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METHODS 

Participants 

Twenty-six healthy controls (mean age: 26.31±7.96; 19 females) and 28 unmedicated 

individuals with MDD (mean age: 25.50±5.42; 22 females) participated in this study. All 

participants provided written informed consent to a protocol approved by the Partners Healthcare 

and McLean Hospital IRB. Participants were right-handed and reported no medical or neurological 

illnesses, no contraindications to MRI, no lifetime substance dependence and no substance abuse 

in the past year. All individuals were assessed using the Structured Clinical Interview for the DSM-

IV [SCID (First et al, 2002)] to confirm study eligibility and MDD participants had to have a 

diagnosis of major depressive disorder according to the SCID. In addition, information about the 

number of prior major depressive episodes (MDE), length of current MDE and age of onset of the 

first MDE were collected. All participants were also assessed using the 17-item Hamilton 

Depression Inventory (Hamilton, 1980). Exclusion criteria for the depressed group included use 

of any psychotropic medication in the past 2 weeks (6 weeks for fluoxetine, 6 months for 

dopaminergic drugs or antipsychotics) and a psychiatric history of other major axis I disorders 

(except social and generalized anxiety if they were secondary to MDD). Exclusion criteria for the 

control group included current or history of psychiatric illnesses (assessed by SCID) and a family 

history of mood disorders or psychosis.  

Three MDD participants had a current comorbidity of social phobia (secondary to MDD) 

and four MDD participants had a past diagnosis of social phobia. Data from the 3rd run of two 

participants (one HC due to excessive movement and one MDD due to scanner technical 

difficulties) were excluded from the analyses; for these participants, data from first two runs were 

averaged. 

Instrumental Reinforcement Learning (RL) Task 

After a short practice outside the scanner, participants performed three runs of an 

instrumental learning task [adapted from (Pessiglione et al, 2006)] with monetary outcomes, each 
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time with new pairs of stimuli (letters from the Agathodaimon font; Fig S1). Briefly, during each 

run of 120 trials (40 gain, 40 loss and 40 neutral), participants were presented with one of three 

pairs of stimuli (gain, loss and neutral), which were associated with 80%/20% probabilities of the 

following: Gain ($10/Nothing), Loss (Nothing/-$10), Neutral ($0/Nothing). On each trial, the 

stimuli from one of the pairs were presented side by side (position counterbalanced across trials) 

and participants were asked to choose one of them. A red arrow was presented below the chosen 

stimulus for a total cue presentation time of 2.5s. After a jittered inter-stimulus interval (ISI), 

feedback was presented for 1.5s.  The next trial started after a fixed inter trial interval (ITI) of 0.5s. 

To win money, participants had to learn, by trial and error, the stimulus-outcome contingency. 

Each run lasted ~7 min and included new pairs of stimuli. Participants were told that one of the 

runs would be randomly selected for the total winnings (in reality, they were all given the same 

fixed amount of $50). Task accuracy during gain, loss and neutral trials are summarized in Table 

1 (main text). 

Computational Model (Q-Learning) 

  A standard Q-learning algorithm was used to calculate the expected value of choices and 

prediction error based on individual’s choice and feedback history (Sutton and Barto, 1998). For 

each trial, the model estimated the expected value of A (QA) and B (QB), which corresponds to the 

expected reward obtained by choosing a cue. Q values were set to zero at the beginning of each 

run. After every trial, QA(t) or QB(t) were updated based on the feedback participants received in 

that R(t) trial, per the following rule: 

Qchoosen_cue (t+1) = Qchoosen_cue (t) + α δ(t), 

where α is the learning parameter and δ is the prediction error. Central to learning is the prediction 

error (δ(t)), which is defined as the deviation between expected feedback [Qchoosen_cue (t)] and 

the actual feedback [R(t)] or 

δ(t) = R(t) – Qchoosen_cue (t), 

where R is assigned 1 and 0 for reward and no reward outcomes, respectively, during gain trials, 

and assigned 0 and -1 for no punishment and punishment outcomes, respectively, during loss trials. 

