
Supplementary methods 

Single cell quality control (QC) filtering 

We followed the quality control method suggested by the Seurat package. Two plots were 

generated: one of the number of genes detected against the total UMI count, and one of the 

proportion of mitochondrial genes against the total UMI count to identify outliers. The thresholds 

were then decided based on the total UMI count and the proportion of mitochondrial genes’ was 

determined based on a visual inspection of cells. We also did a linear regression between the 

number of genes detected against the total UMI count both in the log scale, and kept cells within 

the 95% prediction interval band. 

Another QC step used for DE simulation was the removal of few cells with extremely high gene 

expression for some genes compared to the remaining cells. These outliers might be caused by 

counting errors or burst of gene expression. First, we standardized the total UMI by converting 

each UMI count 𝑐𝑖𝑗 of gene 𝑖 and cell 𝑗 to 
𝑐𝑖𝑗

𝑈𝑀𝐼𝑗
∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑈𝑀𝐼), where 𝑈𝑀𝐼𝑗 was the total UMI 

of cell 𝑗 and 𝑚𝑒𝑑𝑖𝑎𝑛(𝑈𝑀𝐼) was the median of total UMI across all cells. We then calculated the 

interquartile IQ of nonzero counts for each gene, and identify the outlier cells with gene 

expression higher than 𝑞 ∗ max⁡(𝐼𝑄, 1). In all our analysis, we set 𝑞 to 30. This step usually 

detected 0 or few cells as outliers. 

Data used and preprocessing 

Single cell data were downloaded from public resources were summarized in Additional File 2: 

Table S15. If not specifically stated, we used the downloaded gene-cell count matrices without 

further filtering or normalization. 

Single cell data from Ziegenhain et al. 2017 [1] using 6 protocols 



For all analysis, we used the data described in Ziegenhain et al. [1]. The final count matrices 

were used. We removed ERCC RNAs counts from the count matrix therefore focusing on 

endogenous mRNA counts. In DE analysis in two replicates and DE simulations with batch 

effects, outlier detection was applied to remove several cells with extremely high gene 

expressions for some genes. 

Naïve T cell, memory T cell From Zheng et al. 2017 [2] 

We first applied QC as described above. For simulations, outlier detection were applied, no cells 

were removed.  

Dataset from Grun et al. 2015 [3] 

The YFPpos and Whole_Organoid_Replicate_2 data sets were used in our analysis. We removed 

ERCC RNA counts first and then did QC described above. For simulations based on the plate 

I5d, few outlier cells with very high gene expressions for some genes were removed. 

Dataset from Jatin et al. 2014 [4] 

We first removed ERCC genes and 3 genes with different number of cells. Then we extract the 

CD11c+ and CD11c+(2hr_LPS) cells. For each data set, we applied QC described above. For 

simulations based on CD11c+ cells, we applied outlier detection, no cells were removed. 

Dataset from Klein et al. 2015 [5] 

The downloaded count matrix was used directly. 

Dataset from Islam et al. 2011 [6] 

We first removed spike in RNAs and use the 48 ESC cells for our analysis. 



Dataset from Scialdone et al. 2015 [7] 

We kept single cells with quality OK and removed ERCC genes. 

Application of other DE Methods 

Monocle2: We followed the analysis code in the supplementary file of the Monocle2 paper 

https://www.nature.com/articles/nmeth.4150#s4.  For the UMI count, it requires the full count 

matrix. It has its own function to estimate the size factors for normalization. 

SCDE: We followed the link http://hms-dbmi.github.io/scde/diffexp.html. SCDE requires the 

count matrix as the input. 

MAST: We followed the link https://www.bioconductor.org/help/course-

materials/2016/BioC2016/ConcurrentWorkshops2/McDavid/MAITAnalysis.html. Specifically 

we used log2 scale TPM as the input and used adaptive thresholding used in the tutorial. 

