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1. Tethered shuttle model of NOS 
 

 
 
Figure S1. Tethered shuttle model. The FMN domain shuttles between its docking positions at the 
NADPH/FAD binding domain (where it acts as an electron acceptor) and heme domain (where it 
acts as an electron donor). The corresponding functional states of NOS are referred to as the 
(electron-accepting) input and (electron-donating) output states. Free FMN domain conformations 
also exist in between the two docked states. 
 
2. CO rebinding rate constants determined by LFP 
 

Table S1. CO rebinding rates in human iNOS oxyFMN (kCO) and iNOSoxy (kAR). 
 

Ionic strength 
(mM) 

kCO (s-1)a kAR (s-1)a 

100 1.34  0.04  4.57  0.10 

150 1.64  0.05 6.37  0.11 

200 1.04  0.02 4.25  0.09 

250 1.49  0.06 5.74  0.11 

300 1.18  0.02 4.26  0.06 

400 1.12  0.03 3.77  0.07 

500 1.67  0.08 5.15  0.10 
 
a) The cited errors are the average errors resulting from fitting of individual LFP traces. 

 
The noise-like “dependence” of kCO and kAR on the ionic strength that can be seen in Table 

S1 is mostly the result of the variation in CO concentration between different sets of measurements. 
Because of the necessity to shut the gas valves at the input of the Ar/CO gas mixer for the night, 
the 3:1 Ar : CO gas mixture used for LFP measurements could only be prepared accurately for one 
set of measurements performed within one day, namely, for the measurement of kCO and kAR at the 
same ionic strength. For the next set of measurements on another day, the input valves were 
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reopened to reach the same flow rates, achieving the same Ar : CO ratio. However, since the 
achievable reproducibility of the flow rate could not be perfect, the resulting CO concentrations 
on different days of measurements were somewhat different. Therefore, although the CO rebinding 
rates determined at different ionic strengths are in the same ballpark, they show a random variation. 
The meaningful value obtained from these measurements is the ratio kCO/kAR determined under the 
same CO concentration, which allows one to estimate the ratio of intrinsic IET rates (see Eq. 2 and 
Table 1 in the main text). 

 
One has to mention, though, that kCO should actually depend on the ionic strength. Indeed, 

kCO = kAR/(1+kETf/kETb), as can be obtained from Eq. 2 of the main text. In this expression, kAR = 
const (it is not expected to depend on the ionic strength, at least, as a first approximation, because 
CO is a neutral molecule), while kETf/kETb depends on the ionic strength (see Table 1 in the main 
text), and this dependence translates to kCO. Practically, however, this dependence of kCO is 
relatively weak (~20% over the studied range of ionic strength values), and is hidden under the 
noise-like variations caused by the differences in CO concentrations, as explained above. 
 
3. FMN fluorescence lifetime data processing 
 

A typical FMN fluorescence decay trace is shown by black trace in Fig. S2, and the 
instrument response function is shown by the red trace. For analysis in terms of amplitudes and 
dampings of the contributing exponential functions, the experimental fluorescence traces were 
deconvoluted from the instrument response function. This was achieved by:  

 
i. Fourier transforming both traces into the frequency domain;  

ii. Dividing the complex FT spectrum of the FMN trace by that of the instrument response 
function;  

iii. Fourier transforming the quotient spectrum back into the time domain.  
 
Because of strong phase noise in the quotient spectrum at high frequencies (resulting 

mostly from the noise in the denominator spectrum, which becomes relatively more important 
towards high frequencies because there the denominator amplitude decreases), the quotient 
spectrum was truncated at the frequency of 6 GHz. This resulted in a small-amplitude oscillation 
with 6 GHz frequency observed in the deconvoluted time domain fluorescence trace shown in Fig. 
3 of the main text. 
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4. Simplified structural model of iNOS oxyFMN construct (Fig. 5, main text) 
 
Although the structural modules of NOS considered in this work (i.e., the heme and FMN 

domains and CaM) are not spherical, it is convenient to approximately represent them by spheres 
in order to be able to make analytical estimates of the docking energy (using Eq. 3 of the main 
text) and the rate constant for the docked state formation (Eq. 6 of the main text). The characteristic 
radii of these spheres were obtained by averaging the characteristic sizes of the corresponding 
NOS domains and bound CaM, using the structural information available in the protein databank 
(www.rcsb.org), e.g., pdb 1NSI (for iNOS heme domain) and 3HR4 (human iNOS CaM and 
reductase domain complex). 

The length of the tether between the heme and FMN domains is estimated as: 
 

L = (3.8 Å)  nRC + (1.5 Å)  nh  
         

where nRC is the number of residue – residue intervals in the random coil sections of the tether and 
nh is the number of residue-residue intervals in the -helical CaM-binding section. The random 
coil sections consist of residues 499 – 514 and 535 – 537, which results in nRC = (515-498) + (538-
534) = 21 (where 498 is the last -helix residue of the heme domain and 538 is the 1st -strand 
residue of the FMN domain). The -helical part of the tether consists of residues 515 – 534, which 
results in nh = 19. The tether length is thus estimated as L = 108.3 Å. In the manuscript, this value 
was rounded to 110 Å.  

