Supporting Information S1 File: The Stratified Worm Burden (SWB) model and its calibration.

A. Human ‐ snail transmission system

The stratified worm burden (SWB) approach to modeling *Schistosoma* transmission stratifies the at-risk human host population by their worm burdens, $H = \sum_{m\geq 0} h_m(t)$, each stratum carrying *m* worms/person (more generally between $m\Delta w \le V < (m+1)\Delta w$, with specified worm step $\Delta w > 1$). The transition among strata is described by matrix $M(\lambda, \gamma, \mu)$, and age/group specific source term $\vec{S} = \{S_m(t)\}\$ (see [1-3])

$$
\frac{d\vec{h}}{dt} = M(\lambda, \gamma, \mu) \cdot \vec{h} + \vec{S}
$$
 (1)

The parameters of matrix M include snail-to-human force of infection (FOI), λ , the human population turnover rate, μ , and worm mortality, γ . The infectivity of the SWB within the human population is determined by the mean mated worm count (MMC), ϕ_m , in each stratum, and their weighted mean across strata,

$$
\Phi = \sum_{m>0} h_m \phi_m \tag{2}
$$

 (see, *e.g.* [2, 4-8]). Alternatively, one can simplify and assume a specific worm distribution such as a negative binomial distribution with mean *w* and aggregation constant, *k*. (e.g., the NB(*w,k*) in a MacDonald-type mean worm burden (MWB) model [9]), and get a closed functional form of $\Phi(w,k)$. In either case, MWB or SWB, human infectivity is the product of worm fecundity, ρ , and MMC,

$$
E = \rho \Phi \tag{3}
$$

In contrast to the MWB NB assumption for worm/person distribution, in our SWB approach, no a priori assumption is made about the worm distribution in the human host community. Egg release by mated females and individual hosts still depends on age-specific worm fecundity, ρ , and MMC $\phi_{_m}$ (for the $\,h_{_m}$ - stratum). In our approach, a host in m -th stratum is assumed to release random daily egg amounts following a negative binomial (NB)-distribution with mean

 $E_{_m}$ = ρ $\phi_{_m}$, and aggregation parameter $\,k_{_m}$ = k $\phi_{_m}$ $\,$ [3, 10, 11]. So any test pool of an SWB community with population strata $\{h_m\}$ is viewed as random draw of the NB-mixture distribution with weights $\,h_{\!_m}$.

At the endemic (equilibrium) state, strata variables $\{h_m(\lambda)\}$ are determined by age-specific FOI λ . Hence mean mated count $\Phi(\lambda)$ and human infectivity $E(\lambda)$ become functions of λ . *Figure 2* illustrates typical equilibrium distributions for 3 sample villages.

The **snail** population-transmission model employed in our analysis was developed in earlier papers [3, 10, 12]. Here we use a simplified (S-I) version made of susceptible prevalence variables $x + y = 1$, assuming a stationary snail environment,

$$
\frac{dy}{dt} = \Lambda (1 - y) - \nu y \tag{4}
$$

Snail-to-Human FOI, λ - the human per capita rate of worm accumulation, depends on i) the intermediate larval stage (cercaria) density, *C* , in local water bodies, ii) the rate of human exposure to affected water bodies (contact rate), ω , and iii) human susceptibility to infection, α (probability of worm establishment/ water contact),

$$
\lambda = \alpha \omega C = A y \tag{5}
$$

-a linear function of infected snail prevalence.

Human-to-Snail FOI, Λ , depends on parasite miracidial density, M, snail density, N, snail susceptibility (probability of successful invasion), β , and the maximal rate of snail invasion by miracidia, Λ_0 . In the present model, we propose the following nonlinear (saturated) function for Λ,

$$
\Lambda = \Lambda_0 \left(1 - e^{-\beta M/N} \right) \tag{6}
$$

Fraction $\left(1-e^{-\beta M/N}\right)$ is derived from hypothesized Poisson distribution of the "miracidia per snail" variable with mean value *M* / *N* . It represents the probability of one or more successful invasions. Miracidial density, $M = bHE$, depends on human host population size *H*, and human infectivity *E,* so

$$
\Lambda(E,N) = \Lambda_0 \left(1 - e^{-b \, EH/N} \right) \tag{7}
$$

Maximal invasion rate is a function of snail density *N*, and other biological/environmental inputs (see, *e.g*. [13]). However, in the current analysis we treat it as a single (uncertain) parameter to be estimated from other transmission inputs.

The nonlinear function $\Lambda(E, N)$ (7) can be approximated by the linear form, $\Lambda \approx BE$, provided exponent $bEH/N \ll 1$, that is, the combined "human contagion" is small relative to snail density. Such a linear assumption for snail FOI was commonly used in past transmission modeling (*e.g.* [1, 4, 14, 15]). The resulting transmission coefficient *B* , is then proportional to human population size, H , and their water contact rate ω .

