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SUPPLEMENT A: PRELIMINARY STATISTICAL
ANALYSIS OF THE IN VITRO THREE-CUBE FRET

DATA SET

By Jan-Otto Hooghoudt, Margarida Barroso and Rasmus
Waagepetersen

In this supplementary material to “Towards Bayesian Inference of the
Spatial Distribution of Proteins from Three-Cube FRET Data” we present
a preliminary statistical analysis of the in vitro transferrin attached to po-
lylysine slides three cube FRET data set. We start by describing the exper-
imental set-up and sample preparation in Section 1 and discuss the channel
data set extracted from these samples in Section 2. Then we study the influ-
ence that photobleaching of the donors and acceptors has on the intensity
signal for the remeasurements in the three channels in Section 3, and we
present simple non-Bayesian methods for estimating the K and G factors
in Section 4 and 5, respectively. Methods for estimating the GA and GD

factors are presented in Section 6 and an estimate of the ratio of the quan-
tum efficiencies in the detector D- and A-channel is given in Section 7. We
conclude by obtaining an estimate of MD in Section 8.

1. The experimental set-up. Fourteen glass cover slips coated with
polylysine have been prepared to contain various abundances of donor and
acceptor fluorophores attached to it. Briefly, the procedure is as follows.
Transferrin is labeled solely with donor fluorophores or solely with acceptor
fluorophores, leading to Tfn-D and Tfn-A molecules. As donor the Alexa-488
fluorophore (qD = 0.92) is used and as acceptor the Alexa-555 fluorophore
(qA = 0.10) is used. The Förster distance of the Alexa-488 and Alexa-555
fluorophore pair is 7 nm (Johnson, 2010). Solutions containing concentra-
tions of approximately 2, 4 or 8 µg/ml of solely Tfn-D or solely Tfn-A are
prepared, and glass cover slips coated with polylysine are incubated for a
certain period with Tfn-D and/or Tfn-A solution. The procedure followed to
bind transferrin to polylysine plates is described in more detail in Wallrabe
et al. (2006).

In Table 1 the sample preparation set-up is shown. The samples 1-3 con-
tain only donor fluorophores, while samples 4-6 consist of only acceptor
fluorophores. The samples 7-14 consist of mixtures of donor and acceptor
fluorophores. We note that the samples denoted as sample 1, 2 and 3 in the
main article correspond to, respectively, the samples 7, 9 and 11 in Table 1.
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Sample number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[A]sol - - - 2 4 8 2 4 4 8 4 8 6 8

[D]sol 2 4 8 - - - 4 8 4 8 2 4 2 2

Table 1
Sample preparation set-up for transferrin attached to polylysine slides. The solution

concentrations of Tfn-A ([A]sol) and Tfn-D ([D]sol) applied are stated for each sample in
units of µg/ml.

2. The channel data set. Each sample (see Table 1) has been mea-
sured at three sites. At each site three-cube FRET channel data is obtained
on a square grid containing 512×512 square pixels. The pixel side length is
0.279 µm and the focal volume depth is approximately 5 pixels (1.4 µm)
(Wallrabe et al., 2007).

In order to obtain sufficient photon count statistics—that is sufficiently
high signal-to-noise ratio to apply our Bayesian inference method—each
sample has been remeasured ten times.1 We then create an aggregated
dataset—the aggregated channel dataset—by summing pixel wise over the
ten measured intensities for each channel. By remeasuring the sample instead
of increasing the measurement time, we obtain information concerning: the
amount of photobleaching occurring for remeasurements (see Section 3) and
the pixel intensity variance in the three channels. The latter information
gives the possibility to compare the empirical pixel intensity mean-variance
relationship with the one implied by our statistical model, as well as to
obtain estimates for GD and GA (see Section 6).

All three channels are corrected for background emission and the DA-
channel is also corrected for spectral bleedthrough by the methods described
in Elangovan et al. (2003). In the following, DA-channel data (YDA) refers to
the intensities corrected for bleedthrough and background emission and the
DD- and AA-channel data (YDD and YAA, respectively) to the intensities
corrected for background emission. We will refer to a sample by its sample
number (see Table 1).

