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I. SUPPLEMENTALS

This section describes the results and details involved
in comparing the inverse design runtimes.
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The runtime of the
numerical optimization is seen to increase more quickly than
that of the neural network. The simulation is fit with a
power fit (that finds an exponent of 4.5), and the neural
network is fit with a linear fit.

To compare the runtime of the neural network versus
the numerical methods, we first had to train the networks
to a given error threshold as described above. To allow
for approximately the same error threshold even as the
particles became more complex, the size of the neural
network was increased as we considered more complex
particles. The two shell particle had 30,000 parameters,
while the four shell had 46,000 and the six shell had
151,000. Note that equivalent performance may possi-
bly be achieved with much fewer parameters, as these
architectures were not heavily optimized.
To establish a robust and comparable ‘accuracy cutoff’
for the increasing complexity of the particles, we looked
at the error rate of the numerical inverse design for the
simulation. We did this because ultimately we wanted
to perform a comparison of the neural network to the
numerical inverse design on equal footing. Thus, we en-
sured that the neural network’s accuracy cutoff during
the training stage was below the error rate for the numer-
ical inverse design. Effectively, we ran the numerical in-
verse design for five different particle configurations with
the same number of shells, then found what the mean er-
ror rate of these tests were. This provided a robust and
comparable ‘accuracy cutoff’ that we could then use to
figure out what the size of the neural network should be
for each nanoparticle.
To get an equal footing comparison — and trying to
not bias our results to any particular choice of opti-
mization method — the comparison described here used
the same inverse design optimization function for both

the neural network’s and the simulation. The approach
described in the paper, reverse-backpropogation, gives
comparable results; however it is difficult to do a fair
comparison due to different mediums and different al-
gorithms. Thus, after experimenting with several opti-
mization functions, we used the same function for both
the simulation and neural network, simply adding in the
analytical gradient for the case of the neural network —
one of the key benefits.
The results of this are seen in Fig. 1. From these re-
sults, it is evident that the runtime of the simulation
for inverse design becomes large, while the neural net-
work can handle more complex problems in the equiva-
lent speed. The difference in the scaling — the power
fit for the simulation versus the linear fit of the neural
network — is one of the promising features about using
this method.

Nanoparticles made from J-Aggregates often consist of
a core shell geometry (normally made of a metal), sur-
rounded by a shell of dielectric material, and then coated
with a J-Aggregate dye. This dye is peculiar because it
couples with the metallic core to produce exciton reso-
nance structures. These materials have allowed advanced
studies of plasmon-exciton interactions and have been
used to generate phenomena like induced transparency.
These materials are powerful because the scientist can
choose where these resonance structures and peaks hap-
pen in the material, and as such offer a level of customiz-
ability in designing nanoparticles.
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The sharp peak
in the spectrum is due to a resonance phenomenon in the
J-Aggregate material, and can be customized for a variety
of wavelengths. This result was generated from a particle
not seen in the training data.
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fig. S1. Comparison of inverse design runtime versus  

complexity of the nanoparticle. 

fig. S2. Comparison of NN approximation to the real spectrum for 

a particle made with a J-aggregate material. 
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The sharp peaks
in the result are possible due to the material properties of
J- ggregates, and present a complex scattering behavior.

This customizability — which often can drastically
change the spectra produced by these particles — is a
feature that makes these nanoparticles good litmus tests
for the robustness of the network.
Here we considered a three shell particle made of a
metallic silver core, a dielectric shell of silica, and an
outside shell of J-Aggregate dye. Each shell ranged
from 30nm-70nm, and the J-Aggregate dye had a dif-
ferent dielectric function for each training example.
The frequency-dependent dielectric ε function of the J-

Aggregate dye was given by:

ε(ω) = ε0 +
fω2

0

ω2
0 − ω2 − iγω

(1)

Where ε0 = 1.85, f = 1.0, γ = .01, ω = 2π
λ . To

control the value of this dielectric constant, λd was varied
in ω0 = 2π

λd
between 400 to 700nm. Note that this tunes

the location of the resonance peak, but not the width of
the peak.
By varying the dielectric function, this means that each
training example was different and had peaks located at
significantly different locations. The inputs were only the
thickness of each shell and the resonance peak of the J-
Aggregate material, no other information was supplied
to the network.
Following the same procedure as above, the results of
the network were visually inspected by testing a spectrum
that had not been trained on — Fig. 2. Results demon-
strated that despite the spectra being different due to
the changed resonance peak, the network was robust and
could still approximate well.
Similarly, we performed inverse design with J-
Aggregates — Fig. 3. Due to the J-aggregate material,
the sample space of spectra was much broader, and thus
the results from the network were more attuned for the
optimization. The sharper peaks allowed the network to
find much more optimal configurations of the particle.
These results demonstrate that the network is robust
even with sharp features in the spectrum, and further-
more that even with large sample spaces, the network is
able to function as an optimization tool and create unique
geometries.
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fig. S3. Optimization of scattering at a  particular

wavelength using the J-aggregate material. 


	aar4206_SM
	aar4206_SupplementalMaterial_v4
	Supplementals
	Details for the Comparison of Neural Networks with Inverse Design Algorithms
	J-Aggregates