Human infectivity, *E,* in equation (7) depends on host population makeup and age –specific exposure/ contamination patterns of different population age groups (children (C) and adults (A)). A single SWB has $E = \rho \Phi(\lambda)$; for mixed population groups C and A, infectivities $\{E_c, E_A\}$ are weighted in proportion to population fractions (H_i), and relative (adult vs. child) exposure factors, $\omega = \omega_A / \omega_C$ [3, 10]. The net result is combined human infectivity

$$
E(\omega) = \rho_c \left(H_c \Phi(\lambda_c) + \frac{\rho_A}{\rho_c} \omega H_A \Phi(\lambda_A) \right). \tag{8}
$$

-function of calibrated human parameters $\{(\lambda_i, \rho_i)\}$ drawn from the posterior ensemble of best fit parameters based on our calibration (explained below).

B. Coupled human‐snail system and model calibration

Human and snail equations (1) - (4) are coupled via two transmission coefficients *A* (snail-tohuman) and B (human-to-snail). The *A* -coefficient is included in the human FOI expression $\lambda = A$ y (infected snail prevalence), and coefficient B is included in the exponent of the nonlinear snail FOI, Λ . The details of model calibration and estimated parameter values are explained in previously published papers [3, 10]. It proceeds in two steps: (i) *human calibration for* (λ_i, k_i, ρ_i) which are snail-to-human FOI, aggregation, and worm fecundity, estimated from

test data (stool eggs per gram (epg, *S. mansoni*) or eggs per 10 mL by urine filtration (*S. haematobium)*); (ii) *transmission calibration*, for other coefficients (see Table A1).

Model inputs include

- (i) **Human parameters**: age-specific triplets (λ_i, k_i, ρ_i) , $i = \{C, A\}$ which enter human infectivity function, $\,E_{_{i}}= \rho_{_{i}}\,\Phi\big(\lambda_{_{i}}\big)$. Table A2 gives the results of human calibration (parameters statistics) for 3 sample communities, and **Figure** *1* shows their marginal distributions
- (ii) **Snail inputs**: infected prevalence y^*
- (iii) **Environmental/behavioral inputs**: b child transmission coefficient, ω relative (adult/child) exposure contamination

Specifically, for A, coefficients are estimated from calibrated human FOI $\,\lambda_{\!i}^{\phantom i}$ and (known or hypothesized) infected snail density *y*

$$
A_i = \frac{\lambda_i}{y} \; ; \; i = \{C, A\} \tag{9}
$$

For linear form of snail FOI (used in model M1), transmission coefficient *B* is estimated from the equilibrium snail equation (4) as

$$
B(\omega) = \frac{v y^*}{(1 - y^*) E(\omega)}
$$
\n(10)

with combined infectivity function **Error! Reference source not found.**.

For the nonlinear form of snail FOI (used in model M2) calibration proceeds differently: instead of estimating the pairs (A_i, B) , we estimate (A_i, Λ_0) ,

$$
\Lambda_0(b,\omega) = \frac{v y^*}{(1 - y^*) (1 - e^{-b E(\omega)})}
$$
\n(11)

We sample model uncertainties to provide estimates of variance, and generate a 95% uncertainty interval (UI) in the transmission projection for control interventions.

Table A1: Summary of model parameters

	Known, fixed		Calibrated			
Human	Demographic inputs			Posterior distributions of		
		C	A	$\{\lambda^i, \rho^i, k^i\}$, for age-groups $i = \{C, A\}$,		
	Population fractions	0.49	0.51			
	Host turnover/year	0.06	0.025	estimated from community test data		
	Worm mortality/year	0.2	0.25	([16, 17])		
Snail	Mortality: $v = 4$ /year, Infected prevalence (baseline endemic			Estimated		
				Max invasion (FOI) rate: Λ ₀		
	value) ^a : $y^* = .3$ (range .15-.45)					
Environment/	Basic (child) transmission rate:			Transmission coefficients $A_i = \lambda^i/Z$		
behavior	.5 < b < 5					
	Relative exposure/contamination rates					
	("adult/child): $.5 < \omega < 1.5$					

^aThese ranges are broadly consistent with published data [16, 18]^{,,}

H		λС	λA	kC	kA	ρC	ρA
	Min	1.8	0.51	0.018	0.014	9.8	4.6
	Max	5.9	1.7	0.083	0.045	35.	12.
	Median	2.8	0.85	0.044	0.026	20.	8.3
	Mean	3.1	0.91	0.046	0.027	21.	8.4
	SD/Mean	0.31	0.31	0.36	0.3	0.3	0.23
		λС	λA	kC	kA	оC	ρA
	Min	0.54	0.18	0.049	0.007	40.	2.9
	Max	0.69	0.95	0.077	0.048	55.	14.
M	Median	0.6	0.33	0.063	0.023	47.	8.2
	Mean	0.61	0.37	0.063	0.024	47.	8.2
	SD/Mean	0.059	0.42	0.11	0.42	0.079	0.33
L		λС	λА	kC	kA	ρC	ρA
	Min	0.37	0.035	0.045	0.016	28.	3.3
	Max	0.51	0.2	0.084	0.12	44.	14.
	Median	0.43	0.067	0.064	0.059	36.	8.
	Mean	0.43	0.077	0.064	0.062	36.	8.2
	SD/Mean	0.078	0.44	0.14	0.43	0.11	0.32

