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The piecewise functions fp(x) , gp(x) and g(x) are defined as

fp (x) =


0 x < 0

fp1x

h
0 ≤ x ≤ h

0 x > h

(1)

gp (x) =


gp2 x < 0
gp1x

h
0 ≤ x ≤ h

(gp1 + gp3)x

h
x > h

(2)

g (x) =


g2 x < 0
g1x

h
0 ≤ x ≤ h

(g1 + g3)x

h
x > h

. (3)

Additionally, fp1 = 2k3, gp1 = 2k4, g1 = 2k7, gp2 = 4 (fp1 + gp1), g2 = 20g1, gp3 = 3gp1 and g3 = 3g1. The values of
k1 to k7 as well as gp1 to gp3 and g1 to g3 are chosen to match experimental values (1).

The functions AΛ to EΛ for the Distribution Moment Approximation are constructed explicitly as follows. Given the
reduced ODE form

d

dt
M1Λ + Λv (t)M1(Λ−1) + k2M1Λ = AΛ −BΛ + CΛ (4)

the functions AΛ-CΛ are given by

AΛ =

∫ ∞
−∞

fp (x) xΛnMpdx (5)

BΛ =

∫ ∞
−∞

gp (x) xΛnAMpdx (6)

CΛ = k1

∫ ∞
−∞

xΛnAMdx (7)

whereas the functions DΛ and EΛ of
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d

dt
M2Λ + Λv (t)M2(Λ−1) + k1M2Λ = DΛ − EΛ. (8)

are given by

DΛ = k2

∫ ∞
−∞

xΛnAmpdx (9)

EΛ =

∫ ∞
−∞

g (x)xΛnAMdx. (10)

We assume a Gaussian distribution for nAMp of the form

nAMp =
M10√
2πq1

e
−

(x− p1)
2

2q2
1 (11)

for which

p1 =
M11

M10
, q1 =

√
M12

M10
−
(
M11

M10

)2

. (12)

Similarly nAM is Gaussian with moments M20,M21,M22.
We also consider integrals of the form

JΛ (η) =
1√

2πq1

∫ η

−∞
xΛe

−
(x− p1)

2

2q2
1 dx (13)

KΛ (η) =
1√

2πq2

∫ η

−∞
xΛe

−
(x− p2)

2

2q2
2 dx (14)

If yi = (x−pi)
qi

and τi = (η−pi)
qi

for i = 1, 2, we may write JΛ (η) and KΛ (η) of the form

JΛ (τ1) =
1√
2π

∫ τ1

−∞
(p1 + q1y1)

Λ
e−

y2
1
2 dy1 (15)

KΛ (τ2) =
1√
2π

∫ τ2

−∞
(p2 + q2y2)

Λ
e−

y2
2
2 dy2. (16)

Expanding these integrals results in a series of integrals of the form

I1Λ =
1√
2π

∫ τ1

−∞
yΛ

1 e
− y2

1
2 dy1 (17)

I2Λ =
1√
2π

∫ τ2

−∞
yΛ

2 e
− y2

2
2 dy2. (18)

We define the error function as I10 (τ1)=φ1 (τ1)= 1√
2π

∫ τ1
−∞ e−

y2
1
2 dy1 and I20 (τ2) =φ2 (τ2)= 1√

2π

∫ τ2
−∞ e−

y2
2
2 dy2. These

lead to the following
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J0 (τ) = φ1 (τ) (19)
K0 (τ) = φ2 (τ) (20)

J1 (τ) = p1φ1 (τ)− q1
e−τ

2/2

√
2π

(21)

K1 (τ) = p2φ2 (τ)− q2
e−τ

2/2

√
2π

(22)

J2 (τ) = p2
1φ1 (τ)− 2p1q1

e−τ
2/2

√
2π

+ q2
1

{
φ1 (τ)− τe−τ

2/2

√
2π

}
(23)

K2 (τ) = p2
2φ2 (τ)− 2p2q2

e−τ
2/2

√
2π

+ q2
2

{
φ2 (τ)− τe−τ

2/2

√
2π

}
(24)

J3 (τ) = p3
1φ1 (τ)− 3p2

1q1
e−τ

2/2

√
2π

+ 3p1q
2
1

{
φ1 (τ)− τe−τ

2/2

√
2π

}
− q3

1

(
2 + τ2

) e−τ2/2

√
2π

(25)

K3 (τ) = p3
2φ2 (τ)− 3p2

2q2
e−τ

2/2

√
2π

+ 3p2q
2
2

{
φ2 (τ)− τe−τ

2/2

√
2π

}
− q3

2

(
2 + τ2

) e−τ2/2

√
2π

(26)

Considering BΛ, DΛ and the Gaussian assumed for nAMp we obtain

BΛ =
M10√
2πq1h

∫ 0

−∞
gp2x

Λe
−

(x− p1)
2

2q2
1 dx+

∫ 1

0

gp1x
Λ+1e

−
(x− p1)