ROTS: We followed the link: 

https://bioconductor.org/packages/release/bioc/vignettes/ROTS/inst/doc/ROTS.pdf. Specifically, 

we used TMM normalization as recommended by the package. 

Seurat: We follow the link http://satijalab.org/seurat/pbmc3k_tutorial_1_4.html. The total UMI is 

regressed out except for the Poisson or negative binomial model. For Poisson or negative 

binomial model, the total UMI is incorporated into the DE model. 

A statistical model linking the UMI count and read count of single cells 

Our proposed model illustrates the relation and difference between the UMI count and read count 

(Additional file 1: Fig. S12), being motivated by the work of Qiu et al. [8]. Because the 

efficiency of the reverse transcription from the original mRNA to cDNA in scRNA-seq is low, 

https://bioconductor.org/packages/release/bioc/vignettes/ROTS/inst/doc/ROTS.pdf
http://satijalab.org/seurat/pbmc3k_tutorial_1_4.html
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e.g., less than ~10% [9, 10], the cDNA count or UMI count for each cell can be modelled as a 

sampling process from the pool of mRNA. When the mRNA proportions are the same among 

cells (i.e., there is no biological variation) and the only technique variation is in the sampling 

depth, e.g., the total UMI per cell, the gene count follows a multinomial distribution or 

approximately Poisson distribution given the small gene proportions. This is the simplest 

distribution with which to model the UMI count when considering different sampling depths. 

When there are some moderate heterogeneity, i.e., when the mRNA proportions vary across 

cells, the negative binomial (NB) model is often used. This is the case if we assume that the 

mRNA proportion of a given gene in each cell follows a gamma distribution. For the read count, 

we need to consider the additional amplification process, which is a multiplication of the 

captured cDNA. In the ideal case, the multiplication factor is a constant across all cells and 

genes. In practice, however, this multiplication factor is likely to differ among cells and genes, 

thereby introducing more complexity. The final sequencing read count can be modeled as a 

multinomial sampling process depending on the final total sequence reads and the proportion of 

the amplified cDNA.  

We can formalize the above model into statistical formulae. We do not consider spike-in 

RNAs here. Let 𝑅𝑖𝑗 be the mRNA count, with the subscripts indicating cell 𝑖 and gene 𝑗, then the 

total RNA count for the cell 𝑖 is 𝑁𝑖 = ∑ 𝑅𝑖𝑗𝑗 . Some mRNAs may be degraded or lost during cell 

separation or lysis. The available mRNA before reverse transcription can be modeled as follows: 

𝑋𝑖𝑗 = 𝛼𝑖𝑅𝑖𝑗, 



where 𝛼𝑖 is cell specific and unknown. Because reverse transcription from mRNA to cDNA is a 

low-efficiency process in single cells, it can be modeled as a sampling process using a 

multinomial distribution:  

𝑌𝑖𝑗 = 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (
𝑋𝑖𝑗

∑ 𝑋𝑖𝑗𝑗
, 𝑛𝑖) = 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (

𝑅𝑖𝑗
∑ 𝑅𝑖𝑗𝑗

, 𝑛𝑖), 

where 𝑛𝑖 is the cDNA count, and 𝑛𝑖 = 𝜃𝑖 ∑ 𝑋𝑖𝑗𝑗 = 𝛼𝑖𝜃𝑖𝑁𝑖, 𝜃𝑖 represents the reverse transcription 

efficiency for cell 𝑖. Here, we assume that the efficiency is only cell specific but is the same for 

all genes. Because the cDNA count per gene is usually small and the total cDNA count in a cell 

is large, 𝑌𝑖𝑗 can be approximated using a Poisson distribution with mean 𝑛𝑖𝑝𝑖𝑗, where 𝑝𝑖𝑗 =
𝑅𝑖𝑗

