Table of contents

Appendix Figure S1

Appendix Figure S2

Appendix Figure S3

Appendix Figure S4

Appendix Figure S5

Appendix Figure S6

Appendix Table S1

Appendix Table S2

Appendix Figure legends

Appendix Figure S1.

(**A and C**) A schematic diagram showing the route for the generation of singleand multi-BCR component KOs from WT Ramos B cells by the CRISPR/Cas9 method. (**B and D**) Expression of the indicated BCR component in WT and the different Ramos KO cells as measured by flow cytometry after staining with the corresponding antibodies. (**E**) Western blot analysis of the expression of the indicated BCR component in WT and the different KO Ramos cells. One clone is used for each genotype.

Appendix Figure S2.

Cell proliferation assay of WT and BCR component KO Ramos cells using $CytoTell^{TM}$ Ultragreen. The data are representative of three independent experiments. One clone is used for each genotype.

Appendix Figure S3.

Growth competition between BCR component KO cells and gWT Ramos cells. The GFP⁺ viable cells were single-cells sorted into 96-well plates 48h post transfection of the CRISPR/Cas9 KO plasmid. The sorted cells were cultured for 10 days and then transferred into larger wells for expansion for another 4 days. After the deletion of the target gene has been confirmed by staining with the corresponding antibodies, the freshly generated single colonies were immediately used for growth competition assay. The competition between GFP-WT and gWT cells serves as a control. The data represent the mean and standard error of a minimum of three independent experiments. Differences between the WT and KO cells were evaluated by first performing the multiple t-test for each day without assuming the same SD and the multiple t-test results were then further analyzed using the False Discovery Rate (FDR, Q) approach with Two-stage linear step-up procedure. Data showed significant difference (Q<0.01) were marked by stars. One clone (Different than those used in Fig 1) is used for each genotype.

Appendix Figure S4.

(A-D) Calcium responses of WT and the indicated BCR component KO Ramos cells upon the stimulation with anti-Ig α antibodies. HL KO = HC/LC double KO; HL α KO = HC/LC, Ig α triple KO; HL β KO = HC/LC, Ig β triple KO. One clone is used for each genotype.

Appendix Figure S5.

(A) A schematic diagram showing the generation of SLP65 KO from HL KO Ramos B cells by the CRISPR/Cas9 method. **(B)** Western blot analysis of SLP65 expression in HL double KO and HLSLP65 triple KO Ramos cells. The staining for GAPDH served as loading control. One clone is used for each genotype.

Appendix Figure S6.

(A) A schematic diagram showing the generation of CD19 or CD81 deficient cells from HL KO Ramos B cells by the CRISPR/Cas9 method. **(B)** FACScan analysis of CD19 or CD81 expression on HL KO, HLCD19 KO or HLCD81 KO Ramos B cells as measured by flow cytometry. One clone is used for HLKO. HLCD19KO and HLCD81 KO are batch sorted.

Fig. S1

Target gene	Description
Igα	Purchased from Santa Cruz
Igβ	Purchased from Santa Cruz
mIg Heavy chain	sgRNA 5'-CAGCTACAGCAGTGGGGGCGC-3'
mIg Light chain	sgRNA 5'-GGGGTTTCTAATCGCTTCTC-3'
SLP65	Purchased from Santa Cruz
CD19	sgRNA 5'-AAGCGGGGGACTCCCGAGACC-3'
CD81	Purchased from Santa Cruz

Appendix Table S1. Information of CRISPR/Cas9 KO plasmids

Appendix Table S2. Information of primers for cloning

Name	Sequences 5'-3'	Template	Final plasmid description
Igβ65F	GTTTGGGGGTCGGGGAC AG	Ramos cDNA	pJET-Igβ
Igβ704 R	CCCGTCCATCCCCAGA GA		
pMIGIgβ_F	ATTAGATCTCTCGAGCC ACATGGCCAGGCTGGC GTTG	pJET-Igβ	PCR fragments were fused into the Xho I linearized pMIG
pMIGIgβ_R	GCGGAATTCGTTAACTC ACTCCTGGCCTGGGTG		to obtain pMIG-Igβ
pMIGHAIgβ_F1	TATCCATATGATGTTCC AGATTATGCTGCCAGA TCGGAGGACCGG	pMIG-Igβ	HA tagged Igβ plasmid: pMIG- HA-Igβ
pMIG_R1	CCGTAGAAAAGATCAA AG		
pMIG_F2	TGATCTTTTCTACGGGG T	pMIG-Igβ	
pMIGHAIgβ_R2	AACATCATATGGATAT GCTGGTACTGGCTCAG C		
Igα74F	GCCACTGGAGCCCATC TC	Ramos cDNA	pJET-Iga
Igα771R	CCTGGCAGGAGTAGGG GT		
pMIGIga_F	ATTAGATCTCTCGAGCC ACATGCCTGGGGGGTCC AGGA	pJET-Iga	PCR fragments were fused into the Xho I linearized pMIG to obtain
pMIGIga_R	GCGGAATTCGTTAACTC ACGGCTTCTCCAGCTG		pMIG-Iga
pMIGIgβAt_F1	CCTATCTTCCTGCTGAG GAAACGATGGCAGAAC	pMIG-Igα	Two PCR fragments were fused together to

pMIG_R1	See above		obtain pMIG-HA-
pMIG_F2	See above	pMIG-HA-	Igβ- Igα tail
pMIGIgβAt_R2	CTGCCATCGTTTCCTCA	Igβ	
	GCAGGAAGATAGGCAC		
IgβY196F_F	GGAAGATCACACCTTC	pMIG-HA-	Igβ ITAM Y196
	GAGGGCCTGGACA	Igβ	was mutated into
			F
IgβY196F_R	TGTCCAGGCCCTCGAA		
	GGTGTGATCTTCC		
IgβY207F_F	CCAGACAGCCACCTTT	pMIG-HA-	Igβ ITAM Y207
	GAGGACATAGTGA	Igβ	was mutated into
			F
IgβY207F_R	TCACTATGTCCTCAAAG		
	GTGGCTGTCTGG		
IgβTailL_F1	AAGGATGACAGCAAGT	pMIG-HA-	Two PCR
	GAGTTAACGAATTCCG	Igβ	fragments were
	С		fused together to
pMIG_R1	See above		obtain pMIG-HA-
pMIG_F2	See above	pMIG-HA-	Igβ tail less
IgβTailL_R2	GAATTCGTTAACTCACT	Igβ	
	TGCTGTCATCCTTGTC		
CD19_F1	CCCCGGAGAGTCTGAC	Ramos	pJET- CD19
	CA	cDNA	
CD19_R1	AGGAGATCCAGGCTGG		
	CC		
pMIGCD19_F	ATTAGATCTCTCGAGCC	pJET- CD19	PCR fragments
	ACATGCCACCTCCTCGC		were fused into
	CTC		the Xho I
pMIGCD19_R	GCGGAATTCGTTAACTC		linearized pMIG
	ACCTGGTGCTCCAGGT		to obtain
	ACCTGGTGCTCCAGGT		pMIG-CD19