Based on the Q values at any given trial, the probability of choosing a particular stimulus was 

calculated using the softmax rule, such as the probability of choosing stimulus A was 

PA(t) = exp (QA(t)/β)/[exp (QA(t)/β) + exp (QB(t)/β)] 
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The two free parameters, alpha (α; learning rate) and beta (β; temperature) were optimized 

for every subject to maximize the probability of actual choices under the model using maximum 

likelihood estimation and fmincon function in MATLAB. Specifically, for each participant, the 

free parameters’ space was searched to identify parameters that would maximize the likelihood of 

their own trial-by-trial sequence of choices, using multiple random starting points. The learning 

parameter (α) represents the influence of the feedback on the subjective values of the chosen 

stimulus and varies between 0 and 1. For example, a low α reflects a relatively small impact of the 

prior feedback on the current decision, whereas a higher α indicates a larger impact of feedback. 

The temperature parameter (β) specifies noise that reflects the accuracy of response choice (Sutton 

and Barto, 1998). For example, the β estimate is high if participants randomly choose between the 

two stimuli, and these choices do not correlate with the subjective value of the two stimuli. 

Conversely, if participants always choose the stimulus with the higher subjective value, then β is 

close to zero (which is mostly in this task). Average learning rate and beta values are listed in 

Table S1. Overall, participants had a smaller alpha and beta for reward than punishment condition 

(p < 0.05; Table S1). However, no group differences were observed in either condition (p > 0.5). 

Comparison of Q-learning Model Fits Between Groups 

  We tested how well the reward learning model fitted the observed data compared with 

chance by estimating a naïve model assuming that participants choose all stimuli with equal 

probability and had no free parameters. To do this, we calculated pseudoR2 values defined by 

pseudoR2 = 1 – (LLEmodel/LLEchance). LLEmodel corresponds to the maximum logarithmic likelihood 

of the observed choices under the model. LLEchance corresponds to the logarithmic likelihood of 

choices at chance [LLEchance = t*log(0.5)], t being the number of trials. To test if there are potential 

differences in model fit between groups, two sample independent t-tests were run for reward and 

punishment conditions separately. Analysis of pseudoR2 revealed no differences between healthy 

controls and MDD groups in both the gain (controls: 0.77±0.20; MDD: 0.68±0.25; t(49)=1.43; 

p=0.16) and punishment (controls: 0.43±0.20; MDD: 0.48±0.18; t(49)=-0.98; p=0.33) condition. 

Overall, our model performed better in the gain than loss condition (p<0.001; Table S1). There 

was only one participant whose Q-learning model fit was poorer than the null model. When we 

repeated the analyses with this person excluded, the results did not change. 
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Functional Imaging and Analyses 

fMRI Data Acquisition 

A 3T Tim Trio Siemens scanner (Siemens Medical Systems, Iselin, N.J.) equipped with a 

32-channel head coil was used to acquire the MRI data. High-resolution structural data were 

acquired using a T1-weighted magnetization-prepared rapid acquisition with gradient multi echo 

(MPRAGE) imaging sequence with the following acquisition parameters: repetition time (TR) = 

2200 ms; echo times (TE) = 1.54, 3.36, 5.18 and 7 ms; field of view = 230 mm; voxel dimensions 

= 1.2 x 1.2 x 1.2 mm3; 144 slices. Functional MRI data were acquired using a gradient echo T2*-

weighted echo planar imaging sequence with 30 degree titled slice acquisition to recover signal in 

regions affected by susceptibility artifacts (Deichmann et al, 2003) with the following acquisition 

parameters: repetition time (TR) = 3000 ms; echo time (TE) = 30 ms; field of view = 224 mm; 

voxel dimension = 3.5 x 3.5 x 2.0 mm; 57 interleaved slices and a GRAPPA acceleration factor of 

2. 

fMRI Data Pre-processing 

Functional MRI data were preprocessed and analyzed using Statistical Parametric Mapping 

software (SPM12; http://www.fil.ion.ucl.ac.uk/spm). After initial quality control of hardware-

related artifacts in the raw images, distortion correction was applied using field maps acquired in 

the task session. Functional images were then realigned to the mean image of the series, corrected 

for motion and slice timing related artifacts, co-registered with the anatomical image, normalized 

to the 2x2x2 mm MNI template, and smoothed with a 4mm Gaussian kernel 

Statistical Analyses 

First-level general linear model included six regressors (cue and outcome presentation 

onsets during reward, punishment and neutral trials). In addition, outcome onset times for rewards 

and punishments were parametrically modulated by model-derived reward and punishment 

prediction error, respectively, and convolved with a hemodynamic response function. The 

covariates of no interest included the cue and outcome during neutral trials, six motion realignment 

parameters, and a constant term modelling the baseline of unchanged neural activity. 

