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SUPPLEMENT B: THE MCMC SAMPLER

By Jan-Otto Hooghoudt and Rasmus Waagepetersen

In this supplementary material to “Towards Bayesian Inference of the
Spatial Distribution of Proteins from Three-Cube FRET Data” we give a
detailed description of the Markov chain Monte Carlo sampler used to draw
samples from the posterior distribution (equation (3.1) in the main article)
in the first section. In the second section we briefly discuss the likelihood
expressions we apply in the case the three-cube FRET channel intensities
can not consist of negative values (i.e. empirical data).

1. Steps in the MCMC sampler. The steps involved in the sampler
are illustrated in Figure 1 and are described in detail below.

Step 1: Generate initial configuration for the posterior point pat-
tern. An initial point pattern X0 = (X0

D,X
0
A) from which the chain starts

is generated from the prior distribution by using the R-software (R Core
Team, 2014) and the package spatstat (Baddeley and Turner, 2005). The
initial point pattern is simulated on a square W corresponding to the area
covered by the three-cube FRET channel data. The generated point pattern
is stored by writing the coordinates x, y of the points as well as the marks
of each point—1 for a donor, 2 for an acceptor—to disk.

Step 2: Generate channel data from the initial posterior point
pattern. Channel data conditional on the point pattern X0 is computed
based on equations (2.1)–(2.3) in the main article. To employ these equations
the square area W is defined as a union of square pixels Ci, i.e. W = ∪i∈GCi,
with the Ci equal to the pixels in the three-cube FRET channel dataset
indexed by G.

To compute the µiDD and µiDA (defined in Section 2.2. of the main article)
the key component is to specify Pda for donor and acceptor pairs in X. To
keep the computation of transfer probabilities feasible, only those acceptors
that reside within 4R0 of a donor are taking into account as a possible
path for energy transfer for the donor. This important simplification will
not lead to any significant difference in posterior results. By replacing PdA
in the equation for µiDD by its definition PdA =

∑
a∈XA

Pda, and taking into
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account the cut-off radius of 4R0, the equations for µiDD and µiDA become

µiDD = MD

∑
d∈XD∩Ci

(1−
∑
a∈XA
rda<4R0

Pda),(1)

µiDA = MDG
∑

a∈XA∩Ci

∑
d∈XD
rda<4R0

Pda,(2)

with rda the distance between a donor d and an acceptor a and (as previously
defined in Section 2.1 of the main article)

Pda =
(R0/rda)

6

1 + Sd
with Sd =

∑
ã∈XA
rdã<4R0

(R0/rdã)
6.

For clarity and later use we further restate here the equation for µiAA as
previously defined in Section 2.2 of the main article

µiAA = MD/K
∑

a∈XA∩Ci

1.(3)

To benefit from the approach of excluding transfer probabilities Pda for
donor and acceptors pairs which are further than 4R0 from each other, it is
necessary to store donors and acceptors pixel wise. We have used so called
linked lists to implement this. A linked list can be viewed as a list containing
boxes and each box stores the values of some variables as well as a pointer
to the next box. In our program for each pixel there are two linked-lists
available, one storing the information concerning the donor points within the
pixel and the other storing the information concerning the acceptor points
within the pixel. To each point (donor or acceptor) corresponds precisely
one box in the corresponding linked list. For an acceptor point a the box
contains the x, y coordinates of a. For a donor point d also the value of Sd is
stored. Storing of Sd gives the possibility to compute the channel data very
efficiently when a proposal update for the acceptor point pattern is made.
This is further discussed under step 6.

In our program the sums on the right of the factors MD, MDG and MD/K
in, respectively, equations (1), (2) and (3) are available and stored at every
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Fig 1. Flow chart of the steps involved in the MCMC sampler.



