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The Supporting Information (SI) for this article consists of six sections. In section 1, we
provide technical details of the method for estimating narrow-sense SNP heritability from
polygenic scores. In section 2, we discuss the details of GIV regression and why it provides
more accurate estimates than OLS or MR for the case where measured SNPs have direct
pleiotropic effects on the exposure and the outcome. In section 3, we discuss estimating
the effects of an exposure in the presence of pleiotropy combined with other sources of
endogeneity that are related to the observed genotypes (e.g. unobserved genetic variants,
epistasis, genetic nurturing). Section 4 extends the possible sources of endogeneity further
to cases that are unrelated to genetics (e.g. purely environmental unobserved confounds).

For each of these sections, we provide evidence from detailed simulations under a vary-
ing set of assumptions that cover a range of empirically-likely situations. Each of these
simulations is generated at the level of individual SNPs. The SNP level simulations are
used to generate data for the exposure and outcome variable in both the simulated GWAS
samples and the replication sample and the simulated data are then used to estimate the
parameters of interest using alternative methods.

Section 5 describes the data and methods used for our empirical examples, and we
provide additional information about the empirical examples described in the article. The
last section of the SI provides some practical guidelines for the usage of GIV regression.

1 Estimating narrow-sense SNP heritability from polygenic
scores.

1.1 Technical details.

We begin by showing that consistent estimates of the chip heritability of a trait (i.e. the
proportion of variance in a trait that is due to linear effects of currently measurable SNPs)
can be obtained from polygenic scores. If y is the outcome variable, X is a vector of control
variables including a constant, and S∗y|X is a summary measure of genetic tendency for y in
the presence of controls for X, then one can write

y = Xβ + γS∗y|X + ε (1)

where, for example, y is educational attainment. Typical variables in X would be age, gen-
der, and the first twenty principal components in the genetic data as controls for population
structure. If the heritability of y is caused by a large number of genetic loci, each with a
very small effect [1], we call y a “genetically complex trait.” In this situation, the genetic
liability for y cannot be adequately represented by just one gene. Rather, it is preferable to
approximate the genetic liability S∗y|X with a polygenic score (PGS). The weights of each
SNP that are summed up in the PGS are obtained from a GWAS on y in an independent
sample [2, 3]. In a GWAS, y is regressed on each SNP separately, typically including a set
of control variables such age, sex, and the first few principal components of the genetic data
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to control for population structure [4]. Thus, the obtained estimates for each SNP do not
account for correlation between SNPs (a.k.a. linkage disequilibrium – LD), which may bias
the PGS. In practice, several solutions are available to deal with this challenge, including
pruning SNPs for LD prior to constructing the score [5] or using a method that explicitly
takes the LD structure between SNPs into account (e.g. LDpred, see [6]). The scores
themselves (Sy|X) are linear combination of the elements in G weighted by the estimated
coefficients, ζ̂y|X obtained from

y = Xβ +Gζ̂y|X + ε (2)

where G is an n×m matrix of genetic markers, and ζ̂y|X is the m×1 vector of LD-adjusted
estimated effect sizes, where the number of SNPs (the size of m in equation 2) is typically
in the millions. If the true effects of each SNP on the outcome were known, the true genetic
tendency S∗y|X would be expressed by the PGS for y, and the marginal R2 of S∗y|X in equation
1 would be the chip heritability of the trait. In practice, GWAS results are obtained from
finite sample sizes that only yield noisy estimates of the true effects of each SNP. Thus, a
PGS constructed from GWAS results typically captures far less of the variation in y than
suggested by the chip heritability of the trait ([2]; [7]; [8]). We refer to the estimate of the
PGS from available GWAS data as Sy|X , and substitute Sy|X for S∗y|X in equation 1. The
variance of a trait that is captured by its available PGS increases with the available GWAS
sample size to estimate ζ and converges to the true narrow-sense heritability of the trait
at the limit if all relevant genetic markers were included in the GWAS and if the GWAS
sample size were sufficiently large [8].

As reported in [2] and [9], the explained variance in a regression of a phenotype on its
PGS can be expressed as

R2
y,Sy

=
(n/m)h4

(n/m)h2 + 1
(3)

where y is standardized, σ2g is the genetic variance of y (i.e., the proportion of the variance
in y explained by G), n is the sample size, and m is the number of genetic markers. For
example, a PGS for EA based on a GWAS sample of 100,000 individuals would be
expected to explain about 4% of the variance of EA in a hold-out sample (assuming there
are 70,000 effective loci, all of them included in the GWAS, and a chip heritability of 20%
[9]), even though the estimated total heritability of EA in family studies is roughly 40%
[10].

It has long been understood that multiple indicators can, under certain conditions,
provide a strategy to correct regression estimates for attenuation from measurement error
([11]; [12]). Instrumental variables (IV) regression using estimation strategies such as two
stage least squares (2SLS) and limited information maximum likelihood (LIML) will provide
a consistent estimate for the regression coefficient of a variable that is measured with error
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if certain assumptions are satisfied ([13]; [14]): (1) The IV is correlated with the problem
regressor, and (2) conditional on the variables included in the regression, the IV does not
directly cause the outcome variable, and it is not correlated with any of the unobserved
variables that cause the outcome variable [13]. In general, these assumptions are difficult to
satisfy. In the present case, however, GWAS summary statistics can be used in a way that
comes close enough to meeting these conditions to measurably improve results obtainable
from standard OLS regression and from standard Mendelian Randomization (MR) [15].

Multiple indicators of the PGS provide a theoretical solution to the problem of attenua-
tion bias, and, we argue, a practical solution as well. The most straightforward solution to
the problem is to split the GWAS discovery sample for y into two mutually exclusive sub-
samples. This produces noisier estimates of S∗y|X , with lower predictive accuracy. However,
it also produces an IV for Sy|X that has desirable properties. Formally, we let ζ̂y1|X be the
estimated coefficient vector for ζy|X in equation 2 from the first training sample, and ζ̂y2|X
be the coefficient vector estimated from the second training sample. It follows then that

ζ̂y1j|X = ζyj|X + uy1j|X

ζ̂y2j|X = ζyj|X + uy2j|X

for the j-th genetic marker, where uy1|X and uy2|X are asymptotically normally distributed
errors with E(uy1j|X) = E(uy2j|X) = 0 and V (uy1j|X) = V (uy2j|X) = σ2εn

−1/var(xj), and
where xj is the observed number of reference alleles for location j. In practice, the SNPs
in ζ̂y1|X and ζ̂y2|X do not need to be exactly identical. Our derivations and results hold
if the SNPs in both scores capture a sufficiently large amount of the SNP heritability of
y, even if they are not the same SNPs. This is feasible because SNPs that are close to
each on the same chromosome are often correlated with each other (a phenomenon referred
to as linkage disequilibrium or LD), but the coefficient vectors ζ̂y1|X and ζ̂y2|X typically
come from GWAS analyses that regress the outcome on one SNP at a time, ignoring the
correlation structure between SNPs. Thus, neighboring SNPs that are correlated typically
carry similar information about their contribution to y via ζ̂y1|X and ζ̂y2|X and can therefore
we substituted with each other in the construction of the PGS.
Because the two discovery samples are non-overlapping, uy1|X and uy2|X would be indepen-
dent of each other if the PGS model is correctly specified (we return to this point below).
By applying the two vectors of estimated coefficients, we obtain two PGS,

Sy1|X = S∗y|X + v1 = Gζy|X +Guy1|X = S∗y|X +Guy1|X (4)
Sy2|X = S∗y|X + v2 = Gζy|X +Guy2|X = S∗y|X +Guy2|X

whereG is the matrix of genetic markers for the analytical sample. We then rewrite equation
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1 in terms of the observed first PGS as

y = Xβ + γS∗y|X + ε (5)

= Xβ + γ
(
Sy1|X −Guy1|X

)
+ ε

= Xβ + γSy1|X +
(
ε−Guy1|X

)
As can be seen from equation 5, the PGS Sy1|X is correlated with the error term via its

correlation with Guy1|X from equation 4. However, under the assumptions that equation
(2) accurately describes the relationship between G and y and that the genetic architecture
of the trait is identical across GWAS and prediction samples, then Sy2|X would meet the two
requirements to be a valid instrument for Sy1|X , if it is correlated with Sy1|X (through their
mutual dependence on S∗y|X) and if it is uncorrelated with the disturbance term. Clearly,
the first requirement is met. Also, clearly S∗y|X (= Gζy|X ) is not correlated with Guy1|X .
The remaining question, then is whether Guy2|X is correlated with Guy1|X . The covariance
of Guy1|X and Guy2|X is

Cov(Guy1|X , Guy2|X) = E([Guy1|X ][Guy2|X ])− (E([Guy1|X ])(E[Guy2|X ])

= E([Guy1|X ][Guy2|X ])

This follows because each term of Guy1|X has the form gjuj and the expectation of each of
these terms is zero by virtue of the properties of OLS regression, namely that the residual
has mean zero and is orthogonal to the regressors. Now,

E([Guy1|X ][Guy2|X ]) = E


m∑
j=1

g2juy1j|Xuy2j|X +
m∑
j=1

m∑
k 6=j

gjgkuy1j|Xuy2k|X

 (6)

=
m∑
j=1

E(g2j )E(uy1j|Xuy2j|X) +
m∑
j=1

m∑
k 6=j

E(gjgk)E(uy1j|Xuy2k|X)

=

m∑
j=1

E(g2j )E(uy1j|X)E(uy2j|X) +

m∑
j=1

m∑
k 6=j

E(gjgk)E(uy1j|X)E(uy2k|X)

= 0

where the third row follows because the coefficient errors for any given genetic marker from
one sample will be independent of their value in a second independent sample. Now IV
regression will be valid if the IV Sy2|X is uncorrelated with the error term in equation 5,
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i.e., if

plim
1

n

∑
i

(Sy2|X)i(εi − (Guy1|X)i) = plim
1

n

∑
i

(S∗y|X +Guy2|X)i(εi − (Guy1|X)i)

= plim
1

n

∑
i

[
(S∗y|X)iεi + (S∗y|X)i(Guy1|X)i + (Guy2|X)iεi + (Guy1|X)i(Guy2|X)i

]
= plim

1

n

∑
i

(Guy1|X)i(Guy2|X)i =

=0 (7)

A complexity in the present situation is that the condition in equation 7 does not auto-
matically follow from equation 6, because the correlation in the sample is computed on the
given coefficient errors that were generated via the regressions in the two GWAS samples.
This is readily appreciated if the number of markers was very small. If this number m
equalled one, for example, then clearly the sample average of the square of each person’s
genetic marker multiplied by two given coefficient errors would not be zero even though
the coefficient errors themselves were independent random draws from a distribution with
mean zero.

However, as we show through SNP-level simulations below, this condition will generally
hold for genetically complex traits that have been investigated in large-scale GWAS. In
particular, assuming that all measured SNPs are causal and independent and their effect
sizes are drawn from a normal distribution, we find that even when the GWAS sample is
smaller than is the number of SNPs, IV estimation with Sy2|X as the instrument for Sy1|X
does a very good job of recovering the true coefficient for S∗y across a range of scenarios.
In practice, SNPs are not independent because of linkage disequilibrium. However, there
are more than 1,000,000 approximately independent loci (i.e. groups of SNPs that vary
together) in 1000 Genomes imputed data that might potentially affect traits [16]. And
even after stringent quality control and filtering of GWAS summary statistics, typically
at least 200,000 LD-independent loci remain [17]. If only independent loci are used in
the construction of the PGS, it is reasonable to assume that the independence assumption
holds so long as the polygenic score is not dominated by a relatively small number of loci.
If we then assume that genetic effects on y stem from both correlated and uncorrelated
markers, the situation becomes only slightly more complicated. As mentioned above, the
practical challenge is that the coefficient vector ζy|X typically comes from GWAS analyses
that regress the outcome on one SNP at a time, ignoring the correlation structure between
SNPs. The statistical dependence among SNPs in the construction of PGS is then dealt
with in one of various ways. One obviously suboptimal solution is to ignore LD structure
entirely and to construct the PGS using all available SNPs and their univariate coefficients.
In practice, this naive solution often performs relatively well, although not as good as more
sophisticated approaches. A second solution is to use LD-pruning. In this approach, only
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the most strongly associated SNP in each independent locus is used to construct the score,
and the score consists of tens or even hundreds of thousands of approximately independent
SNPs[18]. Finally, there are algorithm such as LDpred [6] that infer the LD-corrected,
multivariate coefficients of each SNP from the original GWAS results taking all SNPs and
their actual correlation structure into account. LDpred is the current best practice solution
to construct PGS because it yields slightly better predictive performance than ignoring
LD-structure or LD-pruning.