ROI Analyses 

A staged ROI selection was implemented. Specifically, priority was given to clusters 

emerging from meta-analyses probing PE; for small regions hypothesized to be implicated in PE 

(VTA, habenula), clusters based on manual identification were used to avoid potential biases. 
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Finally, for larger and functionally heterogenous regions (e.g., insula), a sphere was drawn around 

the coordinates emerging from prior studies using the same paradigm as used here. Based on these 

considerations, anatomically constrained bilateral striatum were extracted from a recent meta-

analysis of RPE studies in healthy controls (Chase et al, 2015). These anatomical masks were 

created from the FSL Harvard-Oxford subcortical atlas using 40% probability threshold. As prior 

studies have reported PPE signals in the right insula (Pessiglione et al, 2006) and habenula 

(Hennigan et al, 2015; Lawson et al, 2014; Salas et al, 2010), a right insula mask was created by 

drawing a sphere with 10mm diameter around the peak voxel (40, 28, -6) reported in (Pessiglione 

et al, 2006). The habenula ROI was created for each subject by manually identifying one voxel 

centered each in the left and right habenula in the normalized T1 of every subject based on the 

anatomical landmarks described by (Lawson et al, 2013; Salas et al, 2010). Since the habenula is 

a small structure of approximately ~30mm3, which corresponds to one 3x3x3 voxel, we extracted 

beta weights only from this voxel identified in the structural image. Due to the extensive white 

matter plexuses contained within the habenula, this structure's density appears brighter than the 

adjacent thalamic grey matter on T1-weighted images, aiding its delineation from surrounding 

grey matter and cerebrospinal fluid [CSF (Salas et al, 2010)]. The beta weights from the left and 

right habenula voxel were averaged. Additionally, since the VTA is involved in both reward and 

punishment learning, we included a probabilistic mask created by manual tracing (Murty et al, 

2014) thresholded by 60% to ensure accurate anatomical constrains. ROI placement is shown in 

supplementary Fig S2. All ROIs were multiplied by a group mask created across all subjects, to 

ensure all subjects had identical voxels within these ROIs. Parameter estimates of RPE and PPE 

contrasts were extracted from these five ROIs and mixed ANOVAs were run in SPSS. In total, 

five ROIs were investigated; to protect again false positive results, a Bonferroni correction 

(p=0.05/5=0.01) was used. A positive RPE beta identifies a brain region with higher activation for 

unexpected reward and lower activation for unexpected omission of rewards during gain condition 

(trials); conversely, a positive PPE beta identifies a brain region with higher activation for 

unexpected punishment and lower activation for unexpected omission of punishment during loss 

condition (trials). 

Whole-brain analyses 
See Main text (and Figs S3A & S3B; Figs S4A & S4B; Tables S2A & S2B).  
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Correlations with Behavioral and Clinical Variables  

No correlations were observed between reward accuracy and RPE signal in the right 

striatum (p > 0.5). However, habenula PPE signal correlated with punishment accuracy (r=0.29, 

p=0.042) across all subjects. The VTA-right striatal and VTA-habenula connectivity strengths did 

not correlate with reward and punishment accuracy, respectively, or number of depressive episodes 

(p>0.5). 

Unlike prior studies (Chase et al, 2015; Gradin et al, 2011; Kumar et al, 2008), RPE signal 

in the right striatum did not correlate with anhedonia scores within the MDD group. However, 

right striatal RPE correlated with depressive symptoms as measured by BDI (r=-0.43; p=0.032; 

Fig S5). Within the MDD group, age of first MDE correlated positively with RPE signals in the 

right striatum (r=0.41, p=0.046) and negatively with PPE in the habenula (r=-0.46 p=0.024). 

However, these correlations became non-significant when controlling for current age and time 

since first episode (RPE right striatum: r=0.24, p=0.25; PPE habenula: r=-0.33 p=0.11). 