4

step in the three matrices XNDD, XNDA and XNA containing the elements

XNDDi =
∑

d∈XD∩Ci

(1−
∑
a∈XA
rda<4R0

Pda)

=
∑

d∈XD∩Ci

(1 + Sd)
−1,

XNDAi =
∑

a∈XA∩Ci

∑
d∈XD
rda<4R0

(R0/rda)
6

1 + Sd
,

XNAi =
∑

a∈XA∩Ci

1,

for i = 1, . . . , n and n the total number of pixels. The X in these names
refers to the posterior pattern X and the N in XNDD and XNDA stands for
normalized as the values of XNDDi and XNDAi correspond to the situation
where every donor within pixel i is excited exactly one time. For XNA it
is appropriate to think of the N in its name to refer to number—and we
have used only a single A at the end of the name— as XNA is the matrix
that stores the number of acceptors within each pixel of the pattern XA.
Equivalent to the latter matrix, also a matrix XND is available within the
program which stores the number of donors within each pixel in the pattern
XD. The values of µiDD, µ

i
DA and µiAA are now available at each step by

multiplication of XNDDi, XNDAi and XNAi by, respectively, the factors:
MD, MDG and MD/K, as specified in (1), (2) and (3).

For the initial posterior point pattern X0 the value of each XNDDi,
XNDAi and XNAi is now computed as follows:

1. The initial point pattern is read from disk and depending on the mark
(1 or 2) and the coordinates x, y a point is added to the corresponding
donor or acceptor linked lists. For each donor point the value of Sd is
set to zero. Within the process the total number of acceptors as well
as donors that reside within a pixel i is counted and these values are
stored, respectively, in the matrix elements XNAi and XNDi.

2. An element XNDDi (initially set to zero) is computed by looping over
all donors d within pixel i. For each donors d the distance rda to
acceptors a which reside in the same pixel or directly neighboring pixels
is calculated.1 If the distance rda is within 4R0, then the corresponding

1For square pixels the approach of including only points residing within nearest neigh-
bor pixels in the computation is valid for pixels with a side length ≥ 4R0. A condition
always satisfied for empirical FRET datasets.
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value of (R0/rda)
6 is added to Sd (which initially is set to zero). After

looping over all acceptors residing in the same or directly neighboring
pixels the value Sd is stored and the value of (1 + Sd)

−1 is added to
XNDDi.

3. An element XNDAi (initially set to zero) is computed by looping over
all acceptors a within pixel i and for each acceptor a the distance rda to
donors d which reside in the same pixel or directly neighboring pixels
is calculated. If the distance rda is within 4R0, then the corresponding
value of Pda = (R0/rda)

6/(1 + Sd) is added to XNDAi.

Step 3: Start MCMC. By the initialization procedure, steps 1-2, and spec-
ifying initial values for the microscope parameters the following information
is available within the program:

1. the point pattern X0 is stored as two sets of linked lists containing the
coordinates of the donor and acceptor points.

2. the mean channel intensities µiDD, µ
i
DA, µ

i
AA related to the initial point

pattern X0 are available in the form of the three matrices XNDD,
XNDA and XNA and the initial values of MD, G and K.

Further, by specifying the prior distributions of the microscope and point
process parameters and making a three-cube FRET data set available in the
form of three matrices YDD, YDA and YAA containing the intensity values
of respectively the DD-, DA- and AA-channel, the sampling procedure can
start.

Step 4: Propose update pattern. A proposal is made to update the point
pattern. With probability 1/2 the donor pattern is updated, otherwise the
acceptor pattern is updated. Then it is proposed to add or remove a point,
each with probability 1/2.

- In the case a point is added, random coordinates for x and y are
generated from the uniform distribution on W .

- In the case a donor (acceptor) point is removed from the pattern, a
random integer is drawn between 1 and the total number of donor
(acceptor) points in the current pattern. It is then proposed to remove
the donor (acceptor) point that is labeled by this number. The latter
method is implemented by implicitly labeling each donor and acceptor
point. As an example, consider for instance a donor point which is
stored in linked list number 4 box 8. This point is implicitely labelled
by the integer value resulting from adding 8 (of box 8) to the total
number of donors in linked lists 1 to 3.
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Fig 2. Adding a donor d0 (small gray circle) to the point pattern. The larger circle repre-
sents the radius of 4R0 around the donor. The figure is drawn on a scale with R0 = 6 and
the side length of the square pixels equal to 100. The small figure on the right shows how
the quadrants within pixel 5 are labeled as used in the text.