Our formal derivations until now assumed that the true coefficients of the genetic mark-
ers inG do not vary in the population. More generally, we might assume that the population
consists of a finite number of (possibly latent) groups, k = 1, ...,K with the kth group hav-
ing the polygenic score S∗yk|X . Absent information about the specific number of groups
and the group memberships of individuals in any specific population, the polygenic score
that would be estimated from a sufficiently large sample from that population would be a
weighted average of the scores for each group, with the weights dependent on the proportion
each group is of the total population [13]. Any population P therefore can be characterized
in terms of its group composition, p1, p2, ..., pK . The above results apply straightforwardly
when the PGS are estimated and analyzed using samples from a single group. When they
are instead estimated on a population that is a mixture of groups, the situation is more
complicated. The true PGS for any individual who is in group k can be expressed as

S∗yk|X = S̄∗yP |X + ∆yk|X

where P = {p1, p2, ..., pK} is the group composition that defines population P and ∆yk|X
is the deviation between the group k specific PGS for trait y and the population average
(for population P ). Under this elaboration, equation 5 can be written as

yik = Xiβ + γS∗yik|X + εi

= Xiβ + γ
(
S̄∗yiP |X + ∆yik|X

)
+ εi

= Xiβ + γS̄y1iP |X +
(
εi + γ∆yik|X − γv1i

)
where S∗yik|X is the true PGS for trait y for individual i in group k, and where S̄y1iP |X is
the first polygenic score estimated using coefficients from the GWAS sample drawn from
population P . Variation in true PGS by group creates the possibility that the exclusion
restriction will be violated. If S̄y2P |X is the IV, then S̄y2P |X is correlated with ∆yk|X to
the extent that the true PGS differ by group and to the extent that the weighted average
deviation of the true PGS estimated from each individual’s group and the true PGS
estimated from the other groups correlates with the PGS for the population P . If the two
PGS scores were estimated on one “pure” group and the analysis sample was for a second
“pure” group, then the deviation between the two PGS would of course correlate with the
PGS for one of the groups, and the exclusion restriction would be violated unless the SNP
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coefficients of the PGS for the one group were the same as the beta coefficients of the
PGS for the other group. If the analysis sample and the GWAS samples are drawn from
the same population (i.e., the same mixture of groups), we would expect the correlation
between the deviations for analysis sample members (drawn from each of the groups in
the same proportion as the GWAS sample) and the true PGS for the GWAS sample to be
very small. If the population consists only of a single group or, equivalently, if all groups
have the same SNP coefficients in their PGS for trait y, then the issue of group-specific
heterogeneity in PGS disappears.1

When PGS for y are used that were constructed with a different set of control variables
than are used in the regression, the above results need to be modified. Let us assume that
variables χ were controlled in the GWAS and variables X are controlled in the regression
model. Then

y = Xβ + γS∗y|χ + {S∗y|X − S
∗
y|χ + ε}

= Xβ + γS∗y|χ + {GdyXχ + ε}

where dyXχ is the vector of differences in the effects of genetic markers on y when X is
controlled and when χ is controlled. If a finite sample PGS of y is constructed using χ as
controls, i.e., Sy1|χ, and this finite sample PGS is used in place of Sy1|X as a proxy for S∗y|X
in model 1, one obtains

y = Xβ + γSy1|χ +
(
GdyXχ −Guy1|χ + ε

)
where

Sy1|χ = S∗y|χ +GdyXχ +Guy1|χ

The problem now is that using Sy2|χ as an IV would violate the exclusion restriction to
the extent that dyXχ differs from zero, because GdyXχ is both in Sy2|χ and in the error, and
because S∗y|χ would generally be correlated with GdyXχ. The extent of bias would depend
on the extent to which the effects of the genetic markers on y differ when X and when χ
are controlled.

Once a consistent estimate for γ̂ has been obtained, it is possible to derive an estimate
of the narrow-sense SNP (or chip) heritability of y. In a univariate linear regression model
with standardized variables, the squared regression coefficient is equal to R2. This follows
directly from the definition of R2 as the variance of y explained by X as a fraction of total
variance of y. Thus, γ2 in 1 can be thought of as the narrow-sense chip heritability of y
if both y and S∗y|X are standardized variables with mean zero and a standard deviation of
one (assuming the controls included in X are not correlated with genotype G). In practice,

1This issue is similar to the attenuation of predictive accuracy of a PGS that results from an imperfect
genetic correlation between the GWAS summary statistics in the hold-out sample and the GWAS summary
statistics in the discovery sample [19].
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however, the estimate γ̂2 originates from a regression on a PGS that contain measurement
error (Sy1|X or Sy2|X) rather than on the true PGS S∗y|X . In particular, the obtained

regression coefficient γ̂2 will be standardized using the variance of Sy1|X or Sy2|X instead of
the variance of S∗y|X . It turns out that this implies that the heritability estimate γ̂2 is biased
by a factor equal to var(Sy|X)/var(S∗y|X), which simplifies to 1/var(S∗y|X) if the observed
score was standardized.2 However, it is possible to derive a simple error correction because
one can estimate the variance of S∗y|X by estimating the covariance of Sy1|X and Sy2|X :

cov(Sy1|X , Sy2|X) = cov(S∗y|X + ey1, S
∗
y|X + ey2) = ρ(Sy1|X , Sy2|X) = var(S∗y|X).

With an estimate of var(S∗y|X) at hand, we can back out an unbiased heritability estimate:

h2y = γ̂2var(S∗y|X)/var(y).

When y is standardized, var(y) = 1, the error correction simplifies to

h2y = γ̂2ρ(Sy1|X , Sy2|X).

An estimate of the standard error of h2y can be obtained using the Delta method [20].3

1.2 Simulations

Our first set of simulations are based on the following model for y:

y = γ1 + γ2S
∗(y) + ε

We generate S∗ using varying numbers of independently drawn genetic markers from 1,000
to 300,000 – up to the memory limits of our processor nodes (512 GB) – with a minor
allele frequency of 0.5 and coefficients for these genetic markers.4 The constant γ1 is set
to zero and the coefficients for the genetic markers are drawn from a normal distribution.
We also draw ε from a normal distribution. The variance of the distributions for ε and
the coefficients of the genetic markers are set such that the heritability is correct and the
variance of y is equal to 1 (i.e. y is standardized). We use this data generating process to
produce two independent samples, which together constitute the GWAS sample. We specify
varying sizes of the total GWAS sample from 50,000 to 500,000 observations. We generate
these data under three different assumptions about the SNP heritability of y, namely that
h2 is alternately set to 0.1, 0.3, and 0.5. We then use the two independent GWAS samples
to estimate the effect of each marker twice, using bivariate regressions of y on each of the

2We thank Elliot Tucker-Drob for pointing this out to us.
3See [21] for an alternative correction method.
4Assuming a MAF of 0.5 for all markers is unlikely to affect our results beyond statistical power.
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individual markers. In a third independent sample (N = 10, 000) we construct the PGS for
y, which we designate as S(y1) and S(y2), using the two GWAS estimates.

We then estimate the effect γ̂2 of the PGS for y on y. We do this using an IV regression
with S(y2) as the IV for S(y1). In other words, we use OLS to estimate the second stage
model

y = γ1 + γ2Ŝ(y1) + ε

where the predicted value of S(y1) is obtained via estimates from a first stage regression of
S(y1) on S(y2), i.e.,

Ŝ(y1) = β̂1 + β̂2S(y2).

The standardized coefficient estimate γ̂2 from the second stage regression is used to obtain
an estimate for h2 via the equation

ĥ2 = γ̂2
2(corr(S(y1)S(y2))).

Table 1 shows the results of these simulations where we do 20 simulations for each
condition and report average results in the table. Panel (a) presents simulations where the
SNP heritability is set to 0.1. As can be seen in panel (a), the estimated heritability is
very close to the true heritability so long as the GWAS sample size is as large or larger
than the number of SNPs that are included in the computation of the PGS. Also, for all
simulations where the GWAS sample exceeds the number of SNPs, the standard errors are
small relative to the estimate. In panel (b), we simulate using a heritability of 0.3 and we
obtain an accurate estimate with a relatively small standard error when the GWAS sample
is as large or larger than the number of SNPs. The same result is obtained when the data
are generated with a heritability of 0.5. Generally speaking, we observe that the sample
size needed for an accurate estimate of heritability has an inverse relationship with the
size of the heritability. Thus, 50,000 cases is not sufficient to estimate heritability precisely
when the true SNP heritability is 0.1 and the number of SNPs is 100,000, and 100,000
cases produces an accurate estimate but a fairly large standard error. The precision of
the estimates increases considerably for both of these cases, however, when the true SNP
heritability is 0.3, and even 50,000 cases is sufficient to produce a precise and accurate
estimate of heritability when the true SNP heritability is 0.5 and the number of SNPs is
100,000 or fewer. As mentioned above, most practical applications will be based on more
than 100,000 independent SNPs, although many of them may actually have a true effect
of zero. Hence, the remaining causal loci for y will tend to have slightly larger true effects
than we simulated here under the assumption that all SNPs are causal. Slightly larger
SNP effects imply better statistical power in GWAS analyses and a more favorable ratio
of estimated effect sizes to their standard errors. Thus, our simulation results are likely to
be conservative lower bounds for the accuracy that our method can achieve for estimating
heritability in real data.
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Table 1: Estimating the SNP heritability of y
Number of
SNPs

Total GWAS sample size
50,000 100,000 300,000 500,000

h2 = 0.1 1000 0.1002 0.1008 0.0999 0.1016
(0.00725) (0.00666) (0.00621) (0.00618)

10000 0.1039 0.0969 0.0988 0.0995
(0.0165) (0.0112) (0.0080) (0.0073)

100000 0.1247 0.0964 0.0972 x
(0.1343) (0.0475) (0.0215)

300000 0.1822 0.09197∗ x x
(8.3243) (0.1512)

h2 = 0.3 1000 0.2937 0.2968 0.2961 0.2952
(0.0100) (0.0095) (0.0093) (0.0092)

10000 0.2999 0.3016 0.2976 0.2982
(0.0175) (0.0134) (0.0106) (0.0100)

100000 0.2873 0.3087 0.2999 x
(0.0889) (0.0522) (0.0232)

300000 0.2811 0.3558 x x
(0.2586) (0.1713)

h2 = 0.5 1000 0.4969 0.4951 0.5001 0.5103
(0.0108) (0.0103) (0.0101) (0.0102)

10000 0.5039 0.4991 0.5008 0.4974
(0.0181) (0.0140) (0.0114) (0.0107)

100000 0.5167 0.5110 0.5024 x
(0.0988) (0.0519) (0.0234)

300000 0.6080 0.5460 x x
(0.4702) (0.1536)

Mean of heritability estimates of twenty simulations for several GWAS sample
sizes, varying the number of SNPs and the heritability (h2) of y. Standard errors
(in parentheses) are calculated via the delta method. The size of the replication
sample is 10,000.
* Mean of nineteen simulations, due to one extreme outlier.
x Unable to simulate due to memory constraints on the high memory nodes of the
high performance computer.

2 Reducing bias due to direct pleiotropic effects on exposure
and outcome

We next address situations where the question of interest is not the SNP heritability of y
per se, but rather the influence of some non-randomized exposure T on y (e.g. a behav-
ioral or environmental variable, or a non-randomized treatment due to policy or medical
interventions). We rewrite equation 1 such that
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y = δT +Xβy + γS∗y|XT + εy (8)

= δT +Xβy +Gζy|XT + εy

where

T = αS∗T |X +XβT + εT (9)

= GξT |X +XβT + εT

where, for example, y could be educational attainment and T could be body height and
where we assume that the disturbance term is uncorrelated with genetic variables. We drop
the subscript on the coefficients on the exogenous control variables X below when it would
not lead to confusion. In each case, it is presumed that the outcome variable is to some
extent caused by genetic factors, and the concern is that the genetic propensity for the
outcome variable is also correlated with the treatment represented by T in equation (8).
We now use S∗y|XT rather than S∗y|X in the equation, where S∗y|XT is the linear combination
of the effects of SNPs on y when T is controlled. Given that T is in the model, the effect
of individual SNPs on y will generally involve a direct effect net of T (ζ) and an indirect
effect stemming from the combination of their effect on T (ξ) and the effect of T on y.

Adding the true conditional score (S∗T |X) as a control variable to a regression of Y on
T would eliminate bias arising from direct pleiotropy. Pleiotropy leads to omitted variable
bias from the failure to control for the (possibly tens of thousands of) individual SNPs
in the structural model that influence both Y and T directly. So imagine a model that
contained tens of thousands of variables for the SNPs and a sample large enough and
computers capable enough of estimating the coefficients of this model using OLS. Aside
from the enormous number of regressors, this is a standard regression problem. Under
standard conditions and if uncontrolled pleiotropy is the only source of bias, then the the
coefficients of the SNPs converge in probability to the true coefficients while the coefficient
on T converges in probability to its true value. In other words, the sum of the SNPs
multiplied by their coefficients converges in probability to the true conditional PGS S∗y|XT .
Thus, controlling for tens of thousands of SNP variables in the structural model becomes
closer and closer to controlling for the true conditional PGS in sufficiently large samples.
Of course, in sample sizes that are currently available or that might be available in the
foreseeable future, we are very far from being able to use direct controls for the individual
SNPs in order to address the pleiotropy problem. However, proxies for S∗y|XT are already
available.

If the true S∗y|XT is not observed and cannot be explicitly controlled in equation 8, it
is part of the disturbance term. If so-called Type 1 pleiotropy is present [15], then T itself
is a function of the same genetic markers that have other effects on y that do not operate
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through T , and the coefficients of these markers on T (ξ), which represent the indirect
effects of the markers on y that operate through T , are correlated with the direct effects of
the markers on y (ζ) when T is controlled in equation 8. Because of the correlation between
T and S∗y|XT (which along with εy is in the disturbance term in equation 8), δ̂ will be a
biased estimate of the effects of T.

