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A. Human ‐ snail transmission system 
The stratified worm burden (SWB) approach to modeling Schistosoma  transmission stratifies 

the at-risk human host population by their worm burdens,  
0 mm

H h t


 , each stratum  
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step 1w  ) . The transition among strata is described by matrix  , ,M    , and age/group 

specific source term   mS S t
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 (see [1-3]) 
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The parameters of matrix M include snail-to-human force of infection (FOI),  , the human 

population turnover rate,   , and worm mortality, .  The infectivity of the SWB within the 

human population is determined by the mean mated worm count (MMC), m  , in each stratum, 

and their weighted mean across strata, 
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 (see, e.g. [2, 4-8]). Alternatively, one can simplify and assume a specific worm distribution such 

as a negative binomial distribution with mean w and aggregation constant, k. (e.g., the NB(w,k) 

in a MacDonald-type mean worm burden (MWB) model [9]), and get a closed functional form of

 ,w k . In either case, MWB or SWB, human infectivity is the product of worm fecundity,  , 

and MMC, 
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In contrast to the MWB NB assumption for worm/person distribution, in our SWB approach, no a 

priori assumption is made about the worm distribution in the human host community. Egg 

release by mated females and individual hosts still depends on age-specific worm fecundity, , 

and MMC  (for the  - stratum). In our approach, a host in m-th stratum is assumed to 

release random daily egg amounts following a negative binomial (NB)-distribution with mean 


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, and aggregation parameter   [3, 10, 11]. So any test pool of an SWB 

community with population strata  is viewed as random draw of the NB-mixture distribution 

with weights .  

At the endemic (equilibrium) state, strata variables   mh  are determined by age-specific FOI 

 .  Hence mean mated count   and human infectivity  E  become functions of   . 

Figure 2 illustrates typical equilibrium distributions for 3 sample villages. 

 

The snail population-transmission model employed in our analysis was developed in earlier 

papers [3, 10, 12]. Here we use a simplified (S-I) version made of susceptible prevalence 

variables 1x y   , assuming a stationary snail environment, 
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Snail-to-Human FOI,   - the human per capita rate of worm accumulation, depends on i) the 

intermediate larval stage (cercaria) density, C , in local water bodies, ii) the rate of human 

exposure to affected water bodies (contact rate),   , and iii) human susceptibility to infection, 

   (probability of worm establishment/ water contact), 

 C A y     (5) 

-a linear function of infected snail prevalence. 

Human-to-Snail FOI,  , depends on parasite miracidial density, M , snail density, N , snail 

susceptibility (probability of successful invasion),  , and the maximal rate of snail invasion by 

miracidia, 0 .In the present model, we propose the following nonlinear (saturated) function for 

Λ, 

  /
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Fraction  /1 M Ne   is derived from hypothesized Poisson distribution of the “miracidia per 

snail” variable with mean value /M N . It represents the probability of one or more successful 
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invasions. Miracidial density, M b H E  , depends on human host population size H, and 

human infectivity E, so 

    /
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Maximal invasion rate is a function of snail density N, and other biological/environmental inputs 

(see, e.g. [13]). However, in the current analysis we treat it as a single (uncertain) parameter to 

be estimated from other transmission inputs. 

The nonlinear function  ,E N  (7) can be approximated by the linear form, B E  , provided  

exponent / 1b E H N  ,  that is, the combined “human contagion” is small relative to snail 

density. Such a linear assumption for snail FOI was commonly used in past transmission 

modeling (e.g. [1, 4, 14, 15]). The resulting transmission coefficient B , is then proportional to 

human population size, H, and their water contact rate  . 

Human infectivity, E, in equation (7) depends on host population makeup and age –specific  

exposure/ contamination patterns of different population age groups (children (C) and adults 

(A)). A single SWB has  E    ; for mixed population groups C and A, infectivities  ,C AE E  

are weighted in proportion to population fractions ( iH ), and relative (adult vs. child) exposure 

factors, /A C   [3, 10]. The net result is combined human infectivity  
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-function of calibrated human parameters   ,i i  drawn from the posterior ensemble of best 

fit parameters based on our calibration (explained below).   

B. Coupled human‐snail system and model calibration 

Human and snail equations (1) - (4) are coupled via two transmission coefficients A (snail-to-

human) and B (human-to-snail). The A -coefficient is included in the human FOI expression 

A y   (infected snail prevalence), and coefficient B is included in the exponent of the 

nonlinear snail FOI, . The details of model calibration and estimated parameter values are 

explained in previously published papers [3, 10].  It proceeds in two steps: (i) human calibration 

for  , ,i i ik   which are snail-to-human FOI, aggregation, and worm fecundity, estimated from 





test data (stool eggs per gram (epg, S. mansoni) or eggs per 10 mL by urine filtration (S. 

haematobium)); (ii) transmission calibration, for other coefficients (see Table A1). 

Model inputs include  

(i) Human parameters: age-specific triplets ,  ,i C A  which enter human 

infectivity function, . Table A2 gives the results of human calibration 

(parameters statistics) for 3 sample communities, and Figure 1 shows their marginal 

distributions 

(ii) Snail inputs: infected prevalence *y  

(iii) Environmental/behavioral inputs: b – child transmission coefficient,   - relative 

(adult/child) exposure contamination 

Specifically, for A, coefficients are estimated from calibrated human FOI  and (known or 

hypothesized) infected snail density y 
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For linear form of snail FOI (used in model M1), transmission coefficient B is estimated from the 

equilibrium snail equation (4) as  
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with combined infectivity function Error! Reference source not found.. 

For the nonlinear form of snail FOI (used in model M2) calibration proceeds differently: instead 

of estimating the pairs  ,iA B , we estimate  0,iA  , 
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We sample model uncertainties to provide estimates of variance, and generate a 95% 

uncertainty interval (UI) in the transmission projection for control interventions.  
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Table A1: Summary of model parameters  

 Known, fixed Calibrated 
Human Demographic inputs Posterior distributions of  

 , ,i i ik  , for age-groups  ,i C A , 

estimated from community test data  
([16, 17]) 

Snail Mortality: 4   /year,  
Infected prevalence (baseline endemic 

value)a: * .3y   (range .15 .45  ) 

Estimated  

Max invasion (FOI) rate: 0   

Environment/ 
behavior 

Basic (child) transmission rate:  
.5 5b    
Relative exposure/contamination rates 
(“adult/child): .5 1.5    

Transmission coefficients /i
iA Z   

a These ranges are broadly consistent with published data [16, 18], ,  

 

C A

Population fractions 0.49 0.51

Host turnover year 0.06 0.025

Worm mortality year 0.2 0.25



Table A2: Calibrated posterior parameters for 3 Kenyan communities (H – heavy, M – 
moderate, L –light) 

H 

 

M 

 

L 

 

 

   



Captions 
 

Figure 1: Marginal distributions of calibrated posterior distribution for 3 sample communities 

from coastal Kenya [20]. Demographic makeup consists of children (0-20) adult (20+). For each 

group, EPG test results were fitted to its  , ,k  - parameters  

Figure 2: Typical endemic (baseline) SWB distributions in 3 sample communities based of 

calibrated posterior values  ,C A    
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