Step 5: Calculate channel data for a proposal update of the point
pattern. In order to gain computational speed, we have implemented a
rather sophisticated procedure to compute the channel data for a proposal
update of the point pattern. The implemented procedure distinguishes be-
tween computation of the channel data when an update for the donor pattern
XD or the acceptor pattern XA is proposed. First, we discuss the algorithm
for the donor case in terms of proposing to add a donor (proposing to remove
a donor is similar). Secondly, we discuss the algorithm for the acceptor case
in terms of proposing to add an acceptor (proposing to remove an acceptor
is similar).

Compute proposal channel data: Adding a donor. In Figure 2 a schematic
representation of adding a donor d0 (small gray circle) to the current pattern
is shown. From the figure it is clear that if the new donor is placed in the
second quadrant of a pixel only acceptors that reside within this same pixel,
or in the pixels 2, 3 and 6 can be affected by the newly placed donor.2

Thereby, the only values of XNDAi that need to be recomputed are for
i ∈ {2, 3, 5, 6}. The new value XNDAi

p for each of the possibly affected

XNDAi is derived by computing the change ∆XNDAi that arises due to
adding d0, and adding it to the current value XNDAi

c, i.e.

XNDAi
p = XNDAi

c + ∆XNDAi.

2For square pixels the approach of only including acceptors within pixels which are
nearest neighbors of the quadrant where the donor is added is valid for pixels with a side
length ≥ 8R0. A condition always satisfied for empirical FRET datasets.
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The value of each ∆XNDAi for i ∈ {2, 3, 5, 6} is defined by

∆XNDAi =
∑

a∈XA∩Ci
rd0a<4R0

Pd0a,

and easily obtained by: i) computing Sd0 for donor d0 by looping over the
acceptors in the pixels i ∈ {2, 3, 5, 6}, while storing rd0a for those a’s for
which rd0a < 4R0 and ii) adding Pd0a for each stored a to ∆XNDAi (which
initially was set to zero) when a is located in pixel i.

The sole element of XNDD that is affected by the new donor is the element
corresponding to the pixel where the donor is added, that is i = 5. The new
proposed value for XNDD5 is available as

XNDD5
p = XNDD5 + ∆XNDD5,

with

∆XNDD5 = 1−
∑

i∈{2,3,5,6}

∆XNDAi.

Compute proposal channel data: Adding an acceptor. Computing the chan-
nel data when an acceptor is added to the current pattern is rather more
involved than for the donor case. We explain the procedure by example and
in direct relation to the situation depicted in Figure 3 in which an acceptor
a0 is added to a current pattern. The new acceptor point is placed in the sec-
ond quadrant of pixel 5 and only donors that reside within the pixels 2, 3, 5
and 6 can be affected by the new acceptor. Donors that reside within the
solid circle are affected by the presence of the acceptor as they get an extra
path for de-excitation by energy transfer to the newly placed acceptor. Now
assume that the donor d1 (small solid circle in pixel 3) which resides within
the radius of 4R0 to a0, has currently the possibility of energy transfer to
a number of acceptors a (rda < 4R0) and denote one of these acceptors by
a1. Then in the current situation (a0 not added) the probability of energy
transfer from donor d1 to acceptor a1 is defined by

P current
d1a1 =

(R0/rd1a1)6

1 + Sd1
,

while in the proposed situation (acceptor a0 added) this becomes

P proposed
d1a1

=
(R0/rd1a1)6

1 + Sd1 + (R0/rd1a0)6
.
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Fig 3. Adding an acceptor a0(small gray circle) to the point pattern. The larger
circles around a0 and d1 (small solid circle) have a radius of 4R0. The figure is
drawn on a scale with R0 = 6 and the side length of the square pixels equal to 100.
The small figure on the right shows how the quadrants within pixel 5 are labeled as
used in the text

So, by placing a0 within 4R0 of d1, the probability Pd1a1 for energy transfer
from donor d1 to acceptor a1 decreases. Clearly, also for other acceptors re-
siding within 4R0 of d1 (other than a0 and a1), their respective probabilities
to receive energy transfer from donor d1 will decrease when acceptor a0 is
added. The algorithm for updating the possibly affected elements of XNDA
is now as follows:

1. Compute for donors residing within possibly affected pixels, i.e. d ∈
XD ∩ Ci, i ∈ {2, 3, 5, 6}, the distance rda0 to a0. If rda0 < 4R0, then
store for each of these donors its coordinates as well as the value of
(R0/rda0)6 in a list.