While the true S∗y|XT is unknown, we may be able to obtain a proxy Sy|XT for it from
GWAS in finite sample sizes. While it is not guaranteed, the general conclusion of the
literature is that the use of proxy variables such as Sy|XT is an improvement over omitting
the variable being proxied [22, 23]. However, if the proxy is measured with error, some
bias will remain. More specifically, if Sy|XT is used instead of S∗y|XT in equation 8, we get

Sy|XT = S∗y|XT +Guy|XT = S∗y|XT + v

which yields
y = δT +Xβ + γSy|XT + (εy − γv) (10)

The problem now is that Sy|XT is constructed from a large number of regressions of one
genetic marker at a time along with the control variable T. The presence of T in the
GWAS regressions for y produces estimated coefficients for the markers, G, that are
functions of T . The error in the conditional PGS for y is a function of the coefficient
estimates for the individual genetic markers and therefore is correlated with T . The
estimation error plus pleiotropy produces a correlation between T and v, which still
induces bias in OLS estimates of δ. Thus, while the use of a proxy control such as Sy|XT
will generally reduce bias in the estimated effect of δ, some bias will remain as long as
Sy|XT is measured with error.

Because of its relevance later on, we also note that the problem cannot be solved by
constructing a PGS for y that is unconditional on T , i.e., Sy|X . The use of Sy|X instead of
Sy|XT produces an over-control, where an estimate of the total effect of each genetic
marker is controlled instead of just the direct effect. This over-control would produce a
severe downward bias in the estimate of δ. To see this, imagine that there are only two
genetic markers, g1 and g2, where

T = ξ1g1 + ξ2g2 + eT

and therefore, where

y = δ(ξ1g1 + ξ2g2 + eT ) + ζ1g1 + ζ2g2 + ey (11)
= (δξ1 + ζ1)g1 + (δξ + ζ2)g2 + δeT + ey

= (0S∗T + δeT ) + γS∗y + ey
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Note that the effects δξ + ζk represent the total effect of gk on y and provide the reduced
form for the structural model in equation 8 if T is omitted from the model. As can be
seen in equation 11, a control for the true unconditional PGS for y (S∗y) would be
expected to produce an estimated effect of T that biased towards zero. Substituting the
proxy Sy for S∗y would not eliminate the downward bias entirely.

In standard MR, a measure of genetic tendency (ST |X) for a behavior of interest (T
in equation 8) is used as an IV in an effort to purge δ̂ of bias that arises from correlation
between T and unobservable variables in the disturbance term under the argument that
the genetic tendency variable, e.g., the measured PGS ST |X , is exogenous ([14]; [24]). This
approach would generally be successful if the endogeneity in the error term is from non-
genetic sources and, consequently, if the genetic information in the IV for T is uncorrelated
with the error term. In the absence of pleiotropy and other forms of genetic endogeneity
(e.g., genetic nurturing), MR should be an effective strategy if the IV is strong enough to
provide reasonable precision in the estimator.

However, MR becomes problematic when genetic variables in the error term are affecting
y net of T while at the same time are correlated with the genetic variables in the equation
for T , in other words, when ξ is correlated with ζ in equations 8 and 9. An example of this
situation would be the use of a PGS for height as an instrument for height in a regression
of the effect of height on educational attainment. The second stage regression in MR, then,
takes the form

y = δT̂ +Xβ + {εy + γS∗y|XT + δ(T − T̂ )} (12)

The problem with this approach is that the PGS for height will typically fail to satisfy the
exclusion restriction because of pleiotropy: the genetic variants that predispose individuals
to be tall may also directly increase the predisposition for higher educational attainment
[25, 26] (e.g. via healthy cell growth and metabolism). Because ξ is correlated with ζ, S∗T |X
is correlated with S∗y|XT . This problem is not solved even if we could use the true PGS
S∗T as the IV, because the genetic effects in S∗T are correlated with the genetic effects in
S∗y|XT . Whether the endogeneity bias from pleiotropy is big enough to offset MR’s potential
advantages for addressing the endogeneity from non-genetic sources is an empirical question
that depends on the specific situation. The problems that pleiotropy creates for MR could
be solved if the true genetic propensity for y, net of T could be directly controlled in the
regression.5 Unfortunately, this is not possible because the best we can do is to use Sy|XT
as a proxy for S∗y|XT .

Endogeneity bias that stems purely from non-genetic sources can sometimes be ad-
dressed through the use of non-genetic IVs that are available from randomized clinical
trials (RCTs) or from natural experiments. It can also sometimes be addressed through the

5Note that this approach would not solve problems caused by other sources of genetic endogeneity such
as environmental effects in the error term that were correlated with parental genes, which themselves are
correlated with the genetic information in ST |X .
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use of fixed effects strategies when data on siblings or dizygotic twins is available. It can
also often be reduced by controlling for observable variables that affect both the “assign-
ment” to T and also the outcome variable. However, in the absence of data from RCTs,
endogeneity bias from genetic sources is a difficult problem, and certainly one that MR
does not directly address. We therefore first discuss the cases where all the endogeneity
bias is from genetic sources, whether pleiotropy alone or pleiotropy in combination with
other genetic confounds. We subsequently address the implications of endogeneity bias that
emerge from both genetic and non-genetic sources.

2.1 Reducing bias from pleiotropy.

First, we assume that the only source of endogeneity in equation 8 is pleiotropy, and we
examine the performance of a set of estimators intended to reduce its impact. The first
strategy is to reduce the correlation between the instrument ST in MR and the error by
controlling for a proxy of S∗y|XT , namely Sy1|XT . We refer to the combined use of Sy|XT as
a control and ST |X as an IV as “enhanced Mendelian Randomization” (EMR). Controlling
for Sy|XT as a proxy for S∗y|XT is not fully adequate because the error in Sy|XT (i.e.,
S∗y|XT − Sy|XT ) is correlated with S∗T |X . As noted previously, the use of a proxy control
should improve the quality of the estimate for δ. However, as we show below, the pleiotropy
bias at levels that would be expected to occur for real-world applications creates serious
problems for MR as an effective strategy for obtaining accurate estimates of δ even if Sy|XT
is included as a control variable.

The second set of strategies drop the use of ST as an instrument because it is not a
valid instrument in the presence of pleiotropy and is not of practical utility in this situation
either, as we show below. Instead, we start with the well-known formula for endogeneity
bias for a generic OLS with dependent variable y, included covariates X, and coefficients
of these covariates contained in the vector β, namely

β̂ =
(
X ′X

)−1
X ′y

=
(
X ′X

)−1
X ′ (Xβ + ε)

= β +
(
X ′X

)−1
X ′ε

So
E[β̂|X] = β + E[

(
X ′X

)−1
X ′ε|X] (13)

In other words, the coefficient bias from OLS is the expected regression coefficient
of the error on the included variables in the regression. If ε is the sum of an omitted
variable that we can label as z, which is correlated with the regressors and additional
variables that are uncorrelated with the regressors, then the bias for each coefficient βk in
the vector β in equation 13 becomes the product of the regression coefficient for xk in the
regression of z on all the omitted variables multiplied by the effect of z on the outcome.
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For simplicity, we assume that the only variables in the regression are T and a potential
proxy for S∗y|XT , which we call Sy|XT . For any given proxy, Sy|XT , the bias in the estimate
of δ (the coefficient for T in equation 8) comes from the expected coefficient on T in the
regression of γS∗y|XT − γ̃Sy|XT on T and Sy|XT . We consider three alternatives as proxies
for S∗y|XT . First, we use Sy|XT , i.e. the conditional PGS for y from the full GWAS sample,
in a simple OLS regression.6 Second, we attempt to adjust for measurement error in Sy|XT
by constructing the predicted conditional PGS for y, called Ŝy1|XT ,by using Sy2|X (the
unconditional PGS for y) as an IV for Sy1|XT where GWAS coefficients for Ŝy1|XT and
Sy2|X are obtained from non-overlapping GWAS samples of the same population .We call
this approach, where Ŝy1|XT (the predicted conditional PGS for y) is used as the regressor
in the second stage, “conditional GIV regression” (GIV-C).

We generally expect the use of GIV-C to perform better than the use of the proxy Sy|XT
in simple OLS. Recall that where the true effect of T on y is positive and in the presence of
positive pleiotropy, the estimated effect of T on y will have positive bias. This follows from
the positive correlation between S∗y|XT and T and from the positive effect of S∗y|XT (which
is a component of the error) on y. The presence of the proxy Sy|XT with simple OLS adds
a partially offsetting negative bias, because the correlation between Sy|XT and T is positive
and the effect γ̃OLS is also positive, but γ̂OLSSy1|XT is being subtracted, which causes the
offsetting bias to be negative. The net bias is expected to be smaller with the inclusion of
the proxy than with no proxy at all, but we still expect it to be positive both because the
correlation between T and Sy|XT would be lower than between T and S∗y|XT , and because
we expect γ̂OLS to be attenuated relative to γ.

When GIV-C is used instead of simple OLS, the term in the error becomes

γS∗y|XT − γ̂IV C Ŝy1|XT (14)

The presence of T as a regressor in the first and second stages of GIV-C, which is correlated
with S∗y|XT , prevents the IV strategy from obtaining a consistent estimate of γ. Nonetheless,
we would generally expect γ̂IV c > γ̂OLS , and therefore we expect the positive bias for the
estimate of δ to be smaller when using GIV-C than when estimating δ using simple OLS
with the proxy Sy|XT .

We also employ a third estimator that substitutes the unconditional PGS for y (i.e., sub-
stitutes Sy1|X for the conditional PGS Sy1|XT ) as the proxy control in the structural model
in equation 8. We then use Sy2|X (the same IV as with GIV-C) to predict Sy1|X , obtaining
Ŝy1|X as the regressor in the second stage. We call this third approach “unconditional GIV
regression” (GIV-U). With GIV-U, the problem term in the error is

γS∗y|XT − γ̂IV U Ŝy1|X (15)

6We also estimate versions of this model using only the first half of the GWAS sample to be able to
compare results across methods while holding GWAS sample size constant. We call the resulting score
Sy1|XT and we present both sets of estimates in our simulation results.
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As before, the presence of the first term produces a positive bias in the estimate of δ, while
the second term produces an offsetting negative bias. The offset will be stronger when
Sy1|X is used as the covariate in the structural model than when Sy1|XT is used because the
coefficients of the genetic markers in Sy1|X are δ̂ξ̂ + ζ̂, where ξ is the effect of the genetic
marker on T . The presence of δ̂Gξ̂ in the second term in the error produces a stronger
downward bias. This downward bias is made still stronger by the use of γ̂IV U instead of
γ̂OLS as the coefficient, because we expect the first stage regression to reduce the downward
bias of γ̂OLS .

To summarize, we expect these three proxies to behave differently in the simulations,
and, as we will see, this expectation is met in practice. It turns out to be the case that
GIV-C and GIV-U provide upper and lower bounds for the effect of T across a range of
plausible scenarios for pleiotropy and for heritability.

2.2 Evidence from simulations

To address the utility of these estimators, we conducted a set of simulations. We first
discuss simulations under various assumptions about endogeneity and heritability for the
case where the data generation model includes an effect of T on y. After discussing each
of the relevant scenarios, we will then revisit each of these scenarios and examine the
performance of the alternative estimators using a data generation process in which there is
no effect of T on y.

We simulated data for two independent GWAS samples and for an independent predic-
tion sample. The data generating process for the pleiotropy analysis is as follows:

T = αS∗T + εT , εT ∼ N (0, σ2η)

y = γS∗y|T + δT + εy, εy ∼ N (0, σ2ε )

S∗y|T and S∗T were constructed from the simulation of 10,000 independent genetic markers
and coefficients for these genetic markers. The coefficients for these markers are drawn from
a joint multivariate normal distribution, where the correlation between the zeta’s for S∗y|T
and the xi’s for S∗T (see equations 8 and 9) is varied in order to simulate varying degrees
of pleiotropy (this genetic correlation is labelled as ρ in Tables 2-14). Each simulation is
based on a GWAS combined sample of 100,000 with 10,000 SNPs, a third independent
prediction sample of 10,000 and twenty repetitions. We use these values because they
are large enough to reveal the essential properties of the estimators under the alternative
conditions considered in the tables.

T is standardized and has a mean of 0 and a variance of 1. The variance of the true
polygenic scores (S∗T and S∗y|T ) are simulated to match the heritability of the two traits.
Furthermore, y is standardized when T has no causal effect (δ = 0) and in absence of
pleiotropy. When δ is 1 and in the absence of pleiotropy, the variance of y is equal to 2.
When pleiotropy increases, the scale of the coefficients of the markers is kept constant to
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minimize the parameter changes across simulations and thus the variance of y increases.
See table 16 for a list of parameters with the matching variance and heritability of y, and
the standardized effect size of T . We do not include any X variables in the simulations,
because they are not needed in order to analyze the essential issues.

In these simulations, we vary the amount of genetic correlation as well as the heritability
for both y and T .7 In the tables below, we report average coefficient estimates and standard
errors across 20 repetitions for each model. We also limit the simulations below to the case
of positive pleiotropy. In practice, this corresponds to a state of knowledge where the
analyst either knows the sign of the pleiotropy correlation, or knows that it is weak but is
uncertain whether it is weak positive or weak negative.

Tables 2, 3, 4, and 5 show the results of this set of simulations where we vary both the
extent of heritability (h2) for T and for y and the strength of the genetic correlation (ρ)
between the effects of SNPs on T and their effect on y, net of T (i.e., between ζ and ξ).
Each of these columns has four panels across the columns:

• The first panel reports the OLS estimates of y on T with no additional controls.

• The second panel reports estimates that are based on MR, i.e., that use ST as an
instrument for T . The column labelled MR only includes T as the regressor and uses
ST as the as the IV. Column EMR-1 is a version of enhanced MR that uses ST as
an IV along with a control for Sy1 in an effort to reduce pleiotropy. Column EMR-2
uses Sy1|T as the control and uses two IVs, namely ST and Sy2.