Conversely, and as described in the main text, number of prior depressive episodes correlated 

negatively with RPE signals in the right striatum (r=-0.59, p=0.010), but positively with PPE 

signals in the habenula (r=0.56, p=0.015; Fig 3, main text). Since these associations remained 

when controlling for length of current episode and current depression severity (BDI scores), 

overall disease burden appeared to drive these effects. Finally, and highlighting the robustness of 

these findings, the correlations were confirmed when considering raw number of episodes (without 

any covariates) and right striatal RPE (r=-0.54, p=0.020; Fig S6A) and habenula PPE (r=0.56, 

p=0.016; Fig S6B). 

PPI Connectivity Analyses 

We investigated functional connectivity between VTA-habenula-striatum during reward 

and punishment trials using the generalized PPI toolbox (Friston et al, 1997; McLaren et al, 2012), 

The VTA was used as the seed and time-series were extracted from individual subjects. For each 

subject, subject-level GLMs were constructed as described above with the addition of the VTA 

seed time-series and two additional PPI regressors that are the respective product of the seed time-

series and the regressors for reward and punishment. These regressors are orthogonal to the task 

and seed regressors, and thus describe the contribution of the interaction above and beyond the 

main effects of the task and seed time-series (McLaren et al, 2012). The parameter estimates 

(connectivity value) of the two PPI regressors reflect the correlation between activity in the VTA 
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and activity in every other voxel during reward and punishment trials, respectively. Since we had 

a priori hypotheses, we extracted the mean connectivity values from the habenula, insula and right 

and left striatum. Exploratory analyses revealed RPE in the VTA correlated positively with RPE 

in the right striatum across both groups [r=0.36, p=0.009], mainly driven by controls [r=0.57, 

p=0.002] and not MDD [r=0.29, p=0.15], but these correlations did not significantly differ 

[z=-1.14, p=0.3; Fig S7]. 

Influence of Learning Rates on Model-Based fMRI 

Usually, there are three main strategies for determining the learning rate: fixed, group-fixed 

and individual learning. Whereas individual learning is better at accommodating subjects’ 

behaviors (Estes and Maddox, 2005), fixed learning reduces noise and may provide a form of 

regularization, improving reliability at the expense of losing individual learning rate data (Chase 

et al, 2015; Chen et al, 2015; Daw, 2011). Moreover, a recent report suggested that mis-specifying 

learning rates in tasks with a fixed reward distribution does not affect model-based fMRI fit 

(Wilson and Niv, 2015). To evaluate this possibility in the current sample, we calculated PEs from 

our model with learning rates varying from 0.01 to 0.99, in steps of 0.01 and conducted fMRI 

analyses using different learning rates. Correlation between the beta weights as a function of 

learning rates for each ROI were calculated and plotted.   

We found strong correlations (Pearson r > ~0.80) between beta weights extracted from 

models estimated with learning rates varying from 0.01 to 0.99 in increments of 0.01. Correlation 

maps for the right striatum, right insula and VTA are shown in Fig S8-S10 (the left striatum and 

habenula showed similar patterns, and findings are available upon request). In addition, Fig S11 

shows the line plots for the right striatum, where each line represents beta weights extracted from 

models using different learning rates across subjects. Although the plots for each subject indicated 

that fMRI estimates are not affected by learning rates, the curves for individual subjects do show 

that there might be a maximum beta that is optimal for each subject. To evaluate this possibility, 

we re-ran fMRI analyses using individual learning rates for each subject. Overall, similar spatial 

maps emerged when using individual learning rates (although the cluster size was smaller with 

individual learning; see Figs S12A & S12B and Supplementary Tables 3A, 3B for voxel 

coordinates). Most importantly, functional group differences (as shown by mean beta and effect 

sizes, Fig S13) remained unchanged. Effect sizes were similar across our ROIs (Fig S13). 
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Collectively, these control analyses indicate that differences in learning rates did not 

influence the fMRI results. Specifically, we did not find any differences in group results either 

using group-fixed or individual learning rate for estimating prediction error signals. In addition, 

we observed a strong correlation between beta weights extracted from different learning rate 

models across subjects, replicating the findings by (Wilson and Niv, 2015). Results from our study 

suggest that many analyses will be valid even if the parameters cannot be well estimated from 

behavior (Wilson and Niv, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



9	
	

FIGURE LEGENDS 

Supplemental Figure 1: Design of the monetarily reinforced instrumental learning task. 

