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Supplemental methods:  
 
Determination of malaria status 
 
Light Microscopy: Thin and thick blood smears were prepared for microscopy and stained in 
10% Giemsa prepared using acid buffered water (pH 7.2). The films were then read in 
duplicate under high power magnification in oil immersion on a light microscope (Optika B-
192) by two independent, experienced microscopists. Parasite counts were enumerated per 
every 200 white blood cells (WBCs) on the thick film. Parasite species were identified using 
the thin film. 
 
Rapid Diagnostic Tests (RDT):  Tests employed the SD Bioline™ kit (Standard Diagnostic, 
INC.) in accordance to manufacturer’s instructions. The kit provides identification of 
Plasmodium falciparum malaria based on a specific antibody reaction (histidine-rich protein 
II), and also a non-specific enzyme-based test (Plasmodium lactate dehydrogenase) for the 
presence of any other malaria species present in the area (P. ovale and P. malariae). 
 
DNA extractions: Three blood spots were collected on qualitative filter paper for confirmation 
of infection status and infecting species by nested PCR coupled to high resolution melting 
(HRM) targeting the 18S rRNA gene in a method adapted from Kipanga et al, (1) but with 
modifications. Briefly, an individual blood spot was punched using a 3mm punch 
decontaminated first using 10% bleach then followed by 70% ethanol and only with ethanol 
between all subsequent punches. The spots were placed in individual wells in a 96 well 
plate. For each plate, four wells set aside for two negative controls (blank filter paper) and 
two positive controls (DBS prepared from the WHO Plasmodium falciparum standard). Each 
well was then filled with 100 µL of Tris-EDTA (TE) buffer (pH 8.0) and the plate covered with 
an Eppendorf heat sealing foil (Eppendorf AG, Hamburg Germany) and placed on a shaker 
for 30 min at a speed of 1000rpm at room temperature. After shaking, the plate was 
centrifuged at 13000rcf for 5 minutes at 4°C (Eppendorf 5417R).  The DNA pellet obtained 
was washed and re-suspending three times in TE buffer. After the final wash, 10 µL of 
proteinase K buffer (1.5 mM MgCl2, 50mM KCL, 0.5% Tween 20, 100µg/mL proteinase K 
and 10mM tris-HCL; pH 8.3) was added to each well and the plate incubated at 55°C for 1 hr 
followed by a second incubation step at 95°C for 10 minutes to inactivate the proteinase K. 
The DNA extracts were then stored at -20°C for downstream processing. 
 
nPCR-HRM: Extracted DNA was amplified using two sets of primers; PL-1459-F and PL-
1706-R for the primary reaction and PL-1473-F and PL-1679-R for the nested amplification 
reaction. The primary reaction was carried out in a Veriti Thermocycler (Applied Biosystems) 
with thermal conditions consisting of an initial denaturation step of 95°C for 5 minutes then 
35 cycles of denaturation at 94°C for 20 seconds, decreasing annealing temperatures from 
65°C to 50°C for 25 seconds (cycles 1-5), 50°C for 40 seconds (cycles 6-10), 50°C for 50 
seconds (cycles 11-35), extension at 72°C for 30 seconds, and a final extension at 72°C for 
3 minutes. The nested reaction was carried out in a real-time PCR-HRM instrument, Rotor 
gene (QIAGEN, Germany), with HRM conditions consisting of an incremental temperature 
increase of 0.2°C from 75°C to 90°C and fluorescence acquisition at each 2 second 
temperature increment. Representative samples from each cluster of melt curves different 
from those of the WHO Plasmodium falciparum control were obtained cleaned up using the 
ExoSAP-IT™ protocol and sent for sequencing at Macrogenlab (Seoul, Korea). The 
sequences obtained were aligned to reference sequences of Plasmodium ovale and 
malariae (GenBank: AB182490 and GenBank: LT594624) using Geneious 6.1.6 software.  
 
Chemical analyses 



 
GC/MS Methods for K1: Compounds from a 2μl injection were separated on a SLB-5ms 
(30m x 0.25mm ID x 0.1μm film thickness; Supelco, USA), using the following temperature 
program: 35°C for 0.5 min then raised by 7°C/min to 270°C and a constant flow rate of 
1.2mL/min of helium. Compounds were detected with an electron impact single quadrapole 
mass spectrometer (70 eV: ion source 230°C: quadrapole 150°C, mass scan range: 30-350 
amu). The analyses were otherwise similar to those described for K2. 
 
Data analyses 
 
Discriminant Analysis of Principal Components (DAPC) was implemented in the adegenet R 
package v2.0.1 (2-3). The function find.clusters was used to determine the optimal number 
of PCs (to avoid unstable assignments of individuals to clusters, we used a maximum 
number of PCs corresponding to the sample size divided by three). 
 