• The third panel, which is labelled “Conditional Proxy PGS”, uses versions of the
conditional PGS for y as a proxy control for S∗y|T . The column labelled as “OLS
S(y|T)” uses the conditional PGS for y from the entire GWAS sample as the proxy
control. The column labelled as “OLS S(y1|T)” uses the conditional PGS for y from
the first half of the split GWAS sample as the proxy control. The column labelled
as GIV-C uses the conditional PGS for y from the first GWAS sample as the proxy
control but it uses Sy2 as the IV. ST is not used as an IV in any of these models.

• The fourth panel, which is labelled “Unconditional Proxy PGS,” uses versions of the
unconditional PGS for y as a proxy control. The first column (OLS S(y)) uses the
unconditional PGS from the full GWAS sample (Sy) as the proxy control. The second
column, which is labelled as “OLS S(y1)” uses the unconditional PGS for y from the
first half of the split GWAS sample (Sy1) as the proxy control. The column labelled
as GIV-U uses the unconditional PGS for y from the first GWAS sample (Sy1) as the
proxy control but it uses Sy2 as its IV. ST is not used as an IV in any of these models.

7There is a logical relationship between the level of heritability for T and y , the strength of the
correlation between the effects of genetic markers on T and on y, the size of the effect of T on y in the
structural model for y, and the error variance in the equations for T and y. These logical relationships
make some combinations of heritability and genetic correlation impossible, but we explore a wide range of
the possible values in the simulations below.
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Each of the tables has six sets of rows. The first three panels down the rows present
simulations where the true effect of T on y is 1.0. These rows show the ability of the
various estimators to recover an accurate estimate of T when T actually has an effect on
y. The second three panels present simulations where T is specified to have no effect on y.
It is worth pointing out that T can be correlated with y (e.g., via a pleiotropic correlation
between ξ and ζ) without it necessarily being the case that T has a causal effect on y. It
could be the case that T and y are correlated (partly) because y is a cause of T . It could
also be the case that T and y are correlated with neither variable causing the other. These
rows show the extent to which an estimator will erroneously report that T affects y when
in reality it has no effect.

Table 2: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.2 for both y and
T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.0405 1.2018 0.8247 1.0522 1.0190 1.0249 1.0081 0.9525 0.9744 0.9100
(0.0001) (0.0010) (0.0017) (0.0011) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.1004 1.5040 1.1240 1.1155 1.0473 1.0617 1.0131 0.9891 1.0150 0.9419
(0.0001) (0.0012) (0.0023) (0.0015) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.1602 1.8058 1.5649 1.1880 1.0764 1.1011 1.0094 1.0275 1.0567 0.9761
(0.0001) (0.0014) (0.0040) (0.0051) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.2 0.0405 0.2018 0.1083 0.0522 0.0190 0.0249 0.0092 0.0139 0.0127 0.0015
(0.0001) (0.0010) (0.0009) (0.0011) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.1004 0.5040 0.2922 0.1155 0.0473 0.0617 0.0180 0.0349 0.0519 0.0016
(0.0001) (0.0012) (0.0012) (0.0015) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.1602 0.8058 0.5956 0.1880 0.0764 0.1011 0.0164 0.0585 0.0857 0.0015
(0.0001) (0.0014) (0.0021) (0.0051) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parenthesis) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

Table 2 shows the results under the conditions of modest heritability for both y and
T , where we vary the genetic correlation (ρ) between ζ and ξ (i.e., between the effect of
SNPs on T and on y, net of T ) between 0.2 and 0.8. As can be seen in the first three row
panels for Table 2, the MR estimate for T is upwardly biased, and the bias gets worse as
the pleiotropy gets stronger. Indeed, MR seriously underperforms simple OLS (i.e., with
no proxy control) in obtaining an accurate estimate for the effect of T on y when T is
specified to have an actual effect. In the presence of positive pleiotropy, OLS of course
overestimates the effect of T ; it attributes the direct effect of SNPs on y to the indirect
effect through T. The amount of over-estimation also, as expected, grows with the size of
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the genetic correlation between the effect of markers on T and their effect on y, net of T .
GIV-C, in contrast, provides highly accurate estimates of the effect of T on y even in the
case of very strong pleiotropy. Interestingly, GIV-U also produces rather accurate estimates
of the effect of T on y, though at a heritability of 0.2, GIV-U underestimates the size of
δ. We note that GIV-C and GIV-U are together providing bounds for the true answer at
these specifications for the simulation. The use of an unconditional or a conditional proxy
in OLS also performs well; it is only slightly less accurate than GIV-C, but sometimes it
underestimates and sometimes it overestimates the true answer.

The bottom panels of Table 2 show the performance of the estimators when T has no
true effect. MR erroneously finds that T has a significant effect on y and the size of this
estimated effect grows with the strength of the pleiotropy. Simple OLS is more accurate,
and both GIV-C and GIV-U are more accurate still. They both estimate a very small effect
of T on y. This makes sense, because if the true effect of T on y is zero, this means that
T should have a very weak relationship in a finite sample with the coefficient errors for
the genetic markers in the unconditional PGS for y (i..e, G(ζ − ζ̂1) = v1 ) hence with the
PGS error that is part of the error term in 10. Similarly, Sy2 will also have a very weak
correlation with v1. Therefore, T and Sy2 are valid instruments for the case where δ =0
and where there is no non-genetic endogeneity, and the GIV-U estimates are very close to
the true answer in this case.

Table 3: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.4 for both y and
T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.0810 1.2002 0.6374 1.0874 1.0425 1.0497 1.0313 0.8563 0.8983 0.7900
(0.0001) (0.0004) (0.0007) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.2011 1.5024 0.9270 1.2086 1.1044 1.1230 1.0604 0.9337 0.9825 0.8575
(0.0001) (0.0004) (0.0009) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.3210 1.8040 1.4201 1.3322 1.1640 1.2016 1.0533 1.0228 1.0773 0.9376
(0.0001) (0.0004) (0.0015) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.2 0.0810 0.2002 0.0738 0.0874 0.0425 0.0497 0.0336 0.0176 0.0288 0.0025
(0.0001) (0.0004) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.2011 0.5024 0.2053 0.2086 0.1044 0.1230 0.0736 0.0447 0.0729 0.0024
(0.0001) (0.0004) (0.0004) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.3210 0.8040 0.4707 0.3322 0.1640 0.2016 0.0800 0.0813 0.1295 0.0018
(0.0001) (0.0004) (0.0007) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

Table 3 has the same layout as Table 2, but in Table 3 the heritability for both T and
for y is increased from 0.2 to 0.4. Higher heritability slightly increases the positive bias of
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GIV-C, and it also increases the negative bias of GIV-U. Even though GIV-C has positive
bias, it is always more accurate than MR and also more accurate than simple OLS. Greater
heritability increases the positive bias of GIV-C when there is no true effect of T , and the
over-prediction is larger when the pleiotropy is stronger. Nevertheless, GIV-C is clearly
more accurate than either simple OLS or MR-based estimators. When the true effect of
T on y is zero, GIV-U provides clear evidence of this fact. As before, GIV-C and GIV-U
are bounding the true answer when it is specified to be 1.0. When the true answer is zero,
GIV-U is very close to the true answer.

Table 4: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.6 for both y and
T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.1213 1.1999 0.5264 1.1249 1.0798 1.0860 1.0713 0.7222 0.7877 0.6244
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.3016 1.5020 0.8074 1.3056 1.1979 1.2134 1.1573 0.8469 0.9255 0.7263
(0.0001) (0.0002) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.8 1.4816 1.8033 1.3247 1.4868 1.3136 1.3470 1.1774 1.0101 1.0985 0.8685
(0.0001) (0.0002) (0.0007) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 0, ρ = 0.2 0.1213 0.1999 0.0562 0.1249 0.0798 0.0860 0.0737 0.0196 0.0331 0.0031
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.3016 0.5020 0.1586 0.3056 0.1979 0.2134 0.1733 0.0511 0.0867 0.0028
(0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.4816 0.8033 0.3896 0.4868 0.3136 0.3470 0.2267 0.1036 0.1701 0.0019
(0.0001) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

Table 4 has the same layout as Tables 2 and 3, but in Table 4, the heritability for both T
and for y is increased to 0.6. Higher heritability slightly increases the positive bias of GIV-C
when T is specified to have an actual effect on y, and it also increases the negative bias
of GIV-U. Even though GIV-C has positive bias, it is always more accurate than MR and
also more accurate than simple OLS. GIV-U continues to under-predict the true answer,
and GIV-C and GIV-U together continue to provide bounds on the correct answer, though
these bounds become gradually wider as we increase the amount of heritability of T and y
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in the simulations. When the true effect of T on y is zero, GIV-U provides clear evidence
of this fact.

Table 5: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.8 for both y and
T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.1613 1.1998 0.4528 1.1629 1.1323 1.1359 1.1283 0.5309 0.6309 0.3819
(0.0001) (0.0002) (0.0002) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.4020 1.5018 0.7269 1.4036 1.3303 1.3389 1.3098 0.7034 0.8323 0.4962
(0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.8 1.6421 1.8030 1.2567 1.6440 1.5292 1.5461 1.4440 0.9822 1.1310 0.7094
(0.0001) (0.0001) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0003)

δ = 0, ρ = 0.2 0.1613 0.1998 0.0454 0.1629 0.1323 0.1359 0.1293 0.0208 0.0357 0.0033
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

δ = 0, ρ = 0.5 0.4020 0.5018 0.1292 0.4036 0.3303 0.3389 0.3179 0.0565 0.0978 0.0028
(0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 0, ρ = 0.8 0.6421 0.8030 0.3323 0.6440 0.5292 0.5461 0.4807 0.1325 0.2188 0.0016
(0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error of twenty simulations for several methods (columns) and different parameters (rows). The effect for T (δ)
is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

Table 5 shows simulations where the heritability of T and y is specified to be 0.8. Higher
heritability further increases the positive bias of GIV-C though it remains more accurate
than simple OLS or MR. Very high heritability also increases the negative bias of GIV-U
and further widens the gap between GIV-C and GIV-U, though they continue to bound the
true answer. When the true effect of T on y is zero, GIV-C is positively biased though not
as much as simple OLS or MR. GIV-U remains very accurate in estimating the true effect
of T on y when this effect is actually zero.

Next we consider in Table 6 the case where T has a high heritability of 0.8 while y
has a low heritability of 0.2 (this is empirically possible because y has other causes than
T and these other causes can be largely non-genetic). The pattern of estimates in Table 6
resembles those of Table 4 where heritability is 0.6 for both T and for y.

Table 7, then shows the case where T has a low heritability of 0.2 while y has a high
heritability of 0.8. In this case, GIV-C and GIV-U are giving more accurate answers, and
GIV-C is giving a much better answer than simple OLS or MR when the true answer is
zero. By comparing Table 6 and Table 7, we see that the size of the upward bias of GIV-C
depends on how strong is the relative heritability of T and y as well as on how strong is
the pleiotropy. But in all of these cases, GIV-C and GIV-U are bracketing the true effect of
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Table 6: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.2 for y and
h2 = 0.8 for T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.0847 1.1033 0.9286 1.0870 1.0795 1.0821 1.0701 0.8836 0.9535 0.6254
(0.0004) (0.0006) (0.0013) (0.0007) (0.0004) (0.0004) (0.0005) (0.0007) (0.0006) (0.0036)

δ = 1, ρ = 0.5 1.2048 1.2541 1.0996 1.2088 1.1940 1.1988 1.1588 0.9961 1.0686 0.7259
(0.0004) (0.0006) (0.0015) (0.0008) (0.0004) (0.0004) (0.0005) (0.0008) (0.0007) (0.0043)

δ = 1, ρ = 0.8 1.3244 1.4042 1.3181 1.3321 1.3145 1.3188 1.2156 1.1385 1.2037 0.8799
(0.0004) (0.0006) (0.0018) (0.0013) (0.0004) (0.0004) (0.0012) (0.0009) (0.0007) (0.0057)

δ = 0, ρ = 0.2 0.0822 0.1012 0.0539 0.0837 0.0715 0.0749 0.0673 0.0301 0.0438 0.0048
(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.2025 0.2521 0.1457 0.2044 0.1777 0.1852 0.1619 0.0801 0.1140 0.0059
(0.0001) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 0, ρ = 0.8 0.3224 0.4025 0.2968 0.3257 0.2923 0.3032 0.2442 0.1656 0.2175 0.0087
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0004)

Mean of estimated effect for T and its standard error(within parenthesis) of twenty simulations for several methods (columns) and different parameters (rows).
The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

Table 7: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.8 for y and
h2 = 0.2 for T

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.2005 1.9798 0.4651 1.2273 1.0562 1.0700 1.0396 0.8675 0.9016 0.8253
(0.0005) (0.0061) (0.0022) (0.0017) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002)

δ = 1, ρ = 0.5 1.5004 3.4922 1.0200 1.5280 1.1304 1.1664 1.0776 0.9427 1.0010 0.8689
(0.0005) (0.0093) (0.0029) (0.0024) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002)

δ = 1, ρ = 0.8 1.8001 5.0029 2.3902 1.8300 1.1725 1.2414 1.0647 1.0432 1.1262 0.9365
(0.0005) (0.0153) (0.0125) (0.0074) (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002)

δ = 0, ρ = 0.2 0.0898 0.4412 0.1173 0.1048 0.0274 0.0353 0.0187 0.0125 0.0220 0.0015
(0.0001) (0.0016) (0.0008) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.2240 1.1174 0.3304 0.2400 0.0648 0.0850 0.0377 0.0310 0.0544 0.0010
(0.0001) (0.0023) (0.0011) (0.0012) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.3579 1.7928 0.8247 0.3782 0.0906 0.1290 0.0335 0.0524 0.0917 0.0000
(0.0001) (0.0035) (0.0036) (0.0034) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary text for details.