Participants selected either the left or right of two visual stimuli presented on the screen. Their 

selection was shown by a red arrow under the chosen stimuli for the remainder of 2.5s. Following 

a jittered interstimulus interval (ISI), outcome depending on the type of the trial was shown for 

1.5s. The next trial then began after a fixed inter-trial interval of 0.5s. In the gain trial (top row), 

the chosen stimulus was associated with a probability of 0.8 of winning $10 and a probability of 

0.2 of winning nothing. Similarly, in the loss trial (middle row), the chosen stimulus was associated 

with a probability of 0.8 of losing $10 and a probability of 0.2 of losing nothing. Neutral trials 

were associated with no change. 

Supplemental Figure 2: Regions-of-Interest (ROI) placement. (A) Striatal ROIs from a prior 

meta-analysis of RPE studies (Chase et al, 2015). (B) Ventral tegmental area created by manual 

tracing [obtained from Adcock’s Lab, Duke University], thresholded at 60%. (C) Habenula mask 

obtained from combining peak voxels identified from structural images of each subject. [Note: 

This analysis was done by extracting beta weights from individual voxels of each subject, this 

mask is only for visualization]. (D) Right Insula, created by drawing a 10mm sphere around the 

peak voxel (40, 28, -6) obtained from (Pessiglione et al, 2006). 

Supplemental Figure 3: Whole-brain results: Brain activity correlating with reward prediction 

errors in controls (A) and MDD (B) derived from the computational model. Clusters are p < 0.05 

family-wise error corrected, with an initial cluster forming threshold of p < 0.005. 

Supplemental Figure 4: Whole-brain results: Brain activity correlating with punishment 

prediction errors in controls (A) and MDD (B) derived from the computational model. Clusters 

are p < 0.05 family-wise error corrected, with an initial cluster forming threshold of p < 0.005. 

Supplemental Figure 5: Correlation between RPE signals in the right striatum and BDI within 

the MDD group. 

Supplementary Figure 6: Correlation between number of depressive episodes (without any 

covariates) and (A) reward prediction error in the right striatum and punishment prediction error 

in the (B) habenula, in the MDD group. Information about number of episodes was missing for 7 

MDD individuals, so the sample size for this correlational analysis was N=18. PE = prediction 

error. 
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Supplemental Figure 7: Correlation between RPE activation in the right striatum and VTA across 

both groups. Red – MDD; Green – Healthy controls.  

Supplemental Figure 8: Correlation map showing Pearson r values between beta weights of RPE 

signals in right striatum in (A) Healthy controls and (B) MDD; correlation map between PPE 

signals in right striatum in (C) Healthy controls and (D) MDD extracted from different learning 

rates.   

Supplemental Figure 9: Correlation map showing Pearson r values between beta weights of RPE 

signals in right insula in (A) Healthy controls and (B) MDD; correlation map between PPE signals 

in right insula in (C) Healthy controls and (D) MDD extracted from different learning rates.  

Supplemental Figure 10: Correlation map showing Pearson r values between beta weights of 

RPE signals in VTA in (A) Healthy controls and (B) MDD; correlations between PPE signals in 

VTA in (C) Healthy controls and (D) MDD extracted from different learning rates. [Note: habenula 

and left striatum not shown, but identical results were obtained.]  

Supplemental Figure 11: Line plots representing beta weights of RPE signals in the right striatum 

extracted from different learnings in controls (top) and MDD (bottom). Each line represents one 

subject. [Note: other ROIs showed similar results.]  

Supplemental Figure 12: Whole-brain results using individual learning rates: Brain activity 

correlated with (A) reward prediction errors and (B) punishment prediction errors derived from 

the computational model in healthy controls. For ease of comparison and visualization, identical 

initial cluster forming threshold of p = 0.005 and extent threshold of 50 voxels were used as in the 

main analyses. 