For comparison, in an extended conformation of rat nNOS, the edge-to edge distance 
between the FMN and heme domains can be estimated as ~ 80 Å from the single molecule cryo-
EM images in ref. 9 of the main text. This distance obviously represents the lower bound of the 
tether length. Most likely, it is close to the most probable end-to-end distance for the tether, and 
thus it should be significantly shorter than the actual length. Unfortunately, since the detailed 
conformational statistics for the FMN-heme domain tether is not known (a calculation of such a 
statistics, including the volume exclusion effects, represents a complex mathematical problem), it 
is not possible to accurately estimate the length of fully extended tether from the distance of 80 Å. 

Figure S2. Black trace, FMN 
fluorescence trace recorded for the ionic 
strength of 100 mM. Red trace, 
instrument response function obtained 
for the same experimental setup. 
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Therefore, we can only state the qualitative agreement between our estimate of the full tether length 
(~110 Å) with the cryo-EM observations. 

 
5. Note on estimating the volumes and orientation ranges available for the tethered FMN 
domain in the undocked and docked states (i.e., V, , and  parameters in Eq. 3, main text) 
 
1). To estimate the volume Vu accessible for the tethered FMN domain in the undocked state, one 
has to take into account the limitations on the FMN domain position imposed by the sizes of the 
FMN and heme domains and the tether length. These limitations can be understood from Fig. S3. 
This Figure shows the vertical crossection of several 3D regions (I, II, and III), which have 
cylindrical symmetry with respect to axis Z. Regions I and II are accessible for the FMN domain 
center, while region III is not. The latter region represents a sphere with the radius R = Rheme + 
RFMN ~ 50 Å. 

 
Region I is a hemisphere of radius L ~ 110 Å (L is the tether length), and its volume is 

readily calculated as 3
I

2

3
V L  = 2.79·106 Å3. 

Region II is more complicated because its shape is defined by partial or complete wrapping 
of the FMN – heme domain tether around the heme domain. This region resembles a doughnut 
bounded on the outside by the surface, whose points are located at the distance L1 = L + 2R(sin 
– ) from the tether origin, where  is the angle between the L1 radius vector and the horizontal 
(XY) plane passing through the tether origin (see Fig. S3 for all parameters). The inner boundary 
of region II represents the surface of the sphere confining region III. The easiest way to calculate 
the volume of region II is numerical integration. This results in VII = 2.10·106 Å3, and the total 
available volume is thus Vu = VI + VII  4.89·106 Å3, which is rounded in the main text to 5·106 
Å3. 

 

 
Figure S3. Explanation of parameters used to calculate the volume available to the undocked FMN 
domain tethered to the heme domain in NOS. The actual 3D representation can be obtained by 
rotation around the symmetry axis Z. Regions I and II are outside the heme domain and are allowed 



 

S5 
 

for the undocked FMN domain, while region III is inside the heme domain and is not allowed. The 
parameters are as follows: L ~ 110 Å is the FMN – heme domain tether length; R ~ 50 Å is the 
radius of the “excluded” region III equal to the sum of the radii of the FMN and heme domains. L1 
= L + 2R(sin – ) is the maximum extension of the tether in the lower hemisphere (below the XY 
plane) with taking into account the tether wrapping around the heme domain. The angle  is 
between the L1 radius vector and the XY plane. 
 

The rest of parameters describing the available volume and orientation ranges entering Eq. 
3 of the main text are more straightforward: 

 
2). d D maxV R d ~ 103 Å3, where RD ~ 7 – 8 Å is the radius of the docking area and dmax ~ 5 Å is 

the maximum possible distance between the FMN and heme domain surfaces in the docked state. 
 
3). u ~ 4 is the range of angular orientations of the FMN domain in the undocked state. It simply 
equals to the solid angle corresponding to the complete sphere. 
 
4). d ~ 2∙(1-cos/2) ~ 1 is the range of angular orientations of the FMN domain in the docked 
state. It is estimated as the solid angle corresponding to the docking area as seen from the center 
of the FMN domain. In the above expression,  ~ 1 is the angular size of the docking area (~ 15 Å 
in diameter) as seen from the center of the FMN domain (which has a radius of ~ 15 Å). 
 
5). u = 2is the range of orientations of the FMN domain with respect to the normal passing 
through the center of the docking area when the FMN domain is undocked. In the undocked state, 
all orientations are possible, and thus u = 2. 
 
6). d ~ 2RD/(RFMN+RCaM) ~ 0.5 is the range of orientations of the FMN domain with respect to 
the normal passing through the center of the docking area when the FMN domain is docked to the 
heme domain. In the docked state, this rotation freedom is limited by CaM, which docks to the 
heme next to the FMN domain. Both CaM and FMN domains should have their docking areas 
overlapped with those of the heme domain, which obviously results in the above expression for 
d. In this expression, 2RD ~ 15 Å is the characteristic diameter of the docking area, and RFMN and 
RCaM (both equal to ~ 15 Å) are the characteristic radii of the FMN domain and CaM, respectively. 

 
6. Stationary solution of the kinetic equation (Eq. 17, main text) 

 
In the stationary limit (i.e., [Ȧ] = 0), the kinetic equation given by Eq. 17 of the main text 

becomes: 
 

                                  0])A[([A])[A]-[B][A]([A] odoo  k         (S1) 

 
where kd = koff/kon and the balance equations (2nd and 3rd lines in Eq. 17) have been used. The exact 
solution of Eq. S1 with respect to [A] is: 
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where only the positive square root is meaningful. Expanding the root to the linear term results in:  
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which reproduces Eq. 18 of the main text. 
 


