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Objectives and Assumptions
The process of colorectal tumorigenesis can be divided into three
phases: progression from normal tissue to the first invasive tumor cell
(transformation phase), expansion from the first tumor cell to the
clinically detectable tumor mass at carrying capacity (growth phase),
and tumor stasis characterized by an equilibrium between cell death
and proliferation at carrying capacity (maintenance phase).
Our objective was to develop a spatial model of the growth

phase that is consistent with knowledge about the biology of
glandular homeostasis and carcinogenesis, that recapitulates our
experimental findings, and that can be used to further investigate
the role and importance of different biological aspects, such as the
role of cellular mobility in shaping the observed spatial distri-
butions of private mutations in the final tumor. The model de-
velopment was based on the following biological assumptions:

i) In the absence of direct empirical evidence for cell death
during the growth phase, we model the latter as an expo-
nential clonal expansion without cell death. (Note that cell
death is expected to be nonnegligible during the mainte-
nance phase.)

ii) Each gland in the colon is populated by 8–32 stem cells at
the gland bottom and up to 10,000 transit-amplifying and
differentiated cells in the middle and upper sections of the
gland. The stem cell population within each tumor gland is
assumed to grow exponentially until the gland reaches a
critical size, when fission (1) is initiated and the resident cell
population is split between the two daughter glands.

iii) Pathology findings show that the organization of tumor cells
within tumor glands (like in the normal colon) is conserved
during growth of both adenomas and adenocarcinomas. The
geometry of the tumor at carrying capacity appears to be
complex, with substantial folding and intertwined glandular
architecture. However, due to preservation of the glandular
subunits during growth, and lateral fission of glands, the
tumor is essentially 2D. The situation is similar to unfolding
a piece of paper after crumpling it into a ball.

iv) Several studies have found neutral evolution to be the dominant
regime for colorectal tumor growth (2, 3). Thus, we assume that
the founding cancer cell has already acquired the phenotypic
hallmarks of cancer (driver mutations). During the subsequent
clonal expansion, only effectively neutral passenger mutations
(not conferring any detectable selection) are acquired.

Two-Scale Model of the Expansion Phase
Based on these assumptions, we model the growth phase of
colorectal carcinogenesis on two separate physical scales. On the
larger scale we model tumor glands on a 2D lattice (Fig. S2A). At
the finer scale of individual glands, we model the stem cell
population as a cycle (Fig. S2B). The overall model structure is
summarized by the following iterative growth dynamics:

• Step 0: Start of the founder gland.

• Step 1: Gland filling.

• Step 2: Cell mixing within the gland.

• Step 3: Gland fission.

• Go to Step 1, until final tumor size is reached.

Next, we describe the individual steps in more detail.

Step 0: Formation and Fission of the Founder Gland. The growth
phase starts with a single cancer stem cell, which arises in the so-
called founder gland (Fig. S2 C, a). In the framework of neutral
evolution, the first cancer cell has acquired all necessary driver
mutations, and hence it has a substantial growth advantage over
the other stem cells in the founder gland, and it is assumed to
replace them in a clonal expansion (Fig. S2 C, b).
Step 0-a: Gland filling. It is assumed that each cell has an exponential
doubling time and hence that gland filling takes place in asyn-
chronous fashion.
Step 0-b: Cell mixing within the gland.Once the founder gland is fully
populated (Fig. S2 C, c), it undergoes mixing (Fig. S2 C, d) in the
sense that cells with a mobile phenotype can exchange their
position with a neighboring cell. In the process of mixing, cells
can move to the opposite side of the gland. Cellular mobility is
parameterized by the probability p of each stem cell to exchange
its location with a neighboring stem cell (p ∈ [0,1]).
Step 0-c: Gland fission. Finally, having reached its carrying capacity,
the founder gland undergoes fission and splits into two daughter
cells that each carry half of the mother cell content (Fig. S2 C, e).
Each of the two daughter cells and their respective progenies
then repeat the following three steps.

Step 1: Gland Filling.New daughter glands are half-full after fission
of the mother gland (Fig. S2 C, e). The resident stem cells now
divide asynchronously and stochastically and push their neigh-
boring cells along the growth direction to create space for their
daughter cells, until the gland is filled to capacity (Fig. S2 C, c).

Step 2: Cell Mixing. Once the gland is full (Fig. S2 C, c), mobile
cellular phenotypes can move around by exchanging their spot
with a neighboring cell (Fig. S2 C, d). Each cell jumps with
probability p. In the case of a jump, the cell exchanges its spot
with one of the two nearest neighbors, chosen with equal prob-
ability 1/2. The order by which the stem cells jump is random.
Importantly, through neighbor mixing, cells can end up on the
“opposite side” of the gland (e.g., the bottom two cells in Fig. S2
C, c and d). By increasing the jump probability p from 0 (no
jumps) to 1 (all cells jump), we model the phenotypic trait of
mobility conferred by the driver mutations acquired before the
exponential growth phase.