T when the true effect is non-zero, and GIV-U gives accurate answers relative to all other
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methods when the true effect is zero.

3 Estimating exposure effects in the presence of both pleiotropy
and genetic-related endogeneity

Pleiotropy, of course, is not the only potential problem that challenges efforts to estimate
the effect of T on y with accuracy, and, indeed, it was not the problem that MR was
developed to solve. So now we elaborate the structural model to be as follows:

y = δT +Xβy + γS∗y|T + νy + εy (16)

T = αS∗T +XβT + νT + εT (17)

Now the disturbance for both equations has two terms, ν and ε. We assume that εT
and εy are uncorrelated, but that νT and νy are correlated with each other (with correlation
ρν), which produces endogeneity in the structural model. We also assume that νT and νy
are correlated with the genetic markers in S∗T and S∗Y |T (ρνT and ρνy, respectively). There
are three principal substantive conditions that could alone or in combination produce this
correlation. The first condition is epistasis, meaning that SNPs have nonlinear or interactive
effects that are correlated with the linear effects in the PGS. The second condition is
when rare alleles have effects on y and on T and when these alleles are correlated with
observed alleles. The third condition is “genetic nurturing.” Genetic nurturing [27] is the
condition where the environment of ego is shaped by genetically related individuals to ego.
For example, children live in an environment that is partly created and selected by their
parents. If environmental characteristics are related to parents’ genes, which of course are
correlated with ego’s genes, and if the environment affects y while also being correlated with
T , then the environment is endogenous to T while also being correlated with ego’s genes.
The model for height on educational attainment provides a useful example. Taller children
could be taller partly for genetic reasons, but also because they grew up in an environment
that provided better nutrition. Children who grew up in a better nutritional environment
would also be expected to go further in school. Parents who provide a better nutritional
environment for their children may have done so in part based on genetic advantages, or
on behavioral consequences of genetic advantages (e.g., when a taller parent is rewarded
for being tall in school or the workplace and therefore has more money to spend on their
children). While recognizing that the substantive reasons for this form of endogeneity can
vary, we will refer to it below as genetic nurturing for ease of exposition.

In order to evaluate alternative estimation strategies in the presence of both pleiotropy
and genetic nurturing, we elaborated the simulations to include the additional error terms
νT and νy, assuming both to have a variance of 0.1 and assuming correlations of 0.4 between
νT and νy (ρν = 0.4). We assumed varying genetic correlations between S∗T and νT (ρνT ),
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and between S∗y|T and νy (ρνy). We further assumed that the correlation between νT and
S∗y|T is 0.4 as large as is the correlations set between S∗T and νT , and that the correlation
between νy and S∗T is 0.4 as large as is the correlation between S∗y|T and νy for that particular
set of simulations.

Table 8 shows the results from a set of simulations where the correlation between y and
νy and also between T and νT (i.e., ρνy and ρνT ) is set at 0.2 and where the heritability
for both y and T is set at 0.5. As for the simpler simulations that only included pleiotropy,
we find that GIV-C consistently outperforms both OLS and MR. In all these cases, GIV-C
is positively biased in its estimate of δ, and these biases are comparable to those that we
found for the case of pleiotropy alone when the heritability of y and T was of comparable
magnitude. As with the simpler case of pleiotropy without genetic nurturing, we find
that GIV-U consistently underestimates the effect of T on y, and that GIV-C and GIV-U
bracket the correct answer. The pattern of results for the case of a zero effect are also
similar to what we saw in the case of moderate heritability without the additional genetic
confounding; GIV-C over-predicts but not as much as for OLS and MR, and GIV-U provides
a very accurate answer. This pattern is actually similar to what we find when we increase
the extent of genetic confounding (i.e., increase ρνy and ρνT ), as shown in Table 9, where
ρνy = ρνT = 0.5, and in Table 10, where ρνy = ρνT = 0.8.

Table 8: Genetic-Related Endogeneity, with a Correlation of 0.2 between the Polygenic
Score and the Genetically-Related Confounder (ρνy = ρνT = 0.2)

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.1664 1.2621 0.5575 1.1649 1.1141 1.1201 1.1005 0.7217 0.7938 0.6117
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.3005 1.4781 0.7704 1.3021 1.2043 1.2176 1.1692 0.8158 0.8996 0.6877
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.8 1.4390 1.6917 1.0739 1.4361 1.2993 1.3203 1.2130 0.9371 1.0284 0.7906
(0.0001) (0.0002) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 0, ρ = 0.2 0.1664 0.2621 0.0668 0.1649 0.1141 0.1201 0.1042 0.0250 0.0422 0.0011
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.3005 0.4781 0.1400 0.3021 0.2043 0.2176 0.1829 0.0457 0.0806 -0.0003
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.4390 0.6917 0.2590 0.4361 0.2993 0.3203 0.2467 0.0817 0.1366 -0.0004
(0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5.
The variance of both νy and νT equals 0.1. Correlation of νy and νT is 0.4. See the supplementary text for details.

If the reasons for the additional endogeneity do arise from genetic nurturing, and if
these genetic nurturing effects are the same for siblings or for dizygotic twins, then the
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Table 9: Genetic-Related Endogeneity, with a Correlation of 0.5 between the Polygenic
Score and the Genetically-Related Confounder (ρνy = ρνT = 0.5)

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.1878 1.2789 0.5538 1.1878 1.1357 1.1411 1.1221 0.6942 0.7741 0.5730
(0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.5 1.3106 1.4609 0.7257 1.3101 1.2235 1.2334 1.1922 0.7825 0.8726 0.6422
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.8 1.4359 1.6493 0.9807 1.4336 1.3111 1.3285 1.2449 0.8918 0.9910 0.7334
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 0, ρ = 0.2 0.1878 0.2789 0.0675 0.1878 0.1357 0.1411 0.1259 0.0265 0.0449 0.0002
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 0, ρ = 0.5 0.3106 0.4609 0.1252 0.3101 0.2235 0.2334 0.2037 0.0466 0.0797 -0.0002
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.4359 0.6493 0.2186 0.4336 0.3111 0.3285 0.2717 0.0747 0.1274 0.0003
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5.
The variance of both νy and νT equals 0.1. Correlation of νy and νT is 0.4. See the supplementary text for details.

Table 10: Genetic-Related Endogeneity, with a Correlation of 0.8 between the Polygenic
Score and the Genetically-Related Confounder (ρνy = ρνT = 0.8)

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.2084 1.2951 0.5550 1.2087 1.1559 1.1612 1.1427 0.6734 0.7603 0.5423
(0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.5 1.3193 1.4520 0.7034 1.3192 1.2383 1.2471 1.2109 0.7540 0.8510 0.6031
(0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 1, ρ = 0.8

δ = 0, ρ = 0.2 0.2084 0.2951 0.0697 0.2087 0.1559 0.1612 0.1465 0.0283 0.0484 0.0005
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 1, ρ = 0.5 0.3193 0.4520 0.1181 0.3192 0.2383 0.2471 0.2209 0.0462 0.0793 0.0000
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 0, ρ = 0.8

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5. The
variance of both νy and νT equals 0.1. Correlation of νy and νT is 0.4. The empty lines were unobtainable parameter combinations. See the supplementary
text for details.
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inclusion of family fixed effects are a good strategy that can be used in combination with
GIV-C and GIV-U, because in these cases the fixed effects estimator will control for the
unobserved but common family effect. Note that a fixed effects model among siblings or
dizygotic twins does not solve the problem of endogeneity due to pleiotropy, and GIV-C
and GIV-U can be used in combination to address that issue. At the same time, we note
that family fixed effects models usually are only possible with smaller samples and they
use up many degrees of freedom. Given the simulation results in Tables 8-10, it may be
that the greater statistical power available in using GIV-C and GIV-U alone offsets any
additional advantage from the fixed effects estimator.

4 Estimating exposure effects in the presence of both pleiotropy
and genetic-unrelated endogeneity

Next we use simulated data to estimate the effects of T in the presence of both pleiotropy
and genetic-unrelated endogeneity. Table 11 shows simulations where the heritability is
0.5 for both y and T and where there is also pleiotropy but where the error terms in
equations 8 and 9 have a 0.4 correlation (ρe) with each other and are uncorrelated with the
genetic variables ST |X and Sy|XT . As Table 11 shows, this is the most challenging of all
the simulation results obtained so far. Neither OLS or MR provide accurate answers at any
level of genetic correlation, and the results for GIV-C are not an improvement. Moreover,
GIV-U in this case also has a positive bias, and so GIV-C and GIV-U no longer provide
bounds for the true answer. The table has a simple message: when the endogeneity problem
stems from non-genetic sources, genetic information will not by itself provide a solution to
the estimation strategy. Of course, the validity of this message depends on the extent of the
endogeneity problem, as can readily be seen in Table 12. The simulations in Table 12 differ
from those in Table 11 only in that the non-genetic endogeneity is much weaker; instead
of a 0.4 correlation between the errors in equations 8 and 9, we assume a -0.1 correlation.
The consequence of weakening the non-genetic endogeneity is that GIV-C produces very
accurate estimates of the effect of T , estimates which are more accurate than those of either
OLS or MR. Finally, and consistent with the earlier simulations, the use of S(y1|T ) as a
proxy control in OLS provides an estimate that is more sensitive to the extent of pleiotropy
than is GIV-C, being smaller at low levels of genetic correlation and larger at higher levels.
However, it is not as consistent in the sign of its bias and therefore is less useful for the
purpose of establishing bounds.

While we do not wish to minimize the challenges posed by non-genetic endogeneity,
we also note that this situation provides grounds for optimism. Non-genetic sources of
endogeneity can often be measured and included in the model as control variables. Once
this is done, the endogeneity problem is reduced in severity. We show this illustratively
in Tables 13, 14, and 15. In the simulations reported in these tables, the non-genetic
endogeneity correlation (ρe) is again 0.4, but we specify it explicitly as the consequence of
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Table 11: Genetic-Unrelated Endogeneity, with a Correlation of 0.4 between the Error
Terms (ρe)

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.3017 1.2004 0.6241 1.3040 1.3436 1.3385 1.3490 1.0720 1.1165 0.9992
(0.0001) (0.0003) (0.0006) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.4520 1.5032 0.9145 1.4545 1.4306 1.4346 1.4259 1.1992 1.2481 1.1193
(0.0001) (0.0002) (0.0006) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.6019 1.8051 1.4138 1.6055 1.5225 1.5391 1.4684 1.3539 1.4032 1.2721
(0.0001) (0.0002) (0.0007) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.2 0.3017 0.2004 0.0618 0.3040 0.3436 0.3385 0.3517 0.2222 0.2342 0.2064
(0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.4520 0.5032 0.1778 0.4545 0.4306 0.4346 0.4267 0.2713 0.3002 0.2302
(0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.6019 0.8051 0.4271 0.6055 0.5225 0.5391 0.4838 0.3648 0.4093 0.2949
(0.0001) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5.
See the supplementary text for details.

Table 12: Genetic-Unrelated Endogeneity, with a Correlation of -0.1 between the Error
Terms (ρe)

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.0509 1.1968 0.5579 1.0546 0.9886 0.9980 0.9706 0.7253 0.7791 0.6431
(0.0001) (0.0003) (0.0005) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.2012 1.4988 0.8404 1.2047 1.0741 1.0950 1.0174 0.8188 0.8832 0.7200
(0.0001) (0.0003) (0.0006) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.3512 1.8003 1.3490 1.3537 1.1531 1.1962 1.0074 0.9331 1.0066 0.8179
(0.0001) (0.0003) (0.0011) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

δ = 0, ρ = 0.2 0.0509 0.1968 0.0625 0.0546 -0.0114 -0.0020 -0.0240 -0.0314 -0.0192 -0.0479
(0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.2012 0.4988 0.1773 0.2047 0.0741 0.0950 0.0386 -0.0068 0.0258 -0.0544
(0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.3512 0.8003 0.4234 0.3537 0.1531 0.1962 0.0520 0.0249 0.0852 -0.0718
(0.0001) (0.0003) (0.0005) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5.
See the supplementary text for details.
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two unmeasured variables. We then assume that one of these environmental confounds can
be measured, and so we include it explicitly in the regression and re-estimate the models.
In Table 13, we assume that the measurable environmental variable accounts for 20% of the
variance of the original error term, such that the remaining correlation between the error
terms is 0.27. In Table 14, we assume instead that the measurable environmental variable
accounts for 50%, implying a remaining correlation of 0.20. In Table 15, we assume that it
accounts for 80% of the non-genetic endogeneity, implying a remaining correlation of 0.13.
Perhaps not surprisingly, the performance of both GIV-C and GIV-U improve and the
level of improvement depends upon the amount of the environmental confounding variables
that can be controlled. It’s notable that even if 80% of the confounding effects of non-
genetic environmental variables were controlled, GIV-C still shows considerable upward
bias, though generally not as much as MR. GIV-U, on the other hand, performs reasonably
well when most of the environmental confounds are controlled.

We also note that GIV-U does not consistently under-predict the effect of T on y when
there are positive-biasing environmental confounds as well as pleiotropy. On the other hand,
it does reliably give the most conservative answer of all the estimators we have considered. If
the pleiotropy is not extreme and if the amount of uncontrolled environmental endogeneity
is not too large, then estimates from GIV-U are in the neighborhood of the true answer.

Table 13: Genetic-Unrelated Endogeneity, Partially Controlling for 20% of the Confounds.