∑ 𝑅𝑖𝑗𝑗
, 

the proportion of each gene transcript. Different cells will exhibit some degree of variation in 

gene proportions even for homogeneous cell populations. If we assume that 𝑝𝑖𝑗 follows a gamma 

distribution parameterized as 𝑔𝑎𝑚𝑚𝑎(𝑠𝑐𝑎𝑙𝑒 =
1

𝜙𝑗
, 𝑟𝑎𝑡𝑒 =

1

𝜙𝑗𝑝𝑗
), where 𝑝𝑗 ⁡and⁡𝜙𝑗 are the mean 

proportion and  dispersion of gene 𝑗, respectively, then the cDNA count 𝑌𝑖𝑗 follows a negative 

binomial distribution 𝑁𝐵(𝑛𝑖𝑝𝑗 , 𝜙𝑗). Here, we assume that the UMI count catches all available 

cDNA with sufficient sequencing depth. 

For the amplification process, because it is likely to be specific for both cells and genes, 

we use a general model for the amplified cDNA count as follows: 

𝑍𝑖𝑗 = 𝛾𝑖𝑗𝑌𝑖𝑗, 

where 𝛾𝑖𝑗 is the amplification parameter for cell 𝑖 and gene 𝑗. This could be simplified to a 

constant or could be only cell or gene specific with more knowledge of the amplification process. 



The last step is sequencing. The read count 𝐶𝑖𝑗 can be modeled as a multinomial sampling 

process given the total reads: 

𝐶𝑖𝑗 = 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(
𝑍𝑖𝑗

∑ 𝑍𝑖𝑗⁡𝑗
, 𝑆𝑖), 

where 𝑆𝑖 is the total reads for cell 𝑖. Because the reverse-transcribed cDNA 𝑌𝑖𝑗 has many 0s, 

resulting in many 0s in 𝑍𝑖𝑗 even after amplification and many zero reads in 𝐶𝑖𝑗, modeling 𝐶𝑖𝑗 will 

be more complex than modeling 𝑌𝑖𝑗 directly. For example, when 𝑌𝑖𝑗 has three distinct values 0, 1, 

or 2, for a pool of cells, this is likely to result in three clusters for the read counts, corresponding 

to 𝑌𝑖𝑗 being 0, 1, or 2, respectively. In this case, even a ZINB model might not model the read 

count well. 

Our model differs from that of Qiu [8] in the following respects. The cDNA count before 

amplification is modeled as a sampling process, and we explicitly separate the amplification 

process and the sequencing process. The first difference explains the massive 0 counts in the 

scRNA-seq data matrix. The second illustrates the complication involved in the amplification 

process, as well as the advantage of using UMI to avoid this complication.  

In the above model we assume that the UMI count captures all the cDNAs. This is probably the 

case when sufficient sequencing depth is used. Otherwise the UMI count is again a sampling of 

the cDNA count, which can be combined with the sampling process of reverse transcription with 

decreased capture efficiency and the subsequent modeling will be the same. 
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Supplementary figure legends 

Figure S1. Results of model comparison using both UMI and read counts. The circle graphs 

show the proportion of genes with the selected models for six different protocols using 

hypothesis testing. A significant portion of genes favored the simple Poisson model when UMI 

counts were used (a), but the portion favoring the Poisson model sharply dropped when the read 

counts were used (b). Also the zero-inflated negative binomial (ZINB) model was non-negligible 

for six of the twelve read count-based datasets. 

Figure S2. Two clusters in Rh41 cells. The bar at the top indicates the cluster membership. The 

lower panel shows the color coded dissimilarity matrix among cells within and between clusters. 

Figure S3. Goodness of fit using the negative binomial distribution for memory T cells (Tm). a, 

c, and e are the empirical and theoretical probability mass functions (pmfs). b, c, and f are the 

empirical and theoretical cumulative distribution functions (cdfs). Three genes with different 

significance levels are shown. 

Figure S4. Goodness of fit using the negative binomial distribution for mouse Rh41 combined 

cells. a, c, and e are the empirical and theoretical probability mass functions (pmfs). b, c, and f 

are the empirical and theoretical cumulative distribution functions (cdfs). Three genes with 

different significance levels are shown. 