Step 3: Gland Fission.Once the gland has undergone mixing (Fig. S2
C, d), gland fission is initiated, and the gland splits according to
the fission axis, which is aligned with the growth direction. One of
the two daughter cells remains in the location of the mother
gland, whereas the second daughter gland creates space through
pushing other cells outward. We end up with two half-full
daughter glands (Fig. S2 C, e), which themselves then undergo
growth, mixing and fission, etc. Two important aspects about the
fission process need to be discussed in detail: how space is created
for the daughter cell that is placed on a neighboring spot (push-
ing) and synchronicity during early tumor growth.
Pushing.As a new gland is created during fission, space needs to be
created in absence of cell death (as is the case during the ex-
pansion phase). We model the pushing process by choosing a
pushing direction, generating a random path into that direction,
andmoving all cells along the path outward. See Fig. S3 for details
about the pushing process.
Synchronicity.During the early stages of tumor growth, we assume
that the time needed to regrow and split a gland is approximately
deterministic and that gland fission events are largely synchronous.
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For example, after fission of the founder gland, it is unlikely that
daughter gland 1 and its own progeny all undergo fission before
daughter gland 2 undergoes fission for the first time. After a
number of fission events (set to 10th gland fission generation, or
1,024 glands), we relax this condition and assume asynchronous
gland fission.

Mutation Accumulation
In the neutral evolution model, driver mutations have already
been acquired once the exponential growth phase kicks in.
Therefore, the tumor only accumulates neutral passenger mu-
tations during its growth. Furthermore, because only early mu-
tations are detectable in an exponentially growing population
(Fig. 2B) and because there is a sizable number of private mu-
tations found in excised tumor specimens (main text), there is a
relatively high frequency of mutation accumulation during the
first few cell divisions. For this reason, we assume that each new
cell division is accompanied by a burst of mutations in each
daughter cell, and the number of mutations acquired per burst is
modeled as a Poisson random variable with mean λ. We keep
track of the mutations acquired up to the fifth generation
(32 cells), allowing for a total of 64 mutation bursts with an
average of 64λ private mutations. The genotypes of cells and
clonal glands are then determined based on the acquired private
mutations.

Bulk and Gland Sampling in the Final Tumor
Tumor growth is simulated until the total size reaches 750,000
glands, or 6 × 106, 1.2 × 107, and 2.4 × 107 stem cells for sce-
narios with 8, 16, and 32 stem cells per gland, respectively. As-
suming that there are 10,000 cells per tumor gland, the final
tumors contain on the order of 1010 cells. To emulate the in vivo
experimental design, we extracted from the final tumor two bulk
samples in the form of two 25,000-gland patches [sampled from
opposing regions of the tumor (Fig. 2A)]. Next, we determined
the allele frequency of each private mutation in both samples
and discarded mutations with allele frequencies below the
threshold frequency of 10% (estimated sensitivity in next-
generation sequencing experiments) in both bulk samples. For
gland genotype analyses, we further sampled five glands from
each bulk.

Model Constraints
In developing the final model as described above, we went
through several iterations of informal model selection to ensure
that the various model properties are consistent with experi-
mental findings. Since these intermediate selection steps are no
longer visible in the final model, and insights gained may be
informative to the reader, we highlight here the key insights
gained during the model development process.
First, the experimental observation that private mutations were

side-specific in all adenomas (4/4) and more than half of carci-
nomas (9/15) imposed constraints on several modeling aspects.
For instance, only models with little stochasticity and substantial
geometric structure during early growth were able to recapitulate
the observed private mutation patterns. For this reason, we in-
troduced the notion of a growth direction during gland regrowth
(Fig. S2), as well as the necessity for synchronous gland fission
during the first 10 gland generations. Without these constraints,
we found that side mixing of private mutations was too common
even in tumors with no cellular motility (p = 0).
Second, the choice of a rectangular lattice to model the spatial

arrangement of the glands was motivated by computational
considerations and findings by ref. 4.
Third, the incorporation of mechanical aspects such as cell-cell

forces and pressure gradients would have rendered the model
more realistic but computationally intractable. Due to the rect-
angular lattice structure and the lack of pressure gradients, we

introduced the random pushing path (Fig. S3) to obtain spherical
tumors.
In summary, we developed a parsimonious neutral evolution

model of colorectal carcinogenesis that is consistent with biologic
knowledge and available data. A formal comparison of the early
cell mobility model against plausible alternatives is found in
Bayesian Model Selection.