2

2q12
dx



+
M10√
2πq1h

∫ ∞
1

(gp1 + gp3)xΛ+1e
−

(x− p1)
2

2q2
1 dx


(27)

DΛ =
k2M10√
2πq1h

∫ 0

−∞
xΛe
− (x− p1)

2

2q2
1 dx+

∫ 1

0

xΛe
−

(x− p1)
2

2q2
1 dx



+
k2M10√
2πq1h

∫ ∞
1

xΛe
−

(x− p1)
2

2q2
1 dx


(28)

Similarly by considering the Gaussian for nAM we obtain the expressions for CΛ and EΛ

CΛ =
k1M20√
2πq2h

∫ 0

−∞
xΛe

−
(x− p2)

2

2q2
2 dx+

∫ 1

0

xΛe
−

(x− p2)
2

2q2
2 dx



+
k1M20√
2πq2h

∫ ∞
1

xΛe
−

(x− p2)
2

2q2
2 dx


(29)
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EΛ =
M20√
2πq2h

∫ 0

−∞
g2x

Λe
−

(x− p2)
2

2q2
2 +

∫ 1

0

g1x
Λ+1e

−
(x− p2)

2

2q2
2 dx



+
M20√
2πq2h

∫ ∞
1

(g1 + g3)xΛ+1e
−

(x− p2)
2

2q2
2


(30)

Finally in order to compute a form for AΛ we consider the conservation condition [nM ]+[nAM ]+[nMp]+[nAMp]=1 and
obtain,

d

dt
([nM ] + [nMp]) = −k1 ([nM ] + [nAM ]) + k2 ([nMp] + [nAMp]) (31)

If we then make the substitution of c=[nM ] + [nAM ] (equivalently
∫ 1

0
nM (x, t) dx+M20 in the DM system) we are then able

to calculate [nMp]=1− c−M10 (required by the expression of AΛ), as well as [nM ]=1−M20−M10− [nMp]. The resulting
expression for AΛ is then given by

AΛ =
fp1 (1− c)
(Λ + 2)h

− fp1
M10√
2πq1

∫ 1

0

xΛ+1e
−

(x− p1)
2

2q2
1 dx. (32)

Expressing M10√
2πq1

∫ 1

0
xΛ+1e

− (x−p1)2

2q21 dx using Eq (13) leads to

AΛ =
fp1 (1− c)
(Λ + 2)h

− fp1 (JΛ+1(1)− JΛ+1(0))M10 (33)

Finally the coupled system of ODEs is now given as

dM10

dt
= A0 −B0 + C0 − k2M10 (34)

dM11

dt
= A1 −B1 + C1 − k2M11 − v (t)M10 (35)

dM12

dt
= A2 −B2 + C2 − k2M12 − 2v (t)M11 (36)

dM20

dt
= D0 − E0 − k1M20 (37)

dM21

dt
= D1 − E1 − k1M21 − v (t)M20 (38)

dM22

dt
= D2 − E2 − k1M22 − 2v (t)M21 (39)

dc

dt
= −k1c+ (1− c) k2 (40)

dr

dt
= ρ (R (Ptm)− r) (41)

The transmural pressure Ptm for the DM system is then given by

Ptm = P0 −
λFASM

r
(42)
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Figure 1: L∞ norm of the absolute error between the force produced by the MoC at each point and the MoC evaluated at
“gold standard” of Nξ = 2000 ODEs. The number of ODEs are reduced until the error is approximately equal to the norm of
the absolute error between the DM approximation and the MoC at gold standard. The dashed line indicates the level of error
from the 7 ODE DM approximation. Here α0 = 20, Pmin = 20, f = 0.2.

where FASM is given by FASM (t) =

∫ ∞
−∞

x [nAM (x, t) + nAMp(x, t)] dx and written as FASM = λ [M10 +M20] for

the DM. P0 is the pressure through the airway and the parameters ρ = 1s−1 and γ0 = 25. Crossbridge model parameter
are from (2), specifically: k2 = 0.1s−1, fp1 = 0.88s−1, gp1 = 0.22s−1, g1 = 0.01s−1 and k1 = 0.1s−1 for 0 < t <
5s and 0.06s−1, for t > 5s. For this work, h = 1.

Numerical efficiency

In order to compare the efficiency of the DM to the MoC, we considered the number of ODEs required to be solved by each
method. For the DM method, this is fixed: 7 ODEs. For the MoC approach, one must choose the spatial discretization; specifi-
cally, the Nξ points over the spatial domain. We consider Nξ = 2000 as our “gold standard” solution. The key idea is that one
might also reduce the computational cost by reducing Nξ, though doing so introduces additional error. Thus our approach to
quantifying