Supplemental Figure 13: Beta weights of (A) RPE and (B) PPE signals extracted from the right 

striatum, VTA, right insula and habenula from fixed and individual learning maps. Effect sizes 

were calculated using Cohen’s d of (C) RPE and (D) PPE beta weights in these ROIs from fixed 

and individual learning maps. Error bars represent standard error. 
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Supplementary Table 1: Model parameters (reward and punishment trial type) in the Healthy 
Control (N=26) and MDD (N=25) group. Mean with standard deviations are listed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Reward Punishment 

 

 

PseudoR2 

LLE Model 

Learning Rate (α) 

Temperature (β) 

Controls MDD Controls MDD 

 

0.77±0.20 

6.34±5.59 

0.31±0.14 

0.11±0.16 

 

0.68±0.25 

8.78±6.9 

0.28±0.14 

0.13±0.15 

 

0.43±0.20 

15.57±5.45 

0.38±0.23 

0.23±0.17 

 

0.48±0.18 

13.98±4.92 

0.42±0.24 

0.19±0.20 
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Supplementary Table 2: MNI peak coordinates of brain regions encoding Reward Prediction 

Error (Panel A) and Punishment Prediction Error (Panel B) in the Healthy Control (N = 26) and 

MDD (N = 25) group, modeled with fixed group average reward learning rate = 0.3, punishment 

learning rate = 0.4; p < 0.05 Family Wise Error (FWE) cluster corrected, with an initial cluster 

forming threshold of p = 0.005. NAc: nucleus accumbens  

A. Reward Prediction Error 

 

 

 

 

 

 

Brain Region Cluster size MNI (x, y, z) Z score Cluster p (FWE) 

Healthy Controls 

Right Visual Cortex 

Right Calcarine Cortex 

Left Superior Parietal Cortex 

Right Anterior Insula 

Right Putamen/NAc 

 

7030 

313 

125 

144 

128 

 

28, -78, -10 

14, -68, 10 

-30, -44, 40 

34, 20, 4 

14, 14, -12 

 

6.77 

4.61 

4.54 

3.91 

3.78 

 

0.000 

0.000 

0.006 

0.002 

0.006 

MDD 

Left Visual Cortex 

Left Inferior Frontal Gyrus 

Left Superior Parietal Cortex 

Left Anterior Insula 

Posterior Cingulate 

Right Precentral Gyrus 

 

9092 

172 

96 

100 

191 

123 

 

-26, -74, -12 

-46, 6, 22 

-32, -46, 54 

-44, 18, -8 

2, -34, 30 

38, 2, 24 

 

6.74 

5.17 

4.55 

4.15 

3.81 

3.72 

 

0.000 

0.001 

0.040 

0.032 

0.000 

0.009 
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B. Punishment Prediction Error 

Brain Region Cluster size MNI (x, y, z) Z score Cluster p (FWE) 

Healthy Controls 

Right Visual Cortex 

Left Fusiform Gyrus 

Thalamus/Habenula (part of 

fusiform gyrus cluster) 

Mid Cingulate 

Left Anterior Insula 

Right Middle Frontal Gyrus 

Right Middle Frontal Gyrus 

Right Insula 

Precuneus 

Left Precentral Gyrus 

 

5706 

2763 

 

 

1640 

828 

113 

151 

147 

102 

264 

 

34, -64, -14 

-26, -66, -16 

2, -30, -2 

 

-2, 14, 46 

-38, 14, 0 

42, 8, 40 

46, 24, 20 

44, 12, 0 

-4, -64, 50 

-40, 4, 28 

 

6.18 

5.54 

4.74 

 

5.02 

4.99 

4.58 

3.68 

4.44 

4.09 

3.74 

 

0.000 

0.000 

0.000 

 

0.000 

0.000 

0.020 

0.003 

0.004 

0.037 

0.000 

MDD 

Right Visual Cortex 

Midbrain/Thalamus/Habenula 

(part of visual cortex cluster) 

Left Fusiform Gyrus 

Mid Cingulate 

Right Calcarine Cortex 

Left Anterior Insula 

Right Inferior Frontal Gyrus 

Right Middle Frontal Gyrus 

Left Middle Frontal Gyrus 

Left Precentral Gyrus 

 

4263 

 

 

4825 

1363 

388 

408 

391 

379 

107 

528 

 

30, -86, 14 

6, -24, 2 

 

-40, -78, -12 

-6, 16, 50 

18, -66, 12 

-32, 26, 0 

32, 28, -6 

44, 14, 30 

-36, 24, 22 

-42, 8, 28 

 

6.77 

4.14 

 

5.75 

5.41 

5.26 

5.19 

5.13 

4.90 

4.36 

4.72 

 

