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The piecewise functions f,(z) , gp(x) and g(x) are defined as
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Additionally, fp1 = 2ks, gp1 = 2ks, g1 = 2k7, gpo = 4 (fp1 + gp1), 92 = 2091, gp3 = 3¢p1 and g3 = 3¢1. The values of

k1 to kv as well as g1 to gp3 and g1 to g3 are chosen to match experimental values (1).

The functions Ap to E for the Distribution Moment Approximation are constructed explicitly as follows. Given the

reduced ODE form

dt
the functions Ax-C) are given by
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whereas the functions D and Ep of
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are given by
Dy = k2/ xAnAmpdac
B :/ g (z) xPngppde.
We assume a Gaussian distribution for n 45, of the form
2
u (z —p1)
10 2q2
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for which
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Similarly n 4s is Gaussian with moments Mosg, Moy, Mos.
We also consider integrals of the form
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Ify; = (9”;7?") and 7; = (";7_’”) for i = 1,2, we may write J (1) and K (1) of the form
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Expanding these integrals results in a series of integrals of the form
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We define the error function as I1o (71)=¢1 (Tl)z\/% I e~ 2 dy;, and Ix (T2) =¢s (T2>=\/% 1=, e~ % dys. These

lead to the following
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Considering B, D and the Gaussian assumed for n 47, we obtain
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Similarly by considering the Gaussian for 1 4, we obtain the expressions for Cy and Fp
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Finally in order to compute a form for A5 we consider the conservation condition [nas]+[nan|+[narp)+H[nanp|=1 and
obtain,

a ([nar] + [narpl) = =K1 ([nar] + [nanm]) + k2 ([narp] + [nanp)) (€1

dt
If we then make the substitution of c=[ns] + [naas] (equivalently fol nas(z,t) de+Mag in the DM system) we are then able
to calculate [nps,]=1 — ¢ — My (required by the expression of Ay), as well as [nas]=1 — Moy — My — [nasp). The resulting
expression for A is then given by

2
for (1 —¢) Mo 'y _(37;722)1)
Ap = Aroh I woro /0 A le 91 dgx. (32)
Expressing 1o [ xA“e_%dm using Eq (13) leads to
Varqs Jo
a= o Una (D) = Ina (0) Mo (33)
Finally the coupled system of ODEs is now given as
CHZIO = Ao — Bo + Co — ka2 M9 (34
d]l\jtu = A1 — By + C1 — kaMyy — v (t) Mo (35
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d]gtzg =Dy — Ey — k1Mo — 2v (t) Moy (39)
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The transmural pressure P, for the DM system is then given by

AFasnm

P = Py — (42)
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Figure 1: Lo, norm of the absolute error between the force produced by the MoC at each point and the MoC evaluated at
“gold standard” of V¢ = 2000 ODEs. The number of ODEs are reduced until the error is approximately equal to the norm of
the absolute error between the DM approximation and the MoC at gold standard. The dashed line indicates the level of error
from the 7 ODE DM approximation. Here ag = 20, P, = 20, f = 0.2.

where Fagys is given by Fagas (1) = / x [nam(x,t) + nanp(z,t)] dr and written as Fagyr = A [Mig + Moo for
the DM. P, is the pressure through the airway and the parameters p = 1s~! and 7y = 25. Crossbridge model parameter
-1

are from (2), specifically: ko = 0.1s7%, f,1 = 0.88s7!, g1 = 0.2257!, g1 = 0.01s7! and ky = 0.1s7 ! for0 < ¢t <
5s and 0.06s~!, for t > 5s. For this work, h = 1.

Numerical efficiency

In order to compare the efficiency of the DM to the MoC, we considered the number of ODEs required to be solved by each
method. For the DM method, this is fixed: 7 ODEs. For the MoC approach, one must choose the spatial discretization; specifi-
cally, the N¢ points over the spatial domain. We consider N¢ = 2000 as our “gold standard” solution. The key idea is that one
might also reduce the computational cost by reducing V¢, though doing so introduces additional error. Thus our approach to
quantifying the numerical efficiency is to determine the value of N, at which DM achieves the same error (relative to the gold
standard). In particular, we determined the maximum absolute error in the force produced between the MoC at N = 2000
(gold standard) and the DM approximation. The number of ODEs for the MoC was then systematically reduced and at each
point, the maximum absolute error between this and the MoC at gold standard was found. The number of ODEs for which the
error in the MoC is approximately equal to the error between the DM and gold standard MoC, was then considered equivalent
to the DM approximation. This process is represented in Fig 1. For these parameter values, the MoC requires ~ 690 = 3¢
ODEs compared with 7 ODEs required by the DM approximation to obtain the same relative error. These parameter values
were chosen as they represent a reasonable mid-range value in the main panel of Figure 4 of the main article. Other points in
parameter space were similarly explored for numerical efficiency and displayed similar improvements in DM vs MoC. Thus
using this approach, the DM method is approximately 100 times more efficient numerically than an equivalent MoC scheme.
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’ Order \ R;(em) \ Timaz (CTT) \ Py (ecmH50) \ ny \ o ‘

1 0.0058 0.0296 0.1603 1 7
2 0.0065 0.0318 0.1768 1 7
3 0.0073 0.0337 0.1985 1 7.185
4 0.0083 0.0358 0.2319 1 7.778
5 0.0096 0.0384 0.2767 1 8
6 0.0113 0.0414 0.3283 1 8
7 0.0132 0.0445 0.4020 1 8
8 0.0156 0.0484 0.4803 1 8.148
9 0.0185 0.0539 0.5680 1 8.741
10 0.0222 0.0608 0.6669 1 9.333
11 0.0269 0.0692 0.7746 1 9.926
12 0.0326 0.0793 0.8976 1 10
13 0.0395 0.0913 1.0242 1 10
14 0.0475 0.1052 1.1569 1 10
15 0.0569 0.1203 1.3357 1 10
16 0.0686 0.1374 1.5605 1 10
17 0.084 0.1585 1.7763 0.952 10
18 0.1026 0.183 1.9933 0.893 10
19 0.1244 0.2108 2.2320 0.833 10
20 0.1537 0.2463 2.5690 0.774 10
21 0.1908 0.2885 3.0320 0.715 10
22 0.2315 0.3307 3.5675 0.656 10
23 0.2791 0.3763 4.2393 0.6 10
24 0.341 0.4319 6.5936 0.6 10
25 0.4261 0.4982 15.1759 0.578 10
26 0.5375 0.5819 34.1380 0.519 10
27 0.6694 0.6995 40.0637 0.5 10
28 0.8157 0.8686 40.0637 0.5 10

Table 1: Table showing parameter values used from (3). Additionally in order to maintain continuity at P, = 0 we have

2 2
Py, = Pingy (Rz - Timaw)
an?
References

1. Keener, J. P, and J. Sneyd, 1998. Mathematical physiology, volume 1. Springer.

2. Mijailovich, S. M., J. P. Butler, and J. J. Fredberg, 2000. Perturbed equilibria of myosin binding in airway smooth muscle: bond-length
distributions, mechanics, and ATP metabolism. Biophysical Journal 79:2667-2681.

3. Politi, A. Z., G. M. Donovan, M. H. Tawhai, M. J. Sanderson, A.-M. Lauzon, J. H. Bates, and J. Sneyd, 2010. A multiscale, spatially
distributed model of asthmatic airway hyper-responsiveness. Journal of Theoretical Biology 266:614—624.

Biophysical Journal 00(00) 1-6



