Evaluation and application of summary statistic imputation to discover new height-associated loci

Sina Rüeger, Aaron McDaid and Zoltán Kutalik

March 13, 2018

S3 Appendix: Accounting for varying sample size and 7 missingness

1

2

3

4

5

⁸ All previously published methods assume that all effect estimates are based on the ⁹ same set of *N* individuals. This assumption does not always hold, for example when ¹⁰ meta-analysing studies use different genotyping chips or different imputation panels. As ¹¹ a result, the covariance between effect estimates will change. In the extreme case when ¹² effect estimates are computed in two non-overlapping samples, the correlation will be ¹³ zero even if there is very high LD between the two SNVs.

C, as defined above, is an estimate of $\Gamma_{\mathcal{M}\mathcal{M}}$, which is the correlation matrix due to 14 LD among the tag SNVs in the current region. We define N as a vector recording the 15 sample size of each tag SNV, N_{max} as the maximum in N, and assume that every tag 16 SNV k the sample of individuals is a subset of a complete sample of N_{max} individuals. 17 Unlike the situation where the sample size is the same for all tag SNVs, varying sample 18 size requires to first impute the Z-statistic z before computing the standardised effect 19 size a. For each tag SNV k, we have observed a 'partial' Z-statistic, z_k° , computed over 20 the N_k individuals. For a SNV u, our goal is to impute a 'complete' Z-statistic, z_u , 21 estimated from a complete sample of N_{max} people. In other words, for any SNV u we 22 wish to impute $z_u | \boldsymbol{z}_{\mathcal{M}}^{\circ}$. 23

To perform imputation, we require the correlation between any target complete Zstatistic, z_u , and any observed partial Z-statistic, z_k° , (with $k \in \mathcal{M}$),

$$\boldsymbol{d}_k := \operatorname{Cor}[z_u, z_k^\circ] = c_{uk} \sqrt{\frac{N_k}{N_{max}}}$$

where $c_{uk} = \widehat{\Gamma}_{uk}$ is our estimate of the LD-correlation between the two SNVs. We also require the correlations among the partial Z-statistics, $\boldsymbol{z}_{\mathcal{M}}^{\circ}$. For any two SNVs $k, l \in \mathcal{M}$, the correlation of their observed partial Z-statistics can be calculated as:

$$\operatorname{Cor}[z_k^{\circ}, z_l^{\circ}] = c_{kl} \frac{N_{k \cap l}}{\sqrt{N_k N_l}}$$

where N_k and N_l are the number of individuals for which SNV k and l are available, respectively, and $N_{k\cap l}$ is the number of individuals that contributed to the calculation of the effect estimates for both SNVs k and l. The estimation of $N_{k\cap l}$ is discussed in the next section.

We can use this to adjust the correlation matrices C and c, respectively D and d, the elements of which are

$$\boldsymbol{D}_{k,l} = c_{kl}\delta_{kl}$$

By defining $\delta_{kl} := \frac{N_{k\cap l}}{\sqrt{N_k N_l}}$, we can calculate the adjusted (estimated) correlation matrix **D**, where each element is calculated as follows:

$$\boldsymbol{D}_{kl} = c_{kl}\delta_{kl}$$

³⁷ D and d are therefore defined as adjusted versions of C and c respectively. C and D³⁸ are $q \times q$ matrices, where q is the number of tag SNVs, and they are recomputed in each ³⁹ region. c and d are vectors of length q, and are recomputed for each target SNV u.

$$(z_u - \mathbb{E}[z_u]) | \mathbf{z}_{\mathcal{M}}^{\circ} \sim \mathcal{N} (\mathbf{d}' \mathbf{D}^{-1} (\mathbf{z}_{\mathcal{M}}^{\circ} - \mathbb{E}[\mathbf{z}_{\mathcal{M}}^{\circ}]), 1 - \mathbf{d}' \mathbf{D}^{-1} \mathbf{d})$$