For our predictive models, the data was partitioned into training and testing datasets, using 
70% and 30% of the data respectively. The training dataset was used to build the model 
using the methods “Adaboost.M1” (4), “rf” (5) and “rrf” (6) in the R caret package (7). 
Parameters for both models, ntree and mtry for random forest (rf) and mfinal for adaboost 
were tuned away before running each model, and the best combination of parameters was 
chosen using the accuracy as the performance metric. This final set of parameters was used 
to train the final version of the models and their performance were tested on the independent 
test dataset. 
  
Random forest is a bagging technique based on individual and independent classification 
trees that are run in parallel with different subsets of the data.  In this this ensemble, each 
tree is built on different bagging subsamples of samples and each split of the tree is 
constructed with a randomly selected subset of compounds. During the training process, 
random forest uses the out of bag (OOB) error rate as an estimation of the classification 
accuracy of the model (5). In Adaboost, on the other hand, the models are trained 
sequentially and each new model “learns” from the previous one focusing on samples that 
are difficult to classify (4). 
 
To further explore the date effect in selected compounds, we performed a two-way ANOVA 
in the R package ARTool (8),  with infection status (AS + S vs U) or (S vs U) and collection 
date as main effects (Tables S4-5). In this analysis, all collections on a given date took place 
at a single location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supporting figures and tables: 
 
 

 
 
Figure S1. Group separation using DAPC showing differences between Asymptomatic 
(blue), Symptomatic (red), and Uninfected (cyan) groups for foot and arm volatiles in K1. 
Vertical line: axis 1 (PC1); horizontal line: axis 2 (PC2). Points represent individual samples, 
with colours denoting malaria condition and inclusion of 95% inertia ellipses. 
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Figure S2. Top: Heatmap showing the fold change of individual compounds in asymptomatic 
relative to those in symptomatic individuals for K2-arm and K2-foot. Bottom: Volcano plots 
showing changes in individual compounds in asymptomatic individuals relative to those in 
symptomatic individuals, with compounds significantly up or down-regulated shown in green 
(p<0.05 and absolute fold change > 1.5). Non-significant regulated compounds with absolute 
fold change < 1.5 shown in black.  
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Table S1. RDT results and sensitivity (% of cases correctly identified by RDT) for 
symptomatic (S) and asymptomatic (AS) malaria infections, as confirmed by PCR. AS[sub] 
and S[sub] indicate sub-microscopic infections. 
 
 K1 K2 
 RDT + RDT - Sensitivity (%) RDT + RDT - Sensitivity (%) 
AS 64 1 98.5 54 0 100 
AS[sub] 21 15 58.3 19 7 73.1 
S 198 1 99.5 67 1 98.5 
S[sub] 63 24 72.4 82 24 77.4 

 
 



Table S2. Compounds included in our analyses, with retention time (RT), source and 
retention index (RI). 
 

No. Compound RT 

Standar
d 

Vendor 
(Purity) RI Published RI  

C-5 toluene 6.57 
Sigma 

(99.9%) 762 762 

C-8 octane 6.90 
Sigma 
(99%) 797 800 

C-9 hexanal 6.93 
Sigma 
(98%) 800 799 

C-12 2,4-dimethylheptane 7.25 
TCI 

(98%) 820 822 

C-14 ethylcyclohexane 7.49 
Sigma 
(99%) 836 838  

C-15 2,4-dimethylhept-1-ene  7.51 
TCI 

(98%) 838  - 

C-17 
4-hydroxy-4-

methylpentan-2-one 7.58 
Sigma 
(99%) 841 840 

C-20 ethylbenzene 7.90 
Sigma 
(99%) 862 868 

C-22 m-xylene or p-xylene 8.02 
Sigma 

(99.5%) 870 867 (m), 883 (p) 

C-27 o-xylene 8.44 
Acros 
(99%) 897 896 

C-31 Unidentified* 8.62   907   

C-38 propylcyclohexane 9.12 
Sigma 
(99%) 932 936 

C-43 
1-ethyl-3-

methylbenzene 9.71 
Fluka 
(99%) 963 968 

C-44 benzaldehyde 9.72 
Sigma 
(99%) 963 996 

C-49 Unidentified* 
10.1

9   988   

C-50 1,2,4-trimethylbenzene 
10.3

8 
Fluka 

(98.5%) 997 985 

C-51 decane 
10.4

5 
Sigma 
(99%) 

100
3 999 

C-52 octanal 
10.5

3 
Sigma 
(99%) 

100
4 1004 

C-55 S-(-)-limonene 
11.1

1 
Fluka 
(99%) 

103
1 1036 

C-56 2-ethylhexan-1-ol 
11.1

1 
Fluka 
(99%) 

103
1 -  

C-61 nonanal 
12.7

5 
Sigma 
(95%) 

110
8 1108 

C-62 dodecane 
14.7

0 
Fluka 
(98%) 

120
1 1199 

* indicates compounds could not be acquired commercially 
- indicates no published RI available 
 