ABC
To fit the model simulations to the targeted sequencing data from
the human colorectal tumors, we used ABC, a framework that
allows for approximate Bayesian inference in the absence of an
analytic likelihood (5, 6). In essence, the model-based simulated
data (D*) and the experimental data (D) are compared based on
a summary statistic (S) and a distance function ρ(S(D*),S(D)).
To this end, we first discretized the space of model parameters
θ = (λ, n, p) as follows: the mutation burst rate λ was discretized
into nine equal intervals (log-scale) over the range [0.05, 5.4]; the
number of stem cells n was discretized (log-scale) into (8, 16, 32),
and the cell mobility parameter p was discretized into four equal
intervals over [0,1]. To capture salient features of the available
data, we chose a multivariate summary statistic S = (S1, S2,...Sk)
where Si were the rescaled (mean zero and SD 1) versions of the
following:

• S1: Fraction of unique gland genotypes in bulk A.

• S2: Fraction of unique gland genotypes in bulk B.

• S3: Number of private mutations in bulk A.

• S4: Number of private mutations in bulk B.

• S5: Side-mixing present (binary).

• S6: Mean pairwise distance between glands in bulk A.

• S7: Mean pairwise distance between glands in bulk B.

The distance function was defined as an L2 distance

ρðSðDpÞ, SðDÞÞ=
 Xk

i=1

jSiðDpÞ− SiðDÞj2
!1=2

.

The idea behind ABC is to introduce a threshold e that discrim-
inates between acceptable (ρ ≤ e) and unacceptable (ρ > e)
parameter values. We precomputed 100 simulations for each
data point θi and used all simulations 15,000 simulated tumor
samples to normalize the individual summary statistics and to
compute e (as the fifth percentile of ρ across all simulations).
Then, assuming uniform prior distributions (on the log scales for
λ and n), we applied the following rejection algorithm:

Step 1) Choose a parameter value on the grid θi, uniformly at
random.

Step 2) Run the computational model to generate the model
output M.

Step 3) Accept θj if ρ(S(M), S(D)) < e, and reject otherwise.
Return to step 1.

The marginal posterior distributions are shown in Fig. S4 for
adenomas, nonmixing carcinomas, and mixing carcinomas. Pos-
terior checks were performed for all tumor samples to ascertain
satisfactory goodness of fit; see Fig. S5 for examples.

Bayesian Model Selection
We compared the performance of the model with early cell
mobility (model M1) against three a priori plausible alternatives,
outlined below.
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Model with Selection (M2). Side mixing of private mutations could
potentially be due to the presence of expansive clones that are
selected for during tumor evolution. To model this scenario, we
assumed that one of the early mutations (chosen uniformly at
random) conferred a selective advantage s (i.e., the cell division
rate of mutant cells is 1 + s times higher than the rate of cells
without the driver mutation). Given the paucity of driver muta-
tions found in each branch of the ancestral trees (Table 1), we
limited the model to a single driver mutation in addition to the
public drivers present in the first tumor cell. The selection
strength of cancer driver mutations remains poorly character-
ized, but studies suggest that s is <10% (7, 8). We therefore
explored a discretized fitness advantage of s ∈ (0%, 2.5%, 5%,
7.5%, 10%). The number of stem cells and mutation burst rate
were modeled as in the early cell mobility model M1. The pos-
terior distributions for the model are shown in Fig. S7.

Delayed Cell Mobility Model (M3).To account for the possibility that
the cell mobility is not a trait present in the first tumor cell, but
due to an additional mutation in the expanding clone, we allowed
for a delay in cell mobility up to a tumor size of k glands with k =
0,1,2,4,8. The number of stem cells and mutation burst rate were
modeled as in the early cell mobility model M1. The posterior
distributions for the model are shown in Fig. S8.

Self-Seeding of Tumor Cells (M4).Previous work suggests that cancer
cells may enter the circulation and reseed to other locations of the
primary tumor (9). Because such a model of self-seeding tumor
cells could potentially lead to a side-mixed mutation pattern, we
explored an alternative model formulation with long-range
seeding of tumor cells. To this end we introduced a self-
seeding rate per gland fission r. We discretized r on a loga-
rithmic scale as (4 × 10−6, 1.4 × 10−5, 5.2 × 10−5, 1.8 × 10−4, 6.7 ×

10−4), which translates into an expected number of self-seeded
tumor cells in the final tumor of (3.0, 11, 39, 139, 500). For each
self-seeding event, a randomly selected tumor cell from the di-
viding mother gland was inserted in a tumor gland chosen uni-
formly at random from the entire tumor mass. The number of
stem cells and mutation burst rate were modeled as in the early
cell mobility model M1. The posterior distributions for the model
are shown in Fig. S9.