In Figure 1 the channel intensity images of the aggregated channel dataset
of sample 9 are shown in terms of gray levels. In plot a) and b) there are
some very low intensity regions (black spots) and in the upper left corner
of plot c) most of the DA-channel intensities are zero. These artefacts are
due to improper sample preparation. Therefore the statistical analysis as

1For a typical three-cube FRET experiment less than 10 photons counts per pixel
are registered by the detector in the DA-channel (Pawley, 2006, Chapter 2; Clegg, 1996,
Chapter 1).
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Fig 1. Channel intensity images of the aggregated channel dataset of sample 9, site 2. a)
DD-channel, b) AA-channel, c) DA-channel. Plots a)-c) consist each of 512×512 pixels:
Figures d-f) show enlargements of the square subregions of the figures a-c), each consisting
of 100×100 pixels. Above each plot is stated the mean (me), maximum (ma) and minimum
(mi) pixel intensity value in the image. In each image the gray levels are constructed by
using ten equally spaced intervals between zero and the maximum value of the image.
Black/white refers to the lowest/highest intensity interval.

presented in the following sections are based on the channel data of the
central square section consisting of 100×100 pixels (the white squares in
plots a)-c).

In the following we will occasionally for any site and sample make use
of the following generic notation. We denote the pixel intensity of pixel i
measured in channel k = DD,DA,AA and for measurement number m =
1, . . . , 10 by Y i,m

k . The sample mean intensity—taken over the 100×100
pixels—for channel k and measurement number m is denoted by Ȳ ·mk , that

is Ȳ ·mk = 1
1e4

∑1e4
i=1 Y

i,m
k . The pixel mean intensity for pixel i for the 10 remea-

surementsm for channel k will be denoted by Ȳ i·
k , that is Ȳ i· = 1

10

∑10
m=1 Y

i,m
k .

The sample grand mean intensity taken over the 100×100 pixels and the 10
remeasurements will be denoted by ¯̄Yk = 1

10

∑10
m=1 Ȳ

·m.
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Fig 2. Sample mean intensity versus measurement number shown for site 2 for the D+A
samples: left) DD-channel, right) DA-channel. Solid-circle: sample 7 ; dashed-circle: sam-
ple 8; dotted-circle: sample 9; dashed-dotted-circle: sample 10; solid-triangle: sample 11;
dashed-triangle: sample 12; dotted-triangle: sample 13; dashed-dotted-triangle: sample 14.

3. Photobleaching due to remeasuring. In Figure 2 the sample
mean intensity is shown as a function of the remeasurement number for
the DD- and DA-channel, for site 2 of the D+A samples. Clearly, the sam-
ple mean pixel intensity has a slightly decreasing trend as a function of the
measurement number. The decrease in intensity between measurement one
and ten is roughly between 10–30% for all samples and for both channels.
The same amount of decrease in intensity occurs for the AA-channel (not
shown). The same analysis applied to the sites 1 and 3 of the D+A samples
showed similar results as just discussed for site 2.

We note that the intensity remeasurements could be incorporated in our
inference procedure by using the product of likelihoods for each measure-
ment i.e. in equation (3.1) in the main article we could replace each of
the likelihood terms p(yk|ψ,x), k = DD,DA,AA by

∏M
m=1 p(y

m
k |ψ,x) with

M = 10 the total number of measurements and ymk the observed inten-
sity for channel k and measurement m. Thereby, a possible way to account
for the decreasing linear trend in the pixel intensities due to bleaching is
the following. Define µi,1k —as in (2.2) and (2.3) in the main article—to be
the channel mean pixel intensity for measurement number 1 for pixel i and
channel k = DD,DA,AA, and relate the mean pixel intensity µi,mk for the

remeasurements m = 2, . . . , 10 to µi,1k by

µi,mk = µi,1k − a(m− 1)

and include a as a parameter in the model. For simplicity, however, we have



5

chosen instead to create the aggregated photon count data set, to view it
as resulting from one measurement and to apply our Bayesian inference
procedure to this aggregated data set.