Figure S5. Precision recall curves for selected methods on simulated data set based on memory 

T cells from Zheng et al. with fold change 1.7. The starting average count of DE genes from the 

reference group was 0.2. Sample size was 1000 (500 cells per group). P: true DE genes, N: true 

non-DE genes.  



Figure S6. Precision recall curves for selected methods on simulated data set based on memory 

T cells from Zheng et al. with fold change 2. The starting average count of DE genes from the 

reference group was 0.1. Sample size was 1000 (500 cells per group). P: true DE genes, N: true 

non-DE genes.  

Figure S7. Precision recall curves for selected methods on simulated data set based on memory 

T cells from Zheng et al. with fold change 3. The starting average count of DE genes from the 

reference group was 0.05. Sample size was 1000 (500 cells per group). P: true DE genes, N: true 

non-DE genes.  

Figure S8. Precision recall curves for selected methods on simulated data set based on dendritic 

(CD11c+) cells from mouse spleen from Jaitin et al. with fold change 1.8. The starting average 

count of DE genes from the reference group was 0.4. Sample size was 300 (150 cells per group). 

P: true DE genes, N: true non-DE genes.  

Figure S9. Precision recall curves for selected methods on simulated data set based on YFP 

positive cells from plate I5d from Grun et al. with fold change 4. The starting average count of 

DE genes from the reference group was 0.8. Sample size was 60 (30 cells per group). P: true DE 

genes, N: true non-DE genes.  

Figure S10.  Density plots of the expression patterns of selected DE genes in memory and naïve 

T cells. Two density plots are shown for each gene, with the left one showing the global density 

plot and the right one showing the zoomed-in density in the nonzero TPM regions. The 1st 

column shows known DE genes between the two cell types. LGALS1 was detected as a DE gene 

by NBID, MAST and ROTS. IFNG is detected as a DE gene by NBID and MAST. CXCR5 is 

detected as a DE gene by NBID only, TOX is not detected as a DE gene by any of the above 



three methods. The y-axis is the TPM / 100 plus 1 and then converted to log10 scale. The 2nd and 

3rd column show DE genes detected only by NBID in 8 different FDR percentile ranges and 

TPM > 50 in at least one population. 

Figure S11. Precision recall curve for selected methods after adjusting batch variables on 

simulated data sets based on the SCRB-Seq replicates. P: true DE genes, N: true non-DE genes. 

Figure S12. A hypothetical model illustrating the generation of UMI counts and read counts. 

The counts in the figure are hypothetical and illustrate the effects of each processing step. 

 

 



CEL−Seq2/C1(A)
26.2%

73.8%

CEL−Seq2/C1(B)

31.1%

68.9%

Drop−Seq(A)

40%

60%

Drop−Seq(B)

39.4%

60.6%

MARS−Seq(A)

55.6%

44.4%

MARS−Seq(B)

60.6%

39.4%

SCRB−Seq(A)
9.4%

90.6%

SCRB−Seq(B)

16%

84%

CEL−Seq2/C1(A)

34.5%

59.8%

5.8%

CEL−Seq2/C1(B)

9.7%

85.9%

4.4%

Drop−Seq(A)
1.1%

89.8%

9.1%

Drop−Seq(B)

1%

89.8%

9.2%

MARS−Seq(A)

9.4%

88.1%

2.6%

MARS−Seq(B)

14%

83.7%

2.4%

SCRB−Seq(A)

91.2%

8.8%

SCRB−Seq(B)

90.6%

9.4%

Smart−Seq2(A)

52.4%

38.4%

9.3%

Smart−Seq2(B)

42.6%

47.8%

9.6%

Smart−Seq/C1(A)

0.1%

94.4%

5.4%

Smart−Seq/C1(B)

91.8%

8.2%

re
ad

 c
ou

nt
s

U
M

I 
co

un
ts

a

b

1

2

3

4

5

Figure S1. Results of model comparison using both UMI and read counts. The circle graphs show the proportion of 
genes with the selected models for six different protocols using hypothesis testing. A significant portion of genes 
favored the simple Poisson model when UMI counts were used (a), but the portion favoring the Poisson model sharply 
dropped when the read counts were used (b). Also the zero-inflated negative binomial (ZINB) model was non-
negligible for six of the twelve read count-based datasets.