0.000 

0.000 

 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.026 

0.000 
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Right Supramarginal Gyrus 

Rostral Cingulate 

131 

100 

52, -30, 50 

-10, 44, 14 

4.02 

3.61 

0.007 

0.038 
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Supplementary Table 3: MNI peak coordinates of brain regions with Reward Prediction Error 

(Panel A) and Punishment Prediction Error (Panel B) in the Healthy Control (N = 26) and MDD 

(N = 25) group, modeled with individual learning rate; Identical initial cluster forming threshold 

of p = 0.005 and extent threshold of 60 voxels were used for easy visualization. [Note: To facilitate 

comparisons between analyses, clusters that were FWE significant in the fixed learning rate 

analyses are listed here even though they did not survive cluster correction in this analysis] 

A. Reward Prediction Error 

 

 

 

 

 

Brain Region Cluster size MNI (x, y, z) Z score Cluster p (FWE) 

Healthy Controls 

Right Visual Cortex 

Right Calcarine Cortex 

Left Superior Parietal Cortex 

Right Anterior Insula 

Right Putamen/NAc 

 

6770 

369 

140 

84 

64 

 

28, -78, -10 

-14, -68, 10 

-32, -42, 44 

30, 28, -2 

14, 10, -10 

 

6.88 

4.76 

4.44 

3.44 

3.99 

 

0.000 

0.000 

0.003 

0.071 

0.238 

MDD 

Left Visual Cortex 

Left Inferior Frontal Gyrus 

Left Superior Parietal Cortex 

Supplementary Cortex 

Posterior Cingulate 

Right Precentral Gyrus 

 

8551 

132 

87 

113 

87 

118 

 

-26, -74, -12 

-46, 8, 24 

-32, -48, 54 

-4, 4, 66 

2, -34, 30 

32, 4, 24 

 

6.59 

4.79 

4.91 

4.15 

3.77 

3.53 

 

0.000 

0.007 

0.075 

0.018 

0.075 

0.014 
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B. Punishment Prediction Error 

Brain Region Cluster size MNI (x, y, z) Z score Cluster p (FWE) 

Healthy Controls 

Right Visual Cortex 

Left Visual Cortex 

Left Fusiform Gyrus 

Thalamus/Habenula (part of 

fusiform gyrus cluster) 

Midcingulate 

Right Middle Frontal Gyrus 

Right Anterior Insula 

Right Anterior Insula 

Left Precentral Gyrus 

Left Anterior Insula 

Left supramarginal gyrus 

 

3197 

1838 

2719 

113 

 

1520 

67 

163 

72 

98 

798 

80 

 

34, -64, -14 

-26, -88, 8 

-26, -68, -14 

2, -30, -2 

 

6, 26, 30 

42, 8, 40 

44, 12, 0 

36, 18, -8 

-42, 4, 26 

-32, 24, 6 

-52, -34, 34 

 

6.01 

5.76 

5.51 

4.74 

 

5.05 

3.79 

4.26 

3.49 

3.97 

4.99 

3.84 

 

0.000 

0.000 

0.000 

0.000 

 

0.000 

0.272 

0.002 

0.208 

0.050 

0.000 

0.134 

MDD 

Left Visual Cortex 

Right Fusiform Gyrus 

Thalamus/Habenula (part of 

fusiform gyrus cluster) 

Midcingulate 

Left Anterior Insula 

Right Inferior Frontal Gyrus 

Right Middle Frontal Gyrus 

Left Middle Frontal Gyrus 

Left Precentral Gyrus 

 

5641 

4514 

193 

 

1560 

722 

693 

437 

72 

508 

 

-26, -80, 14 

34, -78, -12 

6, -24, 2 

 

-6, 16, 50 

-32, 26, 0 

34, 30, 4 

44, 14, 28 

-36, 24, 22 

-52, -4, 48 

 

5.87 

6.33 

4.31 

 

5.00 

5.22 

4.87 

5.51 

4.21 

4.51 

 

0.000 

0.000 

0.000 

 

0.000 

0.000 

0.000 

0.000 

0.166 

0.000 
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Right Supramarginal Gyrus 

Rostral Cingulate 

103 

148 

52, -30, 50 

-10, 44, 14 

4.09 

4.16 

0.028 

0.003 
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