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.2433 1.2051 0.6221 1.2948 1.2878 1.2822 1.2967 0.9814 1.0319 0.8989
(0.0001) (0.0002) (0.0005) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.4008 1.5056 0.9103 1.4456 1.3792 1.3828 1.3720 1.1078 1.1646 1.0154
(0.0001) (0.0002) (0.0005) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.5582 1.8046 1.4053 1.5961 1.4735 1.4908 1.4046 1.2638 1.3226 1.1667
(0.0001) (0.0002) (0.0007) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.2 0.2433 0.2051 0.0552 0.2948 0.2878 0.2822 0.2968 0.1590 0.1717 0.1429
(0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.5 0.4008 0.5056 0.1704 0.4456 0.3792 0.3828 0.3742 0.2053 0.2361 0.1617
(0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.8 0.5582 0.8046 0.4178 0.5961 0.4735 0.4908 0.4267 0.2904 0.3403 0.2121
(0.0001) (0.0002) (0.0003) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5.
Controlling for 20% of the original endogeneity. Remaining correlation between error terms is 0.27. See the supplementary text for details.

Another strategy for addressing the environmental confounds problem is to use fixed
effects models where the clustered cases (e.g., siblings) have similar values on the environ-
mental variables that are producing the non-genetic environmental endogeneity. In general,
we conclude that non-genetic endogeneity causes potentially large problems for estimat-

29



Table 14: Genetic-Unrelated Endogeneity, Partially Controlling for 50% of the Confounds.

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.2075 1.2057 0.6227 1.2962 1.2521 1.2466 1.2638 0.9349 0.9872 0.8495
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.3643 1.5064 0.9110 1.4469 1.3431 1.3467 1.3346 1.0555 1.1151 0.9587
(0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.8 1.5210 1.8054 1.4062 1.5973 1.4355 1.4530 1.3563 1.2042 1.2673 1.1002
(0.0001) (0.0002) (0.0005) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

δ = 0, ρ = 0.2 0.2075 0.2057 0.0562 0.2962 0.2521 0.2466 0.2617 0.1233 0.1360 0.1073
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

δ = 0, ρ = 0.5 0.3643 0.5064 0.1712 0.4469 0.3431 0.3467 0.3378 0.1656 0.1969 0.1215
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 0, ρ = 0.8 0.5210 0.8054 0.4183 0.5973 0.4355 0.4530 0.3839 0.2407 0.2928 0.1591
(0.0001) (0.0002) (0.0002) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters (rows).
The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5. Controlling
for 50% of the original endogeneity. Remaining correlation between error terms is 0.20. See the supplementary text for details.

Table 15: Genetic-Unrelated Endogeneity, Partially Controlling for 80% of the Confounds.

OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS
MR EMR-1 EMR-2 OLS S(y|T ) OLS S(y1|T ) GIV-C OLS S(y) OLS S(y1) GIV-U

δ = 1, ρ = 0.2 1.1736 1.2067 0.6237 1.2981 1.2187 1.2132 1.2332 0.8876 0.9425 0.7978
(0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001)

δ = 1, ρ = 0.5 1.3312 1.5074 0.9121 1.4487 1.3102 1.3138 1.3003 1.0040 1.0672 0.9012
(0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 1, ρ = 0.8 1.4887 1.8065 1.4079 1.5989 1.4017 1.4195 1.3121 1.1477 1.2157 1.0353
(<0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001)

δ = 0, ρ = 0.2 0.1736 0.2067 0.0577 0.2981 0.2187 0.2132 0.2291 0.0888 0.1016 0.0728
(0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

δ = 0, ρ = 0.5 0.3312 0.5074 0.1725 0.4487 0.3102 0.3138 0.3045 0.1276 0.1596 0.0825
(0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

δ = 0, ρ = 0.8 0.4887 0.8065 0.4195 0.5989 0.4017 0.4195 0.3450 0.1940 0.2488 0.1082
(<0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and different parameters (rows).
The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The heritability for both y and T is 0.5. Controlling for
80% of the original endogeneity. Remaining correlation between error terms is 0.13. See the supplementary text for details.

ing causal effects when pleiotropy is moderate to large in size. Fixed effects models with
monozygotic twins will solve pleiotropy problems but it is difficult to obtain monozygotic
twin data at sufficient scale to address most problems of interest in the social and be-
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havioral sciences. Well-designed experiments using randomized assignment to treatment
would address all the problems considered here, though experiments are frequently infeasi-
ble to conduct for well-known reasons. Valid non-genetic environmental IVs would similarly
address both the problems of environmental endogeneity and pleiotropy, though these vari-
ables are often unavailable. In such cases, the strategy of addressing as much non-genetic
endogeneity as possible either with explicit control variables or with fixed-effects models
and then calculating both the GIV-C and the GIV-U estimates provides more information
about the true effect of T than any of the other strategies considered here.
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Table 16: List of Parameters, Variances and Heritability

Name δ h2y h2T ρ ρνy ρe var(y) True h2y std. δ

Pleiotropic
Endogeneity

1 0.20 0.20 0.20 0.00 0.00 2.08 0.23 0.48
1 0.20 0.20 0.50 0.00 0.00 2.20 0.27 0.45
1 0.20 0.20 0.80 0.00 0.00 2.32 0.31 0.43
0 0.20 0.20 0.20 0.00 0.00 1.00 0.20 0.00
0 0.20 0.20 0.50 0.00 0.00 1.00 0.20 0.00
0 0.20 0.20 0.80 0.00 0.00 1.00 0.20 0.00
1 0.40 0.40 0.20 0.00 0.00 2.16 0.44 0.46
1 0.40 0.40 0.50 0.00 0.00 2.40 0.50 0.42
1 0.40 0.40 0.80 0.00 0.00 2.64 0.55 0.38
0 0.40 0.40 0.20 0.00 0.00 1.00 0.40 0.00
0 0.40 0.40 0.50 0.00 0.00 1.00 0.40 0.00
0 0.40 0.40 0.80 0.00 0.00 1.00 0.40 0.00
1 0.60 0.60 0.20 0.00 0.00 2.24 0.64 0.45
1 0.60 0.60 0.50 0.00 0.00 2.60 0.69 0.38
1 0.60 0.60 0.80 0.00 0.00 2.96 0.73 0.34
0 0.60 0.60 0.20 0.00 0.00 1.00 0.60 0.00
0 0.60 0.60 0.50 0.00 0.00 1.00 0.60 0.00
0 0.60 0.60 0.80 0.00 0.00 1.00 0.60 0.00
1 0.80 0.80 0.20 0.00 0.00 2.32 0.83 0.43
1 0.80 0.80 0.50 0.00 0.00 2.80 0.86 0.36
1 0.80 0.80 0.80 0.00 0.00 3.28 0.88 0.30
0 0.80 0.80 0.20 0.00 0.00 1.00 0.80 0.00
0 0.80 0.80 0.50 0.00 0.00 1.00 0.80 0.00
0 0.80 0.80 0.80 0.00 0.00 1.00 0.80 0.00
1 0.20 0.80 0.20 0.00 0.00 5.76 0.20 0.17
1 0.20 0.80 0.50 0.00 0.00 6.00 0.23 0.17
1 0.20 0.80 0.80 0.00 0.00 6.24 0.26 0.16
0 0.20 0.80 0.20 0.00 0.00 1.00 0.20 0.00
0 0.20 0.80 0.50 0.00 0.00 1.00 0.20 0.00
0 0.20 0.80 0.80 0.00 0.00 1.00 0.20 0.00
1 0.80 0.20 0.20 0.00 0.00 7.90 0.91 0.13
1 0.80 0.20 0.50 0.00 0.00 10.90 0.94 0.09
1 0.80 0.20 0.80 0.00 0.00 13.90 0.95 0.07
0 0.80 0.20 0.20 0.00 0.00 1.00 0.80 0.00
0 0.80 0.20 0.50 0.00 0.00 1.00 0.80 0.00
0 0.80 0.20 0.80 0.00 0.00 1.00 0.80 0.00
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Table 16 – continued

Name δ h2y h2T ρ ρνy/T ρe var(y) True h2y std. δ

Genetic-
Related
Endogeneity

1 0.50 0.50 0.20 0.20 0.00 2.53 0.47 0.40
1 0.50 0.50 0.50 0.20 0.00 2.83 0.53 0.35
1 0.50 0.50 0.80 0.20 0.00 3.13 0.57 0.32
0 0.50 0.50 0.20 0.20 0.00 1.09 0.46 0.00
0 0.50 0.50 0.50 0.20 0.00 1.09 0.46 0.00
0 0.50 0.50 0.80 0.20 0.00 1.09 0.46 0.00
1 0.50 0.50 0.20 0.50 0.00 2.91 0.41 0.34
1 0.50 0.50 0.50 0.50 0.00 3.21 0.47 0.31
1 0.50 0.50 0.80 0.50 0.00 3.51 0.51 0.29
0 0.50 0.50 0.20 0.50 0.00 1.22 0.41 0.00
0 0.50 0.50 0.50 0.50 0.00 1.22 0.41 0.00
0 0.50 0.50 0.80 0.50 0.00 1.22 0.41 0.00
1 0.50 0.50 0.20 0.80 0.00 3.28 0.37 0.30
1 0.50 0.50 0.50 0.80 0.00 3.58 0.42 0.28
1 0.50 0.50 0.80 0.80 0.00 3.88 0.46 0.26
0 0.50 0.50 0.20 0.80 0.00 1.36 0.37 0.00
0 0.50 0.50 0.50 0.80 0.00 1.36 0.37 0.00
0 0.50 0.50 0.80 0.80 0.00 1.36 0.37 0.00

Genetic-
Unrelated
Endogeneity

1 0.50 0.50 0.20 0.00 0.40 2.60 0.46 0.38
1 0.50 0.50 0.50 0.00 0.40 2.90 0.52 0.34
1 0.50 0.50 0.80 0.00 0.40 3.20 0.56 0.31
0 0.50 0.50 0.20 0.00 0.40 1.00 0.50 0.00
0 0.50 0.50 0.50 0.00 0.40 1.00 0.50 0.00
0 0.50 0.50 0.80 0.00 0.40 1.00 0.50 0.00
1 0.50 0.50 0.20 0.00 -0.10 2.10 0.57 0.48
1 0.50 0.50 0.50 0.00 -0.10 2.40 0.63 0.42
1 0.50 0.50 0.80 0.00 -0.10 2.70 0.67 0.37
0 0.50 0.50 0.20 0.00 -0.10 1.00 0.50 0.00
0 0.50 0.50 0.50 0.00 -0.10 1.00 0.50 0.00
0 0.50 0.50 0.80 0.00 -0.10 1.00 0.50 0.00

List of parameters and the corresponding variance of y. The variance of T is always equal to 1.
The effect sizes of the genetic markers are kept constant in each table, so there is no
compensation for an increase in genetic correlation or for the correlation with the confounds.
Hence the true heritability of y changes. δ is the effect of T , ρ is the genetic correlation, ρe is the
correlation between the error terms in y and T (to create environmental confounds) and ρνy is
the correlation between the genetic confounds for y and polygenic score for y. In all simulations
ρνy = ρνT . The last two columns show the actual heritability for y and the standardized effect
size for T.
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5 Empirical application

We used data from the Health and Retirement Survey (HRS) for our empirical example [28].
The HRS is a longitudinal survey on health, retirement and aging which is presentative for
the US population aged 50 years or older. The survey consists of eleven waves from 1992
to 2012. We used phenotypic data that has been cleaned and harmonized by the RAND
cooperation.8

Since 2006, data collection has expanded to include biomarkers and a subset of the
participants has been genotyped.9 Autosomal SNPs were imputed using the worldwide
reference panel from phase I of the 1000 Genomes project (v3, released March 2012) [29]. If
the uncertainty about the genotype of an individual was greater than 10 percent, the SNP
was removed. Furthermore, SNPs were removed from the entire sample if the imputation
quality was below 70 percent, if the minor allele frequency was smaller than 1 percent,
or if the SNP was missing in over 5 percent of the sample. Our analyses were restricted
to unrelated participants of European descent according to the standard HRS protocol.
Specifically, HRS filtered out parent-offspring pairs, siblings and half-siblings. Selection on
European descent was done based on self reported race and principal component analysis
[30]. The PGS for educational attainment is negatively correlated with birth year (r =
-0.06; p < 0.0001) and educational attainment has been shown to affect longevity [31, 32].
Thus, age-related sample selection is likely to be correlated with educational attainment
and its PGS, which could potentially bias our results. Since the HRS is a sample of an older
population spanning across many birth years, we further restricted our analysis sample to
a a relatively younger group of people born between 1935 and 1945. This subsample is still
large enough to for our analyses (N = 2, 839), yet less likely to be affected by age-related
sample selection. .

We constructed polygenic scores starting with a set of 2,224,079 SNPs that were either
directly genotyped in HRS or present in the HapMap3 reference panel [33], providing us with
a high-resolution coverage of common genetic variants. To control for linkage disequilibrium
(LD) between SNPs, we constructed all polygenic scores using LDpred [6] with the default
LD window (total number of SNPs divided by 3000) and assuming that all of the SNPs are
causal.

The first unconditional polygenic score for educational attainment was constructed
by using GWAS results provided by the Social Science Genetic Association Consortium
(SSGAC) [26], excluding HRS, UK Biobank and the 23andMe cohort from the meta-
analysis. The remaining SSGAC sample consists of several cohorts from around the world
(n = 207, 605, see Supplementary Table 18). We included all SNPs that overlapped with
our initial set in LDpred. After LDpred filtered out ambiguous SNPs and SNPs with minor

8RAND HRS Data, Version O. Produced by the RAND Center for the Study of Aging, with funding
from the National Institute on Aging and the Social Security Administration. Santa Monica, CA (August
2016). See http://www.rand.org/labor/aging/dataprod/hrs-data.html for additional information.

