1 Evaluation and application of summary ² statistic imputation to discover new **3 height-associated loci**

⁴ Sina Rüeger, Aaron McDaid and Zoltán Kutalik

⁵ March 13, 2018

⁶ S3 Appendix: Accounting for varying sample size and ⁷ missingness

 All previously published methods assume that all effect estimates are based on the \bullet same set of N individuals. This assumption does not always hold, for example when meta-analysing studies use different genotyping chips or different imputation panels. As a result, the covariance between effect estimates will change. In the extreme case when effect estimates are computed in two non-overlapping samples, the correlation will be zero even if there is very high LD between the two SNVs.

14 C, as defined above, is an estimate of $\Gamma_{\mathcal{M} \mathcal{M}}$, which is the correlation matrix due to 15 LD among the tag SNVs in the current region. We define N as a vector recording the ¹⁶ sample size of each tag SNV, N_{max} as the maximum in N , and assume that every tag 17 SNV k the sample of individuals is a subset of a complete sample of N_{max} individuals. ¹⁸ Unlike the situation where the sample size is the same for all tag SNVs, varying sample 19 size requires to first impute the Z-statistic z before computing the standardised effect 20 size a. For each tag SNV k, we have observed a 'partial' Z-statistic, z_k° , computed over 21 the N_k individuals. For a SNV u, our goal is to impute a 'complete' Z-statistic, z_u , 22 estimated from a complete sample of N_{max} people. In other words, for any SNV u we

- 23 wish to impute $z_u | z^{\circ}_{\mathcal{M}}$.
- ²⁴ To perform imputation, we require the correlation between any target complete Z-²⁵ statistic, z_u , and any observed partial Z-statistic, z_k° , (with $k \in \mathcal{M}$),

$$
\boldsymbol{d}_k := \text{Cor}[z_u, z_k^\circ] = c_{uk} \sqrt{\frac{N_k}{N_{max}}}
$$

²⁶ where $c_{uk} = \widehat{\Gamma}_{uk}$ is our estimate of the LD-correlation between the two SNVs. We also require the correlations among the partial Z-statistics, z_M° . For any two SNVs $k, l \in \mathcal{M}$, equire the correlations among the partial Z-statistics, $z_{\mathcal{M}}^{\circ}$. For any two SNVs $k, l \in \mathcal{M}$, ²⁸ the correlation of their observed partial Z-statistics can be calculated as:

$$
Cor[z_k^{\circ}, z_l^{\circ}] = c_{kl} \frac{N_{k\cap l}}{\sqrt{N_k N_l}}
$$

29 where N_k and N_l are the number of individuals for which SNV k and l are available, 30 respectively, and $N_{k\cap l}$ is the number of individuals that contributed to the calculation 31 of the effect estimates for both SNVs k and l. The estimation of $N_{k\cap l}$ is discussed in the ³² next section.

33 We can use this to adjust the correlation matrices C and c , respectively D and d , the ³⁴ elements of which are

$$
\mathbf{D}_{k,l}=c_{kl}\delta_{kl},
$$

By defining $\delta_{kl} := \frac{N_{k\cap l}}{\sqrt{N_{l\cap l}}}$ ³⁵ By defining $\delta_{kl} := \frac{N_k \cap l}{\sqrt{N_k N_l}}$, we can calculate the adjusted (estimated) correlation matrix 36 D, where each element is calculated as follows:

$$
\boldsymbol{D}_{kl}=c_{kl}\delta_{kl}.
$$

 37 D and d are therefore defined as adjusted versions of C and c respectively. C and D 38 are $q \times q$ matrices, where q is the number of tag SNVs, and they are recomputed in each

39 region. c and d are vectors of length q , and are recomputed for each target SNV u .

⁴⁰ The conditional distribution is

$$
(z_u-\mathbb{E}[z_u])|\boldsymbol{z}_{\mathcal{M}}^{\circ}\sim\mathcal{N}\big(\boldsymbol{d}'\boldsymbol{D}^{-1}(\boldsymbol{z}_{\mathcal{M}}^{\circ}-\mathbb{E}[\boldsymbol{z}_{\mathcal{M}}^{\circ}])\;,\;1-\boldsymbol{d}'\boldsymbol{D}^{-1}\boldsymbol{d}\big).
$$