2. Loop pixel wise over the acceptors residing in the possibly affected
pixels, i.e. a ∈ XA ∩ Ci, i ∈ {2, 3, 5, 6}.3 Determine for each acceptor
a the distance rda to any of the donors in the list made in 1. If the
distance rda < 4R0, then the value of XNDAi

c will decrease due to a
and d by

(R0/rda)
6

1 + Sd + (R0/rda0)6
− (R0/rda)

6

1 + Sd
.

Taking into account all the donors and acceptors of which the trans-
fer probabilities change due to adding a0, the algorithm computes

3For square pixels the approach of only including acceptors within pixels which are
nearest neighbors of the quadrant where the proposed acceptor is placed, is valid for
pixels with a side length ≥ 16R0. A condition in general satisfied for empirical three-cube
FRET datasets.
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∆XNDAi as

∆XNDAi =
∑

a∈XA∩Ci

∑
j=

2,3,5,6

∑
d∈XD∩Cj

rda0<4R0

rda<4R0

( (R0/rda)
6

1 + Sd + (R0/rda0)6
− (R0/rda)

6

1 + Sd

)
,

for i ∈ {2, 3, 5, 6}. The values for ∆XNDAi obtained by this equation
are negative or zero as they compute the total decrease in the proba-
bility of energy transfer from donors d to acceptors a ∈ XA ∩ Ci, due
to adding a0 to the current pattern. However, in the pixel where a0
is added (pixel 5), there will be a possible increase in ∆XNDA, as a0
can receive transfers from donors d possibly residing within 4R0 of it,
which has to be added to ∆XNDA5, i.e.

∆XNDA5 = ∆XNDA5(previous equation) +
∑
j=

2,3,5,6

∑
d∈XD∩Cj

rda0<4R0

(
R0

rda0
)6.

Computation of the difference ∆XNDDi between the current values XNDDi

and proposed values XNDDi
p for the possibly affected elements i ∈ {2, 3, 5, 6}

is much simpler than for ∆XNDAi. Because the current value of Sd is stored
for each donor d, no looping over the acceptors within the current pattern
has to be carried out and

∆XNDDi =
∑

d∈XD∩Ci
rda0<R0

1

1 + Sd + (rda0/R
6
0)
− 1

1 + Sd
; i ∈ {2, 3, 5, 6}.

We note that when an acceptor is added (removed) to (from) the cur-
rent pattern this leads to to a redistribution of normalized pixel intensities
between the DD- and DA-channel. Therefore the following equality holds∑

i∈{2,3,5,6}

∆XNDDi +
∑

i∈{2,3,5,6}

∆XNDAi = 0.(4)

This observation provides a convenient way to check the proper implementa-
tion of the algorithms used to compute ∆XNDAi and ∆XNDDi. Computing
both sums on the left-hand side of (4) and adding them should give the value
of zero within numerical precision.

Step 6: Calculate Metropolis-Hastings ratio. We present here the
steps involved to calculate (the logarithm of) the MH-ratio (Section 3.2 of
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the main article) in terms of removing an accepter. The computation when
adding an acceptor or adding/removing a donor is similar.