9See https://hrs.isr.umich.edu/data-products/genetic-data
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allele frequency smaller than 0.01; 1,849,602 autosomal SNPs remained.
The second unconditional polygenic score for educational attainment was constructed

by using results from a GWAS in the UK Biobank, also provided by the SSGAC [34]
(n = 442, 183; 1,870,853 SNPs).

The first unconditional polygenic score for height was constructed using the publicly
available GWAS summary results from the GIANT consortium (n = 253, 288) [35],10 which
are based on ≈ 2.5 million autosomal SNPs that were imputed using the HapMap 2 CEU
reference panel [36] (See Supplementary Table 19). Merging this set with the directly
genotyped and HapMap 3 SNPs resulted in 1,264,571 SNPs that were included in the score
by LDpred.

We conducted three GWASs in the UK Biobank (UKB) to obtain the other required
polygenic scores. The UKB is a publicly available population-based prospective study of
individuals aged 40-69 years during recruitment in 2006-2010 [37]. We restricted the analysis
to unrelated Brits of European descent [38] that were available in the full release of the
genetic data (n = 441, 298). Autosomal SNPs were imputed using the UK10K reference
panel. Details on genotyping, pre-imputation quality control, and imputation have been
documented extensively elsewhere [38].

To obtain a second unconditional polygenic score for height, the GWAS analysis included
as control variables dummies for genotyping batches and sex. We also included a third order
polynomial of age and it’s interaction terms with sex. Furthermore, the first 20 principal
components of the genetic data were also included to control for subtle population structure.
The obtained GWAS results underwent quality control following an extended version of the
EasyQC protocol [39] described in detail elsewhere [40]. Two loci had SNPs with p-values
that were numerically equal to 0, these could not be entered into LDpred. From each of
the two loci one SNP was included into the score after LDpred was done. This yielded a
score consisting of 1,861,847 autosomal SNPs.

For the conditional polygenic score for educational attainment, we included as control
variables height, genotyping batches, sex, age, age and height squared and cubed, the
interaction terms between the terms for age and height, as well as their interaction terms
with sex. Furthermore, the first 20 principal components of the genetic data were included
as controls for population stratification and the GWAS results underwent quality control,
yielding 1,861,878 autosomal SNPs.

For the conditional polygenic score for height, a identical GWAS analysis was conducted
where we controlled for educational attainment instead (including squared, cubic and in-
teraction terms). This yielded a score based on 1,861,847 autosomal SNPs (including the
same two SNPs that were manually added, as described above).

There is an overlap in the cohorts used by the GIANT consortium in the GWAS on
height and by the SSGAC GWAS on educational attainment [26]. To ensure independence

10http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files\
#GWAS_Anthropometric_2014_Height
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of measurement errors in the PGS, whenever the GIANT height PGS was used, we excluded
the other as an instrument and used a PGS constructed from the UK Biobank GWAS results
instead.

Using these data, we demonstrate the value of the GIV regression approach in several
important empirical applications. First, we estimated the chip heritability of educational
attainment (EA) in the HRS data from a PGS for EA. We use the residual of EA after
regressing it on control variables. The results are shown in Table 1 of the main text. All
reported coefficients are standardized. Since the squared standardized coefficient in OLS
equals R2, our OLS result in column 1 of Table 1 implies that the PGS for EA currently
captures 6.8% of the variance in EA.

Using the GIV regression results reported in columns 2 and 3 of Table 1 and the error
correction described above 1.1, we obtain chip heritability estimates of 13.4% (95% CI +/-
3.9%) and 13.8% (+/- 4.0%), respectively.

Second, we estimated the (causal) effect of body height on EA. Earlier studies have
reported a positive relationship between these variables [41, 42, 43]. Third, we present
results from a negative control that estimates the (causal) effect of EA on body height
(which should be zero). We estimated these effects using OLS, MR, GIV-C, and GIV-
U regression. In each regression, we included birth year, birth year squared, educational
attainment of both parents and (in pooled models) sex as control variables. We included
PGS of EA or height depending on the method. All variables have been standardized. The
results are shown and discussed in main text (see Tables 3 and 4).

6 Practical recommendations

We discussed two main sources of bias in this paper – direct pleiotropy and unobserved
environmental confounds that may or may not covary with genetic effects. These sources
of bias are relevant in almost all research questions in the social sciences and epidemiology
when experimental data is not available.

The existing literature addresses these challenges with various strategies. All of them
have their advantages and disadvantages. For example, panel data that contain repeated
measures for each individual over time can be used for individual fixed-effects models that
control for all unobserved heterogeneity among people, including genetic and environmental
factors. Unfortunately, individual fixed-effects models do not allow investigating variables
that do not vary over time for a particular person, such as the relationship between educa-
tional attainment and body height.

The gold standard to address potential bias arising from genetic and family-specific
environmental confounds is a comparison among MZ twin pairs. These pairs are (almost)
genetically identical and share the same family environment. However, very large samples
of MZ twin pairs are necessary for this approach because within MZ twin pair variation
tends to be very small or non-existent. Also, this approach does by itself not control for
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unobserved environmental confounds that are individual-specific.
Probably the most popular approach to identify causal effects in non-experimental data

are instrumental variable techniques. Yet, convincing environmental instruments are rare
and they limit the scope of research questions to scenarios to which the instruments apply.
Furthermore, as discussed earlier, genetic instruments are invalid when they have direct
pleiotropic effects on the exposure and the outcome or if they are correlated with other
unobserved confounds.

This leaves a broad class of important applied research questions for which GIV re-
gression offers a new approach to obtain more precise estimates than ordinary multiple
regression techniques or approaches that use invalid instruments. Table 17 provides an
overview of different types of applied research questions and our recommended estimation
strategy in cross-sectional population samples that lack an experimental design, or valid
non-genetic instruments, or relevant natural experiments. We differentiate these research
questions based on the expected degree of pleiotropic confounds and whether environmental
sources of endogeneity may also exist or not. Unfortunately, environmental endogeneity is
hard to rule out in almost all non-experimental research scenarios.

Mendelian Randomization is in principle a great idea for addressing environmental en-
dogeneity, but its application is limited to scenarios where direct pleiotropy between the
exposure and the outcome is of no concern. An example may be the influence of number of
cigarettes smoked per day on the number of biological offspring – smoking intensity seems
to be regulated by a relatively limited number of genes with strong effects and clear bio-
logical functions that are unlikely to have direct pleiotropic effects on reproductive success
[44]. Yet, even in this situation, genes related to smoking may still violate the exclusion
restriction via LD with other genes or via their correlation with unobserved environmental
confounds, such as parental socioeconomic status. In short, it is difficult to argue con-
vincingly that the assumptions of MR are actually satisfied. The assumptions of MR are
less likely to hold the more genetically complex the investigated traits are, the higher their
genetic correlation is, and the more likely it is that the genes associated with these traits
work via unobserved environmental channels.

We argue that GIV regression is a reasonable estimation strategy whenever pleiotropic
confounds are a possible concern. If genetic and environmental confounds are both likely to
exist, we recommend the combination of GIV regression with control variables that correct
for non-genetic endogeneity as far as possible, ideally in samples that also allow controls
for family-fixed effects (e.g. siblings or DZ twins). Examples of research questions with
both sources of endogeneity are plentiful, e.g. the relationships between body height and
educational attainment (low pleiotropy), diet and body mass (probably with a medium
degree of direct pleiotropy), and the returns to schooling (probably with a high degree of
direct pleiotropy on educational attainment and personal income, and quite likely mediated
by factors such as cognitive ability and personality). GIV regression in combination with
environmental controls is a reasonable estimation strategy in all of these cases.

An important practical question is data availability for GIV regression. In addition to a
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Table 17: Guidance for applications

Direct pleiotropy Environment
endogeneity

Recommended
method Example

No / very low

Yes MR Smoking intensity on
number of children

No OLS Randomized controlled
trials

Low

Yes GIV + FFE +
Controls*

Body height on
educational attainment

No GIV x

Medium

Yes GIV + FFE +
Controls*

Diet on body mass

No GIV x

High

Yes GIV + FFE +
Controls*

Returns to schooling

No GIV x

MR – Mendelian Randomization, OLS – Ordinary Least Squares, GIV – Genetic Instrumental Variable
regression, FFE – Family fixed-effects, ideally estimated in pairs of dizygotic twins. *How well this
strategy works depends on the strength of the residual environmental endogeneity after adjusting for
controls and FFE; more residual environmental endogeneity will lead to more bias in the estimates of
treatment T and outcome y.
x No good example is known to us.

genotyped prediction sample, the researcher will need GWAS summary statistics from non-
overlapping samples to construct the conditional and unconditional scores. Unconditional
scores for many traits can often be constructed using publicly available GWAS results from
consortia such as GIANT 11, SSGAC 12, PGC 13, or CHARGE 14. Most of these consortia
did not include data from the UKB in their earlier publications. Thus, the publicly avail-
able UKB data can often be used to obtain a second score from an independent sample.
Unconditional GWAS results for virtually all traits in the UKB are publicly available from
the Broad Institute 15. The UKB, or any other large, publicly available biobank, can also

11https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
12https://www.thessgac.org
13https://www.med.unc.edu/pgc/results-and-downloads
14http://www.chargeconsortium.com/main/results
15http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-

in-the-uk-biobank
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be considered as a source for obtaining conditional GWAS results. If the researcher does
not have access to these data or lacks the resources for large-scale GWAS analyses, it is
always possible to team up with one of the many research groups around the world that
have the necessary data and resources. Running a conditional GWAS in a large sample like
the UKB can often be done in a matter of hours by experienced research teams. Impor-
tantly, GIV regression only requires one conditional score which can be instrumented by
an unconditional score from a non-overlapping sample. Thus, data access or computational
resources should not be a serious practical limitation for GIV regression.

Furthermore, the UKB is large enough to be split into three sub-samples for GIV regres-
sion. One particularly appealing approach would be to use the subsample of siblings in the
UKB as a prediction sample that allows the researcher to control for family fixed-effects.
The remaining unrelated individuals can be split into two, still very large, subsamples to
conduct conditional and unconditional GWAS analyses. Because all participants in the
UKB have been recruited at about the same time and in the same country, the genetic
correlations for a given trait are likely to be perfect for randomly chosen subsets of the
data.

An important practical issue is that the prediction sample should not be included in
any of the GWAS samples used to construct the scores to avoid overfitting. Reassuringly,
this is not a problem either because most GWAS consortia provide meta-analysis results
excluding specific samples upon request. If this is not possible, an alternative strategy is to
conduct the GWAS on y in the prediction sample and to subtract the effect of each SNP
in this cohort from the publicly available results using the meta-analysis formula that the
consortium used to aggregate effects. For example, if the meta-analysis used sample size
weights to obtain the z-scores of each SNP, the corrected z-scores excluding the prediction
sample could be obtained by simply subtracting the z-score in the prediction sample using
the appropriate weight [45]. Furthermore, many samples have only recently been genotyped
and are therefore not included yet in published GWAS studies. These samples could be
readily employed for GIV regression using the approaches described above.

Overall, we believe that GIV regression has substantial practical utility for many re-
searchers and across a wide range of important applied research questions. The usefulness
of GIV regression will increase further in the future as a result of the growing availability of
accurate, cheap genetic data and GWAS results on many traits from ever growing sample
sizes.
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Table 18: Cohort List for Educational Attainment Score from
SSGAC

Study Full name Sampling Country Sample
size

ACPRC Manchester Studies of
Cognitive Ageing Population-based England 1713

AGES
Age, Gene / Environment
Susceptibility-Reykjavik
Study

Population-based Iceland 3212

ALSPAC Avon Longitudinal Study of
Parents and Children

Population-based
birth cohort England 2877

ASPS Austrian Stroke Prevention
Study Population-based Austria 777

BASE-II Berlin Aging Study II Population-based Germany 1619
CoLaus Cohorte Lausannoise Population-based Switzerland 3269

COPSAC2000 Copenhagen Studies on
Asthma in Childhood 2000

Case-control
birth cohort Germany 318

CROATIA-
Korčula Croatia Korčula Population-based

(Isolate) Croatia 842

deCODE deCODE genetics Population-based Iceland 46758
DHS Dortmund Health Study Population-based Germany 953

DIL Wellcome Trust Diabetes and
Inflammation Laboratory Population-based England 2578

EGCUT1 Estonian Genome Center,
University of Tartu Population-based Estonia 5597

EGCUT2 Estonian Genome Center,
University of Tartu Population-based Estonia 1328

EGCUT3 Estonian Genome Center,
University of Tartu Population-based Estonia 2047

ERF Erasmus Rucphen Family
Study Family-based Nether-

lands 2433

FamHS Family Heart Study Family-based USA 3483

FINRISK The National FINRISK
Study

Case-control
(Cardiovascular
health)

Finland 1685

FTC Finnish Twin Cohort Family-based Finland 2418

GOYA Genetics of Overweight
Young Adults

Case-control
(Obesity) Denmark 1459
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Table 18 – continued

Study Full name Sampling Country Sample
size

GRAPHIC Genetic Regulation of
Arterial Pressure in Humans Population-based England 727

GS Generation Scotland Population-based Scotland 8776

H2000 Cases Health 2000
Case-control
(Metabolic
syndrome)

Finland 797

H2000
Controls Same as above

Case-control
(Metabolic
syndrome)

Finland 819

HBCS Helsinki Birth Cohort Study Population-based
birth cohort Finland 1617

HCS Hunter Community Study Population-based Australia 1946
HNRS
(CorexB) Heinz Nixdorf Recall Study Population-based Germany 1401

HNRS
(Oexpr) Same as above Same as above Germany 1347

HNRS
(Omni1) Same as above Same as above Germany 778

Hypergenes Hypergenes Case-control Italy/ UK/
Belgium 815

INGI-CARL Italian Network of Genetic
Isolates - Carlantino

Population-based
(Isolate) Italy 947

INGI-FVG
Italian Network of Genetic
Isolates - Friuli Venezia
Giulia

Population-based
(Isolate) Italy 943

KORA S3
Kooperative
Gesundheitsforschung in der
Region Augsburg

Population-based Germany 2655

KORA S4 Same as above Population-based Germany 2721

LBC1921 Lothian Birth Cohort 1921 Population-based
birth cohort Scotland 515

LBC1936 Lothian Birth Cohort 1936 Population-based
birth cohort Scotland 1003

LifeLines The LifeLines Cohort Study Population-based Nether-
lands 12539
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Table 18 – continued

Study Full name Sampling Country Sample
size

MCTFR Minnesota Center for Twin
and Family Research

Family-based,
but only founders
used.