4. Estimate of the K-factor. The K-factor can be obtained experi-
mentally by the preparation of a sample which contains equimolar concentra-
tions of donor and acceptor fluorophores (Chen et al., 2006). Then by mea-
suring the sample mean intensities in the three channels ( ¯̄YDD,

¯̄YDA,
¯̄YAA)

an estimate for K is obtained by

K =
¯̄YDD + ¯̄YDA/G

¯̄YAA

.

For a sample with unequimolar donor and acceptor concentrations [A] and
[D] this relations becomes

K =
[A]

[D]

¯̄YDD + ¯̄YDA/G
¯̄YAA

,

(Chen et al., 2006). The ratio bA = ¯̄YAA/[A] can be found as the slope of
a regression line for pairs ([A], ¯̄YAA) for samples with varying concentration
[A] and arbitrary donor concentration. Similarly, bD = ( ¯̄YDD + ¯̄YDA/G)/[D]
can in principle be found as the slope of a regression line for pairs ([D], ¯̄YDD+
¯̄YDA/G). This, however, would require knowledge of G. In our data set, on
the other hand, we have access to donor only samples and we can thus replace
¯̄YDD+ ¯̄YDA/G for a sample with both donors and acceptors of concentrations
[D] and [A] with ¯̄YDD for a sample only containing donors of concentration
[D].

In Figure 3 a) ¯̄YDD is plotted against [D]sol for the donor only samples
1-3.2 The resulting slope of the regression line (of intercept 0) is bD =
10.6. Further, in Figure 3 b), ¯̄YAA is plotted versus the sample acceptor
concentration [A]sol for acceptor only as well as D+A samples, and the slope
bA of the least squares line—found for a fixed intercept of zero—is 15.4.
Thereby, we find as an estimate for the K-factor rounded to one decimal:
K̂ = bD/bA ≈ 0.7.

5. Estimate of the G-factor. The sample mean unquenched donor
intensities for the D+A samples (samples 7-14) should scale with the applied

2Because the true donor [D] and acceptor [A] concentrations in the samples are un-
known, we use, respectively, the donor and acceptor concentrations [D]sol and [A]sol applied
to prepare the samples, to find estimates for bD and bA.
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Fig 3. Sample grand mean pixel intensity versus applied solution concentration. a) DD-
intensity vs donor solution concentration for each of the three sites of the donor only
samples (samples 1-3) , b) AA-intensity vs acceptor sample concentration for for each of
the three sites of the acceptor only (samples 4-6) and the D+A samples (samples 7-14).

sample donor solution concentration [D] by the same slope bD as determined
in the previous section. This observation provides a method to obtain a rough
estimate for the G-factor.
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c) Unquenched donor; G=1
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b) Unquenched donor; G=0.66
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Fig 4. Sample grand mean intensity of unquenched donor ¯̄YDD + ¯̄YDA/G versus sam-
ple donor concentration for each of the three sites of the D+A samples (samples 7-14):
a) G = 1, b) G = 0.66. In plot b) the value of G has been tuned in order to obtain a least
square line with a slope of 10.4. The least square lines are fitted in both plots with a fixed
intercept of zero.
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Figure 4 shows a similar plot as in Figure 3 a) where ¯̄YDD+ ¯̄YDA is plotted
versus the applied donor solution concentration [D] for the D+A samples.
For this plot the slope of the least square estimate is 9.3, which is close to
but slightly lower than the previous found estimate of bD = 10.4. Since we
have ¯̄YDD + ¯̄YDA/G = bD[D], this suggests a value of G less than one. We
now simply tune G so that the regression for ¯̄YDD + ¯̄YDA/G versus [D] has
the slope bD = 10.4. This happens for G = 0.66, see Figure 4 b). We round
this value to one decimal and find as an estimate for the G-factor, Ĝ = 0.7.