In case it is proposed to remove a point u ∈ XA, the Metropolis-Hastings
ratio becomes

p(y|xD,xA\{u}, ψ)

p(y|xD,xA, ψ)

p(xA\{u}|θA)

p(xA|θA)

n(xA)

θA|W |
,

with the logarithm of first two ratios specified below:

1. the likelihood ratio term

ln

[
p(y|xD,xA\{u}, ψ)

p(y|xD,xA, ψ)

]
=

1

2

∑
i∈Nc

(
ln[
GDµ

ic
DD + σ2

GDµ
ip
DD + σ2

] +
(yiDD − µicDD)2

GDµicDD + σ2
−

(yiDD − µ
ip
DD)2

GDµ
ip
DD + σ2

+ ln[
GAµ

ic
DA + σ2

GAµ
ip
DA + σ2

] +
(yiDA − µicDA)2

GAµicDA + σ2
−

(yiDA − µ
ip
DA)2

GAµ
ip
DA + σ2

+ ln[
GAµ

ic
AA + σ2

GAµ
ip
AA + σ2

] +
(yiAA − µicAA)2

GAµicAA + σ2
−

(yiAA − µ
ip
AA)2

GAµ
ip
AA + σ2

)
.(5)

Here the summation is over the pixels that are direct neighbors of
the pixel c where a point was added of removed, and defined as the
neighborhood Nc.

4

2. The Poisson process ratio term

ln

[
p(xA \ {u}|θA)

p(xA|θA)

]
= − ln[θA].

Step 7: Accept proposal? With the logarithm of the MH-ratio available
as MHR, we draw a uniform random number u between 0 and 1. If u <
exp(MHR) then the proposal is accepted and otherwise it is declined. If the
proposal is accepted:

1. the current point pattern X is updated such as proposed, i.e. adding or
removing a donor or acceptor point to or from the appropriate linked
list.

2. XNAi or XNDi are updated according to the accepted proposal.

4In the case that the channel data set can not consist of negative values (i.e. empirical
data), and yi

k = 0 is observed, then the three terms in (5) related to channel k should be
replaced by a so called truncated likelihood expression as discussed in Section 2.
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3. The channel data matrices are updated by adding ∆XNDDi and ∆XNDAi

to the values currently stored in XNDDi and XNDAi.

Step 8: mod(step,Mstep=0?) In order to draw approximately indepen-
dent realizations for the point process and microscope parameters, a large
number Mstep of sequential updates of the point pattern are made between
every parameter proposal update step.

Step 9: Propose update microscope parameter(s). We discuss this
step assumming that all six microscope parameters and both the Poisson
point process parameters are included in the Bayesian inference. At every
Mstep’th step a proposal update is made for each of the parameters in a
random order. As the support of the microscope parameters is on R+ we
use as proposal distribution for a microscope parameter ωj the lognormal
distribution, effectively ensuring that a proposal value ωp

j is always strictly

positive. Within the MCMC procedure a proposal ωp
j is now generated by

drawing a random normal number ε ∼ N(0, τ2j ) and setting

ωp
j = ωc

j exp(ε),

with τ2j a tuning parameter, tuned such that for each of the microscope
parameters the acceptance probability is around 30%.

For the Poisson point process parameters θD and θA independent updates
are generated by a Gibbs step. If we wish to draw samples for θD conditional
on the current state we need to specify p(θD|xD) where

p(θD|xD) ∝ p(xD|θD)p(θD)

∝ θn(xD)
D exp(−|W |θD) θ

(αD−1)
D exp(−βDθD)

∝ θ(n(xD)+αD−1)
D exp (−(|W |+ βD)θD)

= Γ(n(xD) + αD, βD + |W |),

where in the second step for p(xD|θD) the density of an independent Poisson
process on W with intensity θD (equation 6.2 in Møller and Waagepetersen,
2003) was inserted, as well as the density of the gamma distribution for
p(θD). So, samples for θD are drawn by sampling from the gamma distri-
bution Γ(n(xD) + αD, βD + |W |) with αD, βD the shape and rate (hyper)
parameters defining the prior gamma distribution of θD. Equivalent, sam-
ples for θA are drawn by sampling from Γ(n(xA) + αA, βA + |W |) with αA,
βA the shape and rate (hyper) parameters defining the prior gamma dis-
tribution of θA. When updating θD or θA the steps 10 and 11 are skipped
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and the program continues to make an update for the next parameter in line.