USA 3819

MGS Molecular Genetics of
Schizophrenia Population-based USA 2313

MoBa Mother and Child Cohort of
NIPH

Population-based
(Nested
case-control)

Norway 622

NBS Nijmegen Biomedical Study Population-based Nether-
lands 1808

NESDA Netherlands Study of
Depression and Anxiety

Case-control
(Mental health)

Nether-
lands 1820

NFBC66 Northern Finland Birth
Cohort 1966 Population-based Finland 5297

NTR Netherlands Twin Register Family-based Nether-
lands 5246

OGP Ogliastra Genetic Park Population-based Italy 370

OGP-Talana Ogliastra Genetic
Park-Talana

Population-based
(Isolate) Italy 544

ORCADES Orkney Complex Disease
Study

Population-based
(Isolate) Scotland 1828

PREVEND Prevention of Renal and
Vascular End-stage Disease Population-based Nether-

lands 3578

QIMR Queensland Institute of
Medical Research Family-based Australia 8006

RS-I Rotterdam Study Baseline Population-based Nether-
lands 6108

RS-II Rotterdam Study Extension
of Baseline Population-based Nether-

lands 1667

RS-III Rotterdam Study Young Population-based Nether-
lands 3040

Rush-MAP
Rush University Medical
Center - Memory and Aging
Project

Community-
based USA 887

Rush-ROS
Rush University Medical
Center - Religious Orders
Study

Community-
based USA 808
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Table 18 – continued

Study Full name Sampling Country Sample
size

SardiNIA SardiNIA Study of Aging Family-based Italy 5616
SHIP Study of Health in Pomerania Population-based Germany 3556
SHIP-TREND Study of Health in Pomerania Population-based Germany 901
STR - Salty Swedish Twin Registry Family-based Sweden 4832
STR -
Twingene Swedish Twin Registry Family-based Sweden 9553

THISEAS

The Hellenic Study of
Interactions between SNPs &
Eating in Atherosclerosis
Susceptibility

Case-control Greece 829

TwinsUK St Thomas UK Adult Twin
Registry Population-based England 4012

WTCCC58C 1958 British Birth Cohort Population-based England 2804

YFS The Cardiovascular Risk in
Young Finns Study Population-based Finland 2029

This table contains the list of cohorts used in the GWAS of Educational Attainment of
[26], excluding the Health and Retirement Study and 23andMe cohorts. A more detailed
list and description can be found in the supplementary materials of [26]
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Table 19: Cohort List for Height Score from GIANT

Study Full name Sampling Country Sample
size

ACTG The AIDS Clinical Trials
Group Population-based Interna-

tional 1055

ADVANCE
Atherosclerotic Disease,
VAscular FunctioN, and
GenetiC Epidemiology

Population-based
case-control USA 584

AE Athero-Express Biobank
Study patient-cohort

The
Nether-
lands

686

AGES
Age, Gene/Environment
SusceptibilityReykjavik
Study

Population-based Iceland 3219

Amish HAPI
Heart Study

Amish Heredity and
Phenotype Intervention Heart
Study

Founder
population USA 907

ARIC Atherosclerosis Risk in
Communities Study Population-based USA 8110

ASCOT AngloScandinavian Cardiac
Outcome Trial

"Randomised
control clinical
trial"

UK, Ireland
and Nordic
Regions

3802

B58C-T1DGC
British 1958 birth cohort
(Type 1 Diabetes Genetic
Consortium controls)

Populationbased
birth cohort UK 2591

B58C-
WTCCC

British 1958 birth cohort
(Wellcome Trust Case
Control Consortium controls)

Populationbased
birth cohort UK 1479

BHS Busselton Health Study Population-based Australia 1328

BLSA Baltimore Longitudinal
Study on Aging Population-based USA 844

B-PROOF Baltimore Longitudinal
Study on Aging

"Randomised
control clinical
trial"

Nether-
lands 2669
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Table 19 – continued

Study Full name Sampling Country Sample
size

BRIGHT
British Genetic of
Hypertension (BRIGHT)
study

Hypertension
cases UK 1806

CAD-WTCCC WTCCC Coronary Arteryt
Disease cases Case series UK 1879

CAPS1 cases Cancer Prostate in Sweden 1 Case-control Sweden 489
CAPS1
controls Cancer Prostate in Sweden 1 Case-control Sweden 491

CAPS2 cases Cancer Prostate in Sweden 2 Case-control Sweden 1483
CAPS2
controls Cancer Prostate in Sweden 2 Case-control Sweden 519

CHS Cardiovascular Health Study Population-based USA 3228

CoLaus Cohorte Lausannoise Population-based Switserland 5409

Corogene

Genetic Predisposition of
Coronary Heart Disease in
Patients Verified with
Coronary Angiogram

Population-based Finland 3758

deCODE deCODE genetics sample set Population-based Iceland 26799

DESIR
Data from an
Epidemiological Study on the
Insulin Resistance syndrome

Population-based France 716

DGI cases Diabetes Genetics Initiative Case-control Scandinavia 1317

DGI controls Diabetes Genetics Initiative Case-control Scandinavia 1090

DNBC Danish National Birth Cohort
- Preterm Delivery Study Case-control Denmark 1802

EGCUT Estonian Genome Center,
University of Tartu Population-based Estonia 1417

EGCUT-370 Estonian Genome Center,
University of Tartu Population-based Estonia 866

EGCUT-
OMNI

Estonian Genome Center,
University of Tartu Population-based Estonia 1356
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Table 19 – continued

Study Full name Sampling Country Sample
size

EPIC-Obesity
Study

European Prospective
Investigation into Cancer and
Nutrition - Obesity Study

Population-based UK 3552

ERF Erasmus Rucphen Family
Study Family-based Nether-

lands 2726

FamHS Family Heart Study Population-based USA 1463

Fenland Fenland Study Population-based UK 1402
FINGES-
TURE
cases

Finnish Genetic Study of
Arrhythmic Events

Disease cohort
(MI cases only) Finland 943

FRAM Framingham Heart Study
Population-based,
multi-
generational

USA 8089

FTC Finnish Twin Cohort Monozygotic
twins Finland 125

FUSION cases
Finland-United States
Investigation of NIDDM
Genetics

Case-control Finland 1082

FUSION
controls

Finland-United States
Investigation of NIDDM
Genetics

Case-control Finland 1167

GENMETS
cases

Health 2000 / GENMETS
substudy of Metabolic
syndrome

Case-control Finland 824

GENMETS
controls

Health 2000 / GENMETS
substudy of Metabolic
syndrome

Case-control Finland 823

GerMiFSI
(cases only)

German Myocard Infarct
Family Study I Case-control Germany 600

GerMiFSII
(cases only)

German Myocard Infarct
Family Study II Case-control Germany 1124
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Table 19 – continued

Study Full name Sampling Country Sample
size

GOOD Gothenburg Osteoporosis and
Obesity Determinants Study Population-based Sweden 938

HBCS Helsinki Birth Cohort Study Birth cohort
study Finland 1726

Health ABC Health, Aging, and Body
Composition Study

longitudinal
cohort study USA 1655

HERITAGE
Family Study

Health, Risk Factors,
Training and Genetics
(HERITAGE) Family Study

Family Study,
baseline data
from an exercise
training
intervention

USA 500

HYPER-
GENES
Cases

HYPERGENES Case-control Italy/ UK/
Belgium 1841

HYPER-
GENES
Controls

HYPERGENES Case-control Italy/ UK/
Belgium 1900

InCHIANTI Invecchiare in Chianti Population-based Italy 1138

IPM Mount
Sinai BioMe

The Charles Bronfman
Institute for Personalized
Medicine BioMe Biobank
Program

Hospital-based USA 2867

KORA S3

Cooperative Health Research
in the Region of Augsburg,
KOoperative
Gesundheitsforschu ng in der
Region Augsburg

Population-based Germany 1643

KORA S4

Cooperative Health Research
in the Region of Augsburg,
KOoperative
Gesundheitsforschu ng in der
Region Augsburg

Population-based Germany 1811
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Table 19 – continued

Study Full name Sampling Country Sample
size

LifeLines LifeLines Cohort study Population-based Nether-
lands 8118

LLS Leiden Longevity Study Family based Nether-
lands 1903

LOLIPOP
_EW610

London Life Sciences
Prospective Population Study Population-based UK 927

LOLIPOP
_EWA

London Life Sciences
Prospective Population Study

Population-based
with some
enrichment

UK 513

LOLIPOP
_EWP

London Life Sciences
Prospective Population Study

Population-based
with some
enrichment

UK 651

MGS
Molecular Genetics of
Schizophrenia/NIMH
Repository Control Sample

Population-based
(survey research
method)

USA 2597

MICROS MICROS (EUROSPAN) Population-based Italy 1079

MIGEN Myocardial Infarction
Genetics Consortium Case-control

USA /
Finland /
Italy /
Spain /
Sweden

2652

NBS-WTCCC WTCCC National Blood
Service donors Population-based UK 1441

NELSON Dutch and Belgian Lung
Cancer Screening Trial

Nether-
lands and
Belgium

2668

NFBC1966 Northern Finland Birth
Cohort 1966 Population-based Finland 4499

NHS The Nurses’ Health Study Nested
case-control USA 3217

NSPHS Northern Sweden Population
Health Study (EUROSPAN) Population-based Sweden 652
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Table 19 – continued

Study Full name Sampling Country Sample
size

NTRNESDA
Netherlands Twin Register &
the Netherlands Study of
Depression and Anxiety

Case-control Nether-
lands 3522

ORCADES Orkney Complex Disease
Study (part of EUROSPAN) Population-based Scotland 695

PLCO
The Prostate, Lung
Colorectal and Ovarian
Cancer Screening Trial

Case-control USA 2244

PLCO2
controls

Prostate, Lung, Colorectal,
and Ovarian Cancer
Screening Trial

Population-based
case-control USA 1193

PREVEND
Prevention of REnal and
Vascular ENdstage Disease
(PREVEND) Study

Population-based Nether-
lands 3624

PROCARDIS Precocious Coronary Artery
Disease Population-based UK 7000

PROSPER/
PHASE

The PROspective study of
Pravastatin in the Elderly at
Risk for vascular disease

Randomized
controlled trial

Nether-
lands,
Scotland
and Ireland

5244

QFS Quebec Family Study Family-based??? Canada 860

QIMR Twin study at Queensland
Institute of Medical Research Population-based Australia 3627

RISC
Relationship between Insulin
Sensitivity and
Cardiovascular disease Study

Population-based Europe 1031

RS-I Rotterdam Study I Population-based Nether-
lands 5744

RS-II Rotterdam Study II Population-based Nether-
lands 2124

RS-III Rotterdam Study III Population-based Nether-
lands 2009
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Table 19 – continued

Study Full name Sampling Country Sample
size

RUNMC

Nijmegen Bladder Cancer
Study (NBCS) & Nijmegen
Biomedical Study (NBS),
Radboud University
Nijmegen Medical Centre

Population-based Nether-
lands 2873

SardiNIA SARDINIA Population-based Italy 4298

SASBAC cases
Swedish And Singapore
Breast Association
Consortium

Case-control Sweden 794

SASBAC
controls

Swedish And Singapore
Breast Association
Consortium

Case-control Sweden 758

SEARCH /
UKOPS

Studies of Epidemiology and
Risk factors in Cancer
Heredity / UK Ovarian
Cancer Population Study

Population-based UK 1592

SHIP Study of Health in Pomerania Population-based Germany 4092

SHIP-TREND Study of Health in Pomerania
- TREND Population-based Germany 986

Sorbs
Sorbs are selfcontained
population from Eastern
Germany, European Descent

Population-based Germany 907

T2D-WTCCC WTCCC Type 2 Diabetes
cases case series UK 1903

TRAILS Tracking Adolescents’
Individual Lives Survey

Population-based
(measured at
18yrs of age)

Nether-
lands 1139

TWINGENE TWINGENE Population-based Sweden 9380

TwinsUK TwinsUK Twins pairs UK 1479

VIS VIS (EUROSPAN) and
KORCULA Population-based Croatia 784
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Table 19 – continued

Study Full name Sampling Country Sample
size

WGHS Women’s Genome Health
Study Population-based USA 23099

YFS The Cardiovascular Risk in
Young Finns Study

Population-based
cohort Finland 1995

This table contains the list of cohorts used in the GWAS of height from [35]. A more
detailed list and description can be found in the supplementary materials of [35] and [46]
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