6. Assessment of mean-variance relation for polylysine data. As
each sample has been remeasured ten times, for pixel i we have observations
Y i,m
k where m = 1, . . . , 10 is the index of the replicates. Apart from a slight

decrease in intensity due to bleaching (see Section 3), we can view the Y i,m as
independent and identically distributed. If we further ignore for the moment
the additive noise, then the statistical model—equations (2.1)–(2.3) in the
main article—predicts a log-log linear relationship between the pixel mean
µik and the pixel variance σ2,ik of Y i,m

k . E.g. for the DD-channel,

log σ2,iDD = logGD + log µiDD,

with GD the amplification factor of the detector in the D-channel. Now,
for each pixel we compute empirical means Ȳ i·

k =
∑M

m=1 Y
i,m
k and empirical

variances

s2,ik =
1

M − 1

M∑
m=1

(
Y i,m
k − Ȳ i·

k

)2
, k = DD,AA

with M = 10 the total number of measurements. Figure 5 shows for the
two channels k = DD,AA the empirical log variances log s2,ik against the
log empirical means log Ȳ i·

k . By fitting a regression line with a slope of 1
through the points, the intercept provides a rough estimate of respectively
logGD and logGA. The intercept is 2.0 for the DD-channel (plot a)) and
1.7 for the AA-channel (plot b)). Thereby we find, rounded to one decimal,
the estimates ĜD = exp(2.0) ≈ 7.4 and ĜA = exp(1.7) ≈ 5.5.3

7. Estimate of the ratio of the detector quantum efficiencies.
By the definition of the G-factor, as stated in the Appendix of the main
article,

QD

QA
=

GAqA
GGDqD

.

3We note that least square estimates for the slopes of the regression lines in Figure 5 are
1.1± 0.2 for the DD- as well as the AA-channel, which is indeed close to one as predicted
by the statistical model.
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Fig 5. Smoothed log-log scatterplot of the empirical pixel intensity variances s2,ik versus
the corresponding empirical pixel intensity means Ȳ i·

k . In both plots the least squares line
is fitted for a fixed slope of one. For plot a) the DD-channel intensity data is used for each
of the three sites of the donor only samples (samples 1-3) and D+A samples (samples
7-14). For plot b) the AA-channel intensity data is used for for each of the three sites of
the acceptor only (samples 4-6) and D+A samples (samples 7-14). For further details we
refer to the text.

Inserting the estimates for the parameters on the right-hand side (Ĝ = 0.7,
ĜA = 5.5, ĜD = 7.4) as well as the values for the quantum yield of the
Alexa-488 donor fluorophore (qD = 0.92) and of the Alexa-555 acceptor
fluorophore (qA = 0.10) gives that QD/QA ≈ 0.1. So, the quantum efficiency
of the applied detector in the A-channel is approximately 10 times larger
than in the D-channel.

8. Estimate of MD. For randomly distributed donors and acceptors
in the plane Wolber and Hudson (1979) provide an analytical expression for
the sample mean FRET efficiency E as a function of: 1) the Förster distance
R0, 2) the acceptor concentration, and 3) the distance R of closest approach
between a donor and an acceptor. Some of the limiting assumptions made
in the derivation are: a) donors do not compete with each other for transfer
to an acceptor, b) all donor-acceptor pairs have the same Förster distance
and c) the area contributed by the donors and acceptors is negligible i.e.
there are no excluded area effects. The general solution is stated as an inte-
gral expression which should be solved numerically, but Wolber and Hudson
(1979) also provide the following convenient and accurate approximation:

(1) E = 1− (A1e
−k1cA +A2e

−k2cA),
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Fig 6. Sample efficiency (1) for randomly distributed donors and acceptors in the plane as
a function of cA—i.e. the number of acceptors per area R2

0—for various ratios of R/R0,
with R0 the Förster distance of the donor-acceptor pair and R the distance of closest
approach between a donor and an acceptor. Adapted from Wolber and Hudson (1979).

with A1, A2, k1, k2 constants depending on the ratio of R/R0 (see Table I in
Wolber and Hudson, 1979) and cA is the acceptor concentration in units of
the number of acceptors per area R2

