement noise in all
the three channels also in the DD- and AA-channel the posterior pixel intensities now have
difficulties to get on target (upper and lower plots).

pixel intensities in the DA-channel. This results in biased inference for σ.

3. Inference of the amplification factors. The results concerning
inference of GA are in accordance with the results as discussed in the pre-
vious section for the measurement noise. Due to the persistent bias in the
posterior DA-channel intensities for strongly clustered patterns, for such
patterns GA is excessively increased in the inference procedure in order to
get DEVDA (7) on its target value of one. This is clearly seen in Figure 5
(left plots), as for the pattern types 2, 4, 6 and 8 the values of ḠA are clearly
above the synthetic value of one for all three values of MD, while on target
or close to target for all other point pattern types.

The parameter GD only effects DEVDD (6) and thereby GD can not be
tuned in the inference procedure to adjust DEVDA (7). Therefore, we would
expect that proper inference for this parameter should be possible for all
point pattern types. However, from Figure 5 (right plots) we notice that
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Fig 5. Boxplots of the posterior mean of: left) GA and right) GD, for the forty
replicated runs for each of the point pattern types (referred to by their type number
as denoted in Table 1 in the main article), for MD = 1 (upper), MD = 5 (middle)
andMD = 20 (lower). The horizontal lines are drawn at the synthetic values GA = 1
(left plots) and GD = 1 (rigth plots).

for the strongly clustered patterns (type 2, 4, 6, 8) also the value of ḠD is
above the synthetic value of one, which is most clearly seen for Clu.28 (type
8). The probable explanation is that for the strongly clustered patterns also
a small but significant persistent bias exists in the DD-channel intensities,
leading to values of DEVDD slightly above the target value of one. This
is supported by Figure 2, where especially for Clu.28 (type 8) it is rather
clearly seen that DEVDD is above one for MD = 20.

We conclude that, except for the strongly clustered point patterns, the
inference procedure provides good estimates for GA and GD.

4. Inference of MD. In Figure 6 the posterior mean of MD for the
forty replicated runs is summarized by aid of a boxplot for each of the point
pattern types and for MD = 1, 5, 20. Results are of Simulation E. Inspection
of the plots shows that there is a clear trend in the observed posterior means.

1. for underlying clustered patterns (type 1–8), the values of M̄D are
smaller than the corresponding synthetic values. Further, the bias is
larger for the strongly clustered point patterns generated with γDA = 8
(type 2, 4, 6 and 8).2

2We ignore here for the moment the values of M̄D larger than their synthetic coun-
terparts occurring for type 8 and MD is 5 or 20. We comment on it at the end of this
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Fig 6. Boxplot of posterior mean of MD for the forty replicated runs for each of the point
pattern types (referred to by their type number as denoted in Table 1 in the main article),
for MD = 1 (upper), MD = 5 (middle) and MD = 20 (lower). In each plot the horizontal
line is drawn at the synthetic values of MD. Results are from Simulation E.

2. for underlying repulsive patterns (type 10–13), the values of M̄D are
larger than the corresponding synthetic values and the bias increases
for the strongly repulsive point patterns (type 11 and 13, that is Rep.h2
and Rep.s2).

3. for underlying Poisson hard core patterns (type 9), the value of M̄D

coincides with the corresponding synthetic value.

Further, the observed bias for the dimer, clustered and repulsive patterns is
persistent in the sense that increasing the signal-to-noise ratio (by increasing
MD) does not result in a decrease of the bias.

The bias is an artifact of the use of the Poisson point process prior. The
explanation is as follows. When inference is made with all the microscope pa-
rameters fixed to their synthetic values (Simulation A) on a strongly hetero
pair clustered point pattern, the inference procedure has difficulties to create
such clusters, because the Poisson point process prior will favor a more ran-
dom distribution of the hetero points. This results, as previously discussed
in Section 2, in a negative bias of the posterior pixel mean DA-channel
intensities, µiDA, and of values of DEVDA above the target value of one
(Figures 2 and 3). To reduce the bias, the inference procedure—with MD a
free parameter (Simulation E)—favors to add more acceptors to the poste-

section.
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rior pattern than the corresponding synthetic pattern contains. By adding
extra acceptors, the average hetero pair inter distances decrease, resulting in
an increase of the double summation term in (2)—and so of µ̄iDA—thereby
effectively removing the bias. Increasing the number of acceptors will lead
to a positive bias of µiAA (3). However, this bias is removed by the inference
procedure by decreasing the value of MD and so getting µiAA on target again.
As MD is also present in the expression for µiDD (1), this leads to a bias in
the DD-channel, which, however, is removed by the inference procedure by
adding more donors to the posterior patterns than the underlying synthetic
pattern contains, effectively getting µiDD back on target. Further, by (2),
µiDA is also proportional to MD and by lowering MD also µiDA will be lower.
However, the relative increase of the double summation term in (2) due to
the higher concentrations of acceptors is larger than the relative decrease
of MD, resulting in an increase of the DA-channel pixel intensities and so
bringing µiDA onto target.

The same argument holds for underlying repulsive patterns but the other
way around. In this case the posterior µiDA’s—with all microscope param-
eters fixed to their synthetic values— show a positive bias with respect to
the synthetic channel data. And the inference procedure—with MD a free
parameter—favors posterior patterns to contain less donors and acceptors
than the synthetic pattern, thereby increasing the average hetero pair inter
distances and bringing the posterior pixel intensities in the DA-channel onto
target. This leads to a higher value of MD with respect to the corresponding
synthetic value.