Table A2: Calibrated posterior parameters for 3 Kenyan communities (H – heavy, M – moderate, L –light)

Captions

Figure 1: Marginal distributions of calibrated posterior distribution for 3 sample communities from coastal Kenya [20]. Demographic makeup consists of children (0-20) adult (20+). For each group, EPG test results were fitted to its (λ, ρ, k) - parameters

Figure 2: Typical endemic (baseline) SWB distributions in 3 sample communities based of calibrated posterior values $\left\{\mathcal{A}_{\mathcal{C}},\mathcal{X}_{\mathcal{A}}\right\}$

Figures

Figure 1.

References

1. Gurarie D, King CH, Wang X. A new approach to modelling schistosomiasis transmission based on stratified worm burden. Parasitology. 2010;137(13):1951-1965. Epub 2010/07/14. doi: 10.1017/S0031182010000867.

2. Gurarie D, King CH. Population biology of *Schistosoma* mating, aggregation, and transmission breakpoints: More reliable model analysis for the end-game in communities at risk. PLoS One. 2014;9(12):e115875. doi: doi: 10.1371/journal.pone.0115875.

3. Gurarie D, King CH, Yoon N, Li E. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control. Parasit Vectors. 2016;9(1):428. doi: 10.1186/s13071-016-1681-4.

4. May RM. Togetherness among schistosomes: Its effects on the dynamics of infection. Mathematical Biosciences. 1977;35:301-343.

5. May RM, Woolhouse ME. Biased sex ratios and parasite mating probabilities. Parasitology. 1993;107(Pt 3):287-295.

6. Nasell I. Mating for schistosomes. J Math Biol. 1978;6(1):21-35.

7. Nåsell I, Hirsch WM. The transmission dynamics of schistosomiasis. Communications on Pure and Applied Mathematics. 1973;26(4):395-453.

8. Shaw DJ, Grenfell BT, Dobson AP. Patterns of macroparasite aggregation in wildlife host populations. Parasitology. 1998;117 (Pt 6):597-610.

9. MacDonald G. The dynamics of helminth infections, with special reference to schistosomes. Trans R Soc Trop Med Hyg. 1965;59(5):489-506.

10. Gurarie D, Yoon N, Li E, Ndeffo-Mbah M, Durham D, Phillips AE, et al. Modelling control of *Schistosoma haematobium* infection: predictions of the long-term impact of mass drug administration in Africa. Parasit Vectors. 2015;8(1):529. doi: 10.1186/s13071-015-1144-3.

11. Gryseels B, De Vlas SJ. Worm burdens in schistosome infections. Parasitol Today. 1996;12(3):115-119. Epub 1996/03/01. doi: 0169475896806715 [pii].

12. Gurarie D, King C, Yoon N, Alsallaq R, Wang X. Seasonal Dynamics of Snail Populations in Coastal Kenya: Model Calibration and Snail Control. Advances in Water Resources. 2016.

13. Gurarie E, Ovaskainen O. Towards a general formalization of encounter rates in ecology. Theoretical Ecology. 2013;6(2):189-202.

14. Anderson RM, May RM. Infectious Diseases of Humans. Dynamics and Control. New York: Oxford University Press; 1991. 467-496, 507-420 p.

15. Wang S, Spear RC. Exploring the Contribution of Host Susceptibility to Epidemiological Patterns of Schistosoma japonicum Infection Using an Individual-Based Model. The American Journal of Tropical Medicine and Hygiene. 2015. doi: 10.4269/ajtmh.14-0691.

16. Muchiri EM, Ouma JH, King CH. Dynamics and control of *Schistosoma haematobium* transmission in Kenya: an overview of the Msambweni Project. Am J Trop Med Hyg. 1996;55(5 Suppl):127-134.

17. Bisanzio D, Mutuku F, Bustinduy AL, Mungai PL, Muchiri EM, King CH, et al. Crosssectional study of the burden of vector-borne and soil-transmitted polyparasitism in rural communities of Coast Province, Kenya. PLoS Negl Trop Dis. 2014;8(7):e2992. doi: 10.1371/journal.pntd.0002992.

18. Sturrock RF. Field studies on the transmission of *Schistosoma mansoni* and on the bionomics of its intermediate host, *Biomphalaria glabrata*, on St. Lucia, West Indies. Int J Parasitol. 1973;3(2):175-194.

19. Webbe G. Quantitative studies of intermediate host populations in the transmission of schistosomes. Proc R Soc Med. 1968;61(5):455.

20. Kariuki HC, Clennon JA, Brady MS, Kitron U, Sturrock RF, Ouma JH, et al. Distribution patterns and cercarial shedding of *Bulinus nasutus* and other snails in the Msambweni area, Coast Province, Kenya. Am J Trop Med Hyg. 2004;70(4):449-456.