 
 
 



 
 
Table S3 Reported mosquito response to individual compounds 
 
  Compound ID 

C-5 toluene 
C-8 octane 
C-9 hexanal*(9) 
C-12 2,4-dimethylheptane 
C-14 ethylcyclohexane 
C-15 2,4-dimethylhept-1-ene  
C-17 4-hydroxy-4-methylpentan-2-one 
C-20 ethylbenzene* (10) 
C-22 m-xylene or p-xylene*(10) 
C-27 o-xylene 
C-31 Unidentified 
C-38 propylcyclohexane  
C-43 1-ethyl-3-methylbenzene 
C-44 benzaldehyde*(11-13) 
C-49 Unidentified 
C-50 1,2,4-trimethylbenzene*(14) 
C-51 decane 
C-52 octanal*(11, 14) 
C-55 S(-)-limonene*(9) 
C-56 2-ethylhexan-1-ol* (11) 
C-61 nonanal* (11) 
C-62 dodecane  

 
Asterisks indicate compounds in the literature that elicit electrophysiological or behavioral 
responses from mosquitoes (with relevant citations provided). Key predictive compounds 
discussed in the text are listed in bold. 
  



Table S4. Previous reported occurrence and known biological sources of key predictive 
compounds. 
 

Compound no. Reported volatile emissions Known biological sources 

C-5 toluene Human skin (15) and breath 
(16); Plasmodium in vitro (17) 

Produced by Clostridium and other 
bacteria genera found in the human 
gut microbiome (18) 

C-9 hexanal Human skin (15), and 
Plasmodium in vitro (19) 

Produced by Lactobacillus and 
Enterococcus bacteria (20), which are 
present in the human gut microbiome 
(21). Also formed by the peroxidation 
of fatty acids in cell membrane 
phospholipids (22) 

C-14 ethylcyclohexane Human breath (23) Produced by Lactobacillus bacteria 
(24) 

C-17 
4-hydroxy-4-
methylpentan-2-
one 

Guinea pig (25) and dog (26) 
skin volatiles; fox odor glands 
(27) 

Cytochrome P450 mediated oxidation 
of degradation products of squalene 
(28, 29) 

C-20 ethylbenzene Human breath (30) 
Produced by Streptococcus mutans, 
which has been linked to human oral 
decay (31) 

C-31 Unidentified - - 

C-38 propylcyclohexan
e 

Actinomycetes bacteria (32, 
33) 

Produced by Actinomycetes bacteria, 
which can be present in the human 
gut microbiome (32, 33) 

C-49 Unidentified - - 

C-56 2-ethylhexan-1-ol 
Emitted by Heliothis virescens 
larvae (34) and Cydia 
nigricana moths (35) 

Produced by Streptococcus mutans, 
which has been linked to human oral 
decay (31) 

C-61 nonanal Human skin (15) and breath 
(23)  

Formed by the peroxidation of fatty 
acids in cell membrane phospholipids 
(22) 

 
  



Table S5. Effect of infection status, comparing infected individuals vs uninfected individuals 
(AS + S vs U) on specific dates, effect of date, and interaction between these factors on 
emission levels of key predictive compounds. Two-way ANOVA, N=9. 
 
 

Compound 

Malaria status 
F(1,43) 
p value  

Date  
F(8,43) 
p value 

Interaction  
F(8,43) 
p value 

C-5 [toluene] 
36.87 

2.90E-07 
8.78 

5.10E-07 
15.28 

2.50E-10 

C-9 [hexanal] 
25.43 

8.80E-06 
6.17 

2.70E-05 
7.56 

3.00E-06 

C-14 [ethylcylohexane] 
36.18 

3.50E-07 
28.70 

7.60E-15 
7.50 

3.30E-06 
C-17 [4-hydroxy-4-methylpentan-2-
one] 

4.60 
3.80E-02 

12.17 
6.90E-09 

2.01 
6.80E-02 

C-20 [ethylbenzene] 
4.69 

3.60E-02 
43.72 

3.40E-18 
5.02 

2.00E-04 

C-31 [Unidentified] 
31.86 

1.20E-06 
6.08 

3.10E-05 
6.36 

2.00E-05 

C-38 [propylcyclohexane] 
78.26 

3.10E-11 
27.27 

1.80E-14 
8.29 

1.00E-06 

C-49 [Unidentified] 
63.41 

5.30E-10 
17.49 

3.00E-11 
7.55 

3.10E-06 

C-56 [2-ethylhexan-1-ol] 
14.17 

5.00E-04 
3.01 

9.00E-03 
5.17 

1.50E-04 

C-61 [nonanal] 
0.241 

6.30E-01 
2.36 

3.30E-02 
1.43 

2.10E-01 
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