Model Selection. To estimate the posterior model probabilities
P(MijD) for each tumor, we then performed rejection sampling
using a joint space-based approach (10). More precisely, starting
from a noninformative prior P(Mi) = 0.25, i = 1,2,3,4, we
implemented the following algorithm:

i) Draw a model M* according to the prior distribution;
ii) For model M*, draw a parameter set θ* based on the prior

distributions P(θjM*);
iii) Simulate data M* with parameters θ*, yielding simulated

tumor data D*;
iv) Compute the distance ρ(S(D*),S(D)); accept if ρ < e, and

reject otherwise; and
v) Repeat.

Finally, the posterior distributions over the joint model and
parameter space were marginalized to obtain the posterior
(marginal) model probabilities (Fig. S6). As expected, for ade-
nomas and nonmixing carcinomas, the data does not provide
evidence for or against any particular model. For the mixing
carcinomas however, the posterior distributions suggest that the
early cell mixing model best recapitulates the data. The Bayes
factors for the comparison of M1 against M2, M3, andM4, defined
as BF(M1:Mk) = P(M1jD)/P(MkjD), ranged from 2 to 10.
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Fig. S1. Ancestral trees. For each of the 19 human colorectal tumors, the ancestral trees were reconstructed based on the mutations in sampled glands.
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Fig. S2. Multiscale model of tumorigenesis. (A) Glands populate a 2D lattice. (B) Within each individual gland, the resident stem cells are positioned on a cycle.
(C) The expansion phase starts with the first tumor stem cell (red) in the founder gland (a). Having acquired all driver mutations, this first cell outcompetes the
precancerous cells (white) and fills the founder gland in the growth direction (b). Once the gland is full (c), the presence of cellular mobility enables mixing of
the founder gland (d), which may cause cells to move to the opposite side of the fission axis (e.g., bottom two cells in c and d). Gland fission is then initiated (d)
and leads to two daughter glands (e), whose growth directions are perpendicular to the fission axis of the mother gland. The two daughter cells now undergo
the same cycle of growth, mixing, and fission.

Fig. S3. Pushing dynamics after gland fission. (A) Upon fission of the mother gland, space needs to be created for the two daughter glands (blue dots).
Connecting (dotted line) the location of fission with the tumor center (red dot), we mark a sector (angle α) as prohibited. A “pushing direction” is then selected
among all allowed directions, uniformly at random. An angle of α = 90 was sufficient as to ensure spherical tumors. (B) Along the pushing direction, we
generate a stochastic path illustrated in yellow, and space for the additional cell is created by pushing resident cells outward along this path.
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A - Adenomas

B - Non-mixing
carcinomas

C - Mixing
carcinomas

Model M1
Early cell mobility

Fig. S4. Posterior parameter distributions for early cell mobility model. The posterior distributions for the mutation burst rate λ (log-scale), the number of
stem cells n (log-scale), and the cellular mobility p are shown for four adenomas (A), six nonmixing carcinomas (B), and nine mixing carcinomas (C). The letter to
the left indicates the tumor name (see also Table 1), and the y axis shows the posterior distribution of parameters.
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A - Adenomas

B - Non-mixing
carcinomas

C - Mixing
carcinomas

Model M2
Selec�on

Fig. S7. Posterior parameter distributions for selection model. The posterior distributions for the mutation burst rate λ (log-scale), the number of stem cells n
(log-scale), and the selection strength s are shown for four adenomas (A), six nonmixing carcinomas (B), and nine mixing carcinomas (C). The letter to the left
indicate the tumor name (see also Table 1), and the y axis shows the posterior distribution of parameters.
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A - Adenomas

B - Non-mixing
carcinomas

C - Mixing
carcinomas

Model M3
Delayed mixing

Fig. S8. Posterior parameter distributions for delayed cell mobility model. The posterior distributions for the mutation burst rate λ (log-scale), the number of
stem cells n (log-scale), and the mobility onset delay k are shown for four adenomas (A), six nonmixing carcinomas (B), and nine mixing carcinomas (C). The
letter to the left indicates the tumor name (see also Table 1), and the y axis shows the posterior distribution of parameters over their prior ranges.
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A - Adenomas

B - Non-mixing
carcinomas

C - Mixing
carcinomas

Model M4
Self-seeding

Fig. S9. Posterior parameter distributions for self-seeding model. The posterior distributions for the mutation burst rate λ (log-scale), the number of stem cells
n (log-scale), and the self-seeding rate r are shown for four adenomas (A), six nonmixing carcinomas (B), and nine mixing carcinomas (C). The letter to the left
indicates the tumor name (see also Table 1), and the y axis shows the posterior distribution of parameters over their prior ranges.
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