Step 10: Calculate MH ratio. The MH-ratio related to a proposal ωp
j ∼ qj(·|ωc

j )
for the j-th microscopic parameter is(

p(y|ψp,xc)

p(y|ψc,xc)

) (
p(ψp

j )

p(ψc
j )

) (
q(ψc

j |ψ
p
j )

q(ψp
j |ψc

j )

)
,

where ψc = (ωc
1 , · · · , ωc

6) contains the current values for the microscope
parameters and ψp contains the elements

ψp
k =

{
ωc
k k 6= j
ωp
j k = j.

The logarithm of each of the terms in the MH-ratio are now specified by the

1. Likelihood ratio term5

ln

[
p(y|ψp,xc)

p(y|ψc,xc)

]
=

1

2

n∑
i=1

(
ln[
Gc
Dµ

ic
DD + σ2,c

Gp
Dµ

ip
DD + σ2,p

] +
(yiDD − µicDD)2

Gc
Dµ

ic
DD + σ2,c

−
(yiDD − µ

ip
DD)2

Gp
Dµ

ip
DD + σ2,p

+ ln[
Gc
Aµ

ic
DA + σ2,c

Gp
Aµ

ip
DA + σ2,p

] +
(yiDA − µicDA)2

Gc
Aµ

ic
DA + σ2,c

−
(yiDA − µ

ip
DA)2

Gp
Aµ

ip
DA + σ2,p

+ ln[
Gc
Aµ

ic
AA + σ2,c

Gp
Aµ

ip
AA + σ2,p

] +
(yiAA − µicAA)2

Gc
Aµ

ic
AA + σ2,c

−
(yiAA − µ

ip
AA)2

Gp
Aµ

ip
AA + σ2,p

)
.(6)

2. Prior ratio term

ln

[
p(ψp)

p(ψc)

]
= (α− 1) ln[

ωp
j

ωc
j

] + β(ωc
j − ω

p
j ),

with α and β the hyper parameters specifying the (prior) gamma dis-
tribution of parameter ωj .

3. Proposal ratio term

ln

[
q(ψc

j |ψ
p
j )

q(ψp
j |ψc

j )

]
= ln[

ωp
j

ωc
j

].

5The previous footnote on page 10 also applies to this likelihood expression.
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Step 11: Accept proposal?
With the value of the logarithm of the appropriate MH-ratio available as
MHR, we draw a uniform random number u between 0 and 1. If u <
exp(MHR) then the proposal is accepted and otherwise it is declined. If
the proposal is accepted, the current value of the microscope parameter is
changed to the proposed value.

Step 12: mod(step,Tstep=0?)
If the current step number is equal to the total number of MCMC steps to
be made (Tstep) the program stops, otherwise it continues.

2. Truncated likelihood expressions. For the typical case that the
channel data does not allow for negative intensity values (i.e. non-synthetic
data) we have defined the probability that a zero channel intensity value
occurs as the probability mass in the left tail of the normal distribution
over the negative intensity values. Therefore, in the case empirical three-
cube FRET pixel intensities yik = 0 are observed for pixel i and channel
k = DD,DA or AA, a truncated likelihood expression has to be used. In
that case the three terms related to an observation yik = 0, k = DD in, for
instance, (6) have to be replaced by

ln

[
p(yiDD = 0|ψp,xc)

p(yiDD = 0|ψc,xc)

]
= ln

[∫ 0
−∞ ϕ(z|µipDD, G

p
Dµ

ip
DD + σ2,p)dz∫ 0

−∞ ϕ(z|µicDD, Gc
Dµ

ic
DD + σ2,c)dz

]

and when k = DA or k = AA by

ln

[
p(yik = 0|ψp,xc)

p(yik = 0|ψc,xc)

]
= ln

[∫ 0
−∞ ϕ(z|µipk , G

p
Aµ

ip
k + σ2,p)dz∫ 0

−∞ ϕ(z|µipk , Gc
Aµ

ic
k + σ2,c)dz

]

where ϕ(·|µ, σ2) is the density of the normal distribution with mean µ and
variance σ2. The likelihood equations (5) are also updated accordingly to
the strategy as described here above, in case the channel can not consist of
negative intensity values.
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