We now will discuss the in the footnote on the previous page mentioned in-
ference results concerning the Clu.28 patterns (type 8), for which for MD = 5
some, and for MD = 20 most of the posterior means M̄D are higher than
these synthetic values. Clearly these results are not captured by the expla-
nation stated above. They can, however, be explained in relation to the large
offset that exists between the homogeneous Poisson point process prior and
the very inhomogeneous way donors and acceptors are distributed over the
pixels in Clu.28 patterns. We will give a qualitative description. For the clus-
tered point patterns type 1–7, hetero clustering occurs in such a way that the
donors and acceptors are more or less homogeneously distributed over the
pixels. This is schematically depicted in Figure 7a, as a dimer pair residing
in each of the pixels. For the point pattern types 1–7, to get the DA-channel
intensities on target the posterior patterns will contain more donors and
acceptors—as described in detail above— than the corresponding synthetic
patterns (see, Figure 7b), resulting in posterior mean values of MD lower
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c) Clusters inhomogeneous 
distributed over pixels

d) Posterior pattern

a) Clusters homogeneously 
distributed over pixels b) Posterior pattern

Fig 7. Point patterns for which hetero cluster of points are distributed: a) homogeneously,
and c) inhomogeneously, over the pixels. For hetero clusters distributed homogeneously
over the pixels, the inference procedure—with MD a free parameter—favors the posterior
patterns to contain more donors and acceptors than the synthetic one (plot b)) and to
decrease the value of MD below the synthetic value. For hetero clusters distributed in-
homogeneously over the pixels, the inference procedure favors to decrease the number of
donors and acceptors (plot d)) and to increase MD. See also the text.

than the corresponding synthetic value. For the Clu.28 type point patterns,
however, the hetero clustering is so strong that this results in large super
clusters of donors and acceptors, leading to a very inhomogeneous distribu-
tion of donors and acceptors over the pixels. This is schematically depicted
in Figure 7 c), in which all points are concentrated in only one pixel. As
such a distribution is extremely unlikely to occur under the homogeneous
Poisson point process prior, the inference procedure favors to: place only
a few points in an inhomogeneous way over the pixels—which under the
Poisson process prior and conditional under a fixed number of points, has a
higher probability than to place many point inhomogeneously (see Figure 7
d), while using a higher value of MD than the synthetic value, in order to
get the the posterior channel intensities onto target.

We conclude that the results of the inference of MD are highly dependent
on the synthetic point pattern type.

5. Inference of the G and K factor. In Figure 8 left) the results
concerning inference of G (Simulation F) are shown. Clearly, Ḡ is larger
than the synthetic value of one for clustered point patterns (type numbers
1–8) while smaller than one for the repulsive point patterns (type numbers
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Fig 8. Boxplot of posterior mean of: left) G, and right) K, for the forty replicated runs for
each of the point pattern types (referred to by their type number as denoted in Table 1 in
the main article), for MD = 1 (upper plots), MD = 5 (middle plots) and MD = 20 (lower
plots). In each plot the horizontal line is drawn at the synthetic value G = 1 (left plots)
and the synthetic value K = 1 (right plots). Results of Ḡ and K̄ are from Simulations F
and G, respectively.

10–13). Further, the offset is larger for the more strongly clustered (types
2, 4, 6, 8) and more strongly repulsive (types 11 and 13) point patterns.
For underlying Poisson hard core patterns (type 9), the value of Ḡ coin-
cides with, or is close to, the synthetic value of one. These results can again
be explained by the relative offset between the prior Poison process model
and the pattern types. With G a free parameter in the model, any existing
consistent positive or negative bias of the posterior DA-channel pixel mean
intensities—µiDA (2)—and the corresponding synthetic data Y i

DA’s can ef-
fectively be removed by the tuning of G in (2). For underlying clustered
patterns, the inference procedure favors to increase G in (2)—in order to
match the µiDA’s with the Y i

DA’s—instead of increasing the value of the
double summation term in (2) by placing donors and acceptors sufficiently
close to each other. Similar, for underlying repulsive patterns, the inference
procedure favors to decrease G in (2)—in order to match the µiDA’s with
the Y i

DA’s—instead of decreasing the value of the double summation term
in (2) by placing donors and acceptors sufficiently far from each other.

In Figure 8 right) the results concerning inference of K (Simulation G)
are shown. Clearly, K̄ is larger/smaller than the synthetic value of one for
clustered/repulsive underlying point patterns (type number 1–8 and 10–13,
respectively). Further, the offset is larger for the strongly clustered (type
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number 2,4,6,8) and strongly repulsive (type number 11 and 13) point pat-
terns. For underlying Poisson hard core patterns (type 9), the value of K̄
coincides with, or is close to, the correct value of one. With K a free pa-
rameter in the model, any existing consistent positive or negative bias of
the posterior DA-channel pixel intensities can be removed by tuning the
number of acceptors within the posterior patterns. For underlying clustered
patterns, the inference procedure favors to increase the number of acceptors
with respect to the underlying synthetic pattern. Hereby, the value of the
double summation term in (2) increases, effectively removing the negative
bias between the µiDA’s and Y i

DA’s. The increase in acceptors leads to an
offset in the AA-channel intensities (2), but this offset is removed by in-
creasing the value of K in (2). Similar, for underlying repulsive patterns,
the inference procedure favors to remove acceptors, resulting in a smaller
value of K compared to the synthetic value of one.

We conclude that the results of the inference of G and K are highly
dependent on the point pattern type.
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