⁴¹ Applying the simplifying assumption that $\mathbb{E}[z_u] \approx d' D^{-1} \mathbb{E}[z_{\mathcal{M}}^{\circ}]$, similar to the assumption that took us from 1 to 2,

$$z_u | oldsymbol{z}^\circ_{\mathcal{M}} \sim \mathcal{N}ig(oldsymbol{d}' oldsymbol{D}^{-1} oldsymbol{z}^\circ_{\mathcal{M}} \ , \ 1 - oldsymbol{d}' oldsymbol{D}^{-1} oldsymbol{d}ig)$$

⁴³ and therefore we impute $z_u | \boldsymbol{z}_{\mathcal{M}}^{\circ}$ as

$$\hat{z}_u = \mathbb{E}[z_u | \boldsymbol{z}_{\mathcal{M}}^{\circ}] = \boldsymbol{d}' \boldsymbol{D}^{-1} \boldsymbol{z}_{\mathcal{M}}^{\circ} .$$
(S1)

In order to convert \hat{z}_u into the corresponding estimate of the standardised effect, we start consider the (hypothetical) process of imputing each individual genotype.

⁴⁶ If we had the individual-level genetic data, with j to index individuals, each element ⁴⁷ of the N_{max} -element vector \boldsymbol{g}^u for SNV u could be imputed using genotypes from the ⁴⁸ tag SNVs $G^{\mathcal{M}}$ via $\hat{g}_j^u = \boldsymbol{c}'_{\mathcal{M}_{(j)},u} \boldsymbol{C}_{\mathcal{M}_{(j)},\mathcal{M}_{(j)}}^{-1} G_j^{\mathcal{M}}$, where the set $\mathcal{M}_{(j)}$ can be different for ⁴⁹ each individual as each individual has a different set of tagged SNVs. The corresponding ⁵⁰ standardised effect estimate, based on linear regression, would be

$$\widehat{a}_u = \mathbb{E}[a_u | oldsymbol{a}_\mathcal{M}] = rac{(\widehat{oldsymbol{g}}^u)' oldsymbol{y}}{(\widehat{oldsymbol{g}}^u)' \widehat{oldsymbol{g}}^u}$$

The denominator of this is $(\widehat{g}^u)'\widehat{g}^u = N_{max}d'D^{-1}d$, as opposed to $(g^u)'g^u = N_{max}$, and

we define the *effective sample size* as $N_{max}d'D^{-1}d$. Therefore, even though we do not have the per-individual genetic data, we can impute the standardised effect a_u via

$$\widehat{a}_u = \mathbb{E}[a_u | \boldsymbol{z}_{\mathcal{M}}^{\circ}] = \frac{\widehat{z}_u}{\sqrt{N_{max} \boldsymbol{d}' \boldsymbol{D}^{-1} \boldsymbol{d}}} \,. \tag{S2}$$

54 Estimating overlap $N_{k\cap l}$ and δ

Typically, we do not know the details of the exact sample overlap for every pair of SNVs, $n_{k\cap l}$, and instead simply know N_{max} and the vector N. Therefore, we must derive the sample overlap based on assumptions about the dependence structure of missingness.

If each SNV has a corresponding binary missingness vector, the correlation between these missingness vectors will be maximised when the sample overlap is at its maximum, $N_{k\cap l} = \min(N_k, N_l)$. To enable the *dependent* approach, we construct a **D** matrix by replacing $N_{k\cap l}$ with $\min(N_k, N_l)$,

$$\boldsymbol{D}_{kl}^{(dep)} = \boldsymbol{C}_{kl} \hat{\delta}_{kl}^{(dep)} = \boldsymbol{C}_{kl} \min\left(\frac{\sqrt{N_k}}{\sqrt{N_l}}, \frac{\sqrt{N_l}}{\sqrt{N_k}}\right) \,. \tag{S3}$$

and plug $D^{(dep)}$ into Eqs. (S1) and (S2).

If the missingness vectors are *independent* of each other, the expected overlap can be estimated as

$$\boldsymbol{D}_{kl}^{(ind)} = \boldsymbol{C}_{kl} \hat{\delta}_{kl}^{(ind)} = \boldsymbol{C}_{kl} \frac{\sqrt{N_k N_l}}{N_{max}} .$$
 (S4)