0. In Figure 6 the efficiency as a function
of the acceptor concentration is plotted for various R/R0 ratios.

In the following we obtain an estimate for MD by:

i) applying (1) to find an estimate of cA—and thereby of the mean num-
ber of acceptor points within a pixel—for the samples prepared with
the highest acceptor solution concentration of [A]sol = 8,

ii) applying the equation for µiAA in Section 2.2 of the main article, to
find an estimate of MD

Regarding i): The samples prepared with a solution concentration of
[A]sol = 8 are the samples 10, 12 and 14 (Table 1). The sample mean effi-
ciencies of sample 10, 12 and 14, averaged over the three sites are 0.32, 0.45
and 0.59. We believe that due to the high concentrations of donors in sam-
ple 10 (applied donor solution concentration is 8), the donors in this sample
compete with each other for energy transfer to surrounding acceptors, which
leads to a much lower value of the efficiency than for samples 10 and 12. We
therefore here exclude sample 10 from the analysis.4.

4For a random distribution of donors and acceptors and under the assumption that
donors do not compete for energy transfer to an acceptor the sample efficiency is inde-
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The average sample mean efficiency of sample 12 and 14 for the three sites
is 0.52. Assuming the value of closest approach R to be zero then by aid
of Figure 6 we find that to E = 0.55 corresponds cA ≈ 0.2 [acceptors/R2

0].
As for the Alexa-488 and Alexa-555 donor-acceptor pair R0 = 7 nm, the
average number of acceptors residing within a pixel of area 279×279 nm2

for the samples 10 and 12 is approximately: (0.2/(72)) · 2792 = 317.7 ≈ 320.
Regarding ii): Summing the equation for µiAA in Section 2.2 of the main

article on the left and right hand-side over all pixels i = 1, . . . N on which
our analysis is performed, i.e. the square subregion as displayed in Figure 1
to which will we refer here as W , results in

N∑
i=1

µiAA =
MD

K

∑
a∈xA∩W

1,

where N = 1e4. Rewriting yields

(2) MD =
K

n(xA ∩W )

N∑
i=1

µiAA,

with n(xA∩W ) denoting the total number of acceptor points in W . We find
an estimate of MD by finding estimates for

∑N
i=1 µ

i
AA and n(xA ∩W ) in (2)

for the samples 12 and 14.
In Section 4 it was determined that the sample grand mean acceptor

intensity ¯̄YAA scales with the sample acceptor concentration [A]sol by the

slope bA = 15.4. Thus for samples 12 and 14 we find that ¯̄YAA ≈ 15.4 · 8 =
123.2.

Because the Bayesian inference method applied in the main article makes
use of the aggregated data set summed over the ten measurements m =
1, . . . , 10, the sample mean of the aggregated AA-intensity for the samples
12 and 14 is—ignoring the photobleaching effect—approximately 10·123.2 =
1232, which provides an estimate of 1

N

∑N
i=1 µ

i
AA for the aggregated data

set. Further, the in this section found estimate for the the mean number
of acceptors per pixel of 320 for the samples 12 and 14 is an estimate of
1
N n(xA ∩W ). Applying the not rounded estimate of K̂ ≈ 0.675 previously
found in Section 4, we find as an estimate for MD, rounded to one decimal,

M̂D ≈ 0.675 · 1232

320
= 2.6.

pendent of the donor concentration for a fixed acceptor concentration (Kenworthy and
Edidin, 1998)
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We note that the estimate of a mean number of 320 acceptors per pixel
for the samples prepared with an acceptor solution concentration of 8 µg/ml
is equally valid for donor fluorophores, i.e samples prepared with a donor
solution concentration of [D]sol = 8µg/ml will contain approximately 320
donors per pixel. Further, the two results can be extrapolated, i.e. the aver-
age numbers of acceptors and donors within a pixel are, respectively 40·[A]sol
and 40 · [D]sol. We use the latter relations to specify the prior means of the
Poisson point process intensities in Section 6.2 in the main article.
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