Figure S2. Two clusters in Rh41 cells. The top bar indicates the cluster membership. The lower 
panel shows the color coded dissimilarity matrix among cells within and between clusters.



Figure S3. Goodness of fit using the negative binomial distribution for memory T cells (Tm). a, c, e are the 
empirical and theoretical probability mass functions (pmf). b, c, f are the empirical and theoretical cumulative 
distribution functions (cdf). Three genes of different significance levels are shown in each row.
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Figure S4. Goodness of fit using the negative binomial distribution for mouse Rh41 combined cells. a, c, e are 
the empirical and theoretical probability mass functions (pmf). b, c, f are the empirical and theoretical 
cumulative distribution functions (cdf). Three genes of different significance levels are shown in each row.
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Figure S5. Precision recall curves for selected methods on simulated data set based on memory T cells from Zheng 
et al. [8] with fold change 1.7. The starting average count of DE genes from the reference group was 0.2. Sample 
size was 1000 (500 cells per group). P: true DE genes, N: true non-DE genes.
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Figure S6. Precision recall curves for selected methods on simulated data set based on memory T cells from Zheng 
et al. [8] with fold change 2. The starting average count of DE genes from the reference group was 0.1. Sample size 
was 1000 (500 cells per group). P: true DE genes, N: true non-DE genes.
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Figure S7. Precision recall curves for selected methods on simulated data set based on memory T cells from Zheng et 
al. [8] with fold change 3. The starting average count of DE genes from the reference group was 0.05. Sample size 
was 1000 (500 cells per group). P: true DE genes, N: true non-DE genes.
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Figure S8. Precision recall curves for selected methods on simulated data set based on dendritic (CD11c+) 
cells from mouse spleen from Jaitin et al. [21] with fold change 1.8. The starting average count of DE genes 
from the reference group was 0.4. Sample size was 300 (150 cells per group). P: true DE genes, N: true non-
DE genes.
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Figure S9. Precision recall curves for selected methods on simulated data set based on YFP positive cells from plate 
I5d from Grun et al. [20] with fold change 4. The starting average count of DE genes from the reference group was 
0.8. Sample size was 60 (30 cells per group). P: true DE genes, N: true non-DE genes.
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Figure S10.  Density plots of the expression patterns of selected DE genes in memory and naïve T cells. Two density plots are shown for each gene, with the left one showing 
the global density plot and the right one showing the zoomed-in density in the nonzero TPM regions. The 1st column shows known DE genes between the two cell types. 
LGALS1 was detected as a DE gene by NBID, MAST and ROTS. IFNG is detected as a DE gene by NBID and MAST. CXCR5 is detected as a DE gene by NBID only, 
TOX is not detected as a DE gene by any of the above three methods. The y-axis is the TPM / 100 plus 1 and then converted to log10 scale. The 2nd and 3rd column show 
DE genes detected only by NBID in 8 different FDR percentile ranges and TPM > 50 in at least one population.
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Figure S11. Precision recall curve for selected methods after adjusting batch variables on simulated data sets 
based on the SCRB-Seq replicates. P: true DE genes, N: true non-DE genes.



Reverse Transcription
(low efficiency ~10%)

amplification

# of cDNA molecules 
(UMI count)

read count

# of mRNA molecules in 
a hypothetical cell 

sequencing

# of molecules after 
amplification

0

10

0

10

1

10

1

10

2

10

zero component nonzero component from 1 nonzero component from 2

0 0 4 5 20

0 0 35 50 220

Figure S12. A model illustrating the generation of UMI counts and read counts. The counts in the figure are hypothetical 

for illustrating the effects of each processing step.