41 Applying the simplifying assumption that $\mathbb{E}[z_u] \approx d'D^{-1}\mathbb{E}[z_\mathcal{M}^{\circ}],$ similar to the assump-⁴² tion that took us from 1 to 2,

$$
z_u|\boldsymbol{z}_\mathcal{M}^\circ \sim \mathcal{N}\big(\boldsymbol{d}^{\prime} \boldsymbol{D}^{-1} \boldsymbol{z}_\mathcal{M}^\circ \ , \ 1-\boldsymbol{d}^{\prime} \boldsymbol{D}^{-1} \boldsymbol{d}\big)
$$

⁴³ and therefore we impute $z_u | z^{\circ}_{\mathcal{M}}$ as

$$
\hat{z}_u = \mathbb{E}[z_u | \mathbf{z}_{\mathcal{M}}^{\circ}] = \mathbf{d}' \mathbf{D}^{-1} \mathbf{z}_{\mathcal{M}}^{\circ} . \tag{S1}
$$

44 In order to convert \hat{z}_u into the corresponding estimate of the standardised effect, we ⁴⁵ consider the (hypothetical) process of imputing each individual genotype.

 46 If we had the individual-level genetic data, with j to index individuals, each element ⁴⁷ of the N_{max} -element vector g^u for SNV u could be imputed using genotypes from the tag SNVs $G^{\mathcal{M}}$ via $\widehat{g}_j^u = \boldsymbol{c}'_{\mathcal{M}_{(j)},u} \boldsymbol{C}_{\mathcal{M}_{(j)}}^{-1}$ ⁴⁸ tag SNVs $G^{\mathcal{M}}$ via $\widehat{g}_j^u = \mathbf{c}'_{\mathcal{M}_{(j)},u} \mathbf{C}_{\mathcal{M}_{(j)},\mathcal{M}_{(j)}}^{-1} G_j^{\mathcal{M}},$ where the set $\mathcal{M}_{(j)}$ can be different for ⁴⁹ each individual as each individual has a different set of tagged SNVs. The corresponding ⁵⁰ standardised effect estimate, based on linear regression, would be

$$
\widehat{a}_u = \mathbb{E}[a_u|\boldsymbol{a}_\mathcal{M}] = \frac{(\widehat{\boldsymbol{g}}^u)'\boldsymbol{y}}{(\widehat{\boldsymbol{g}}^u)'\widehat{\boldsymbol{g}}^u}
$$

⁵¹ The denominator of this is $(\hat{g}^u)' \hat{g}^u = N_{max} d' D^{-1} d$, as opposed to $(g^u)' g^u = N_{max}$, and

s2 we define the *effective sample size* as $N_{max}d'D^{-1}d$. Therefore, even though we do not μ ₅₃ have the per-individual genetic data, we can impute the standardised effect a_u via

$$
\hat{a}_u = \mathbb{E}[a_u | \mathbf{z}_M^\circ] = \frac{\hat{z}_u}{\sqrt{N_{max} \mathbf{d}' \mathbf{D}^{-1} \mathbf{d}}}.
$$
\n(S2)

54 Estimating overlap $N_{k∩l}$ and δ

⁵⁵ Typically, we do not know the details of the exact sample overlap for every pair of SNVs, ⁵⁶ $n_{k\cap l}$, and instead simply know N_{max} and the vector N. Therefore, we must derive the ⁵⁷ sample overlap based on assumptions about the dependence structure of missingness.

If each SNV has a corresponding binary missingness vector, the correlation between these missingness vectors will be maximised when the sample overlap is at its maximum, $N_{k\cap l} = \min(N_k, N_l)$. To enable the *dependent* approach, we construct a **D** matrix by replacing $N_{k\cap l}$ with min (N_k, N_l) ,

$$
\mathbf{D}_{kl}^{(dep)} = \mathbf{C}_{kl} \hat{\delta}_{kl}^{(dep)} = \mathbf{C}_{kl} \min\left(\frac{\sqrt{N_k}}{\sqrt{N_l}}, \frac{\sqrt{N_l}}{\sqrt{N_k}}\right) . \tag{S3}
$$

⁵⁸ and plug $\mathbf{D}^{(dep)}$ into Eqs. [\(S1\)](#page-1-0) and [\(S2\)](#page-2-0).

If the missingness vectors are independent of each other, the expected overlap can be estimated as

$$
\mathbf{D}_{kl}^{(ind)} = \mathbf{C}_{kl} \hat{\delta}_{kl}^{(ind)} = \mathbf{C}_{kl} \frac{\sqrt{N_k N_l}}{N_{max}} \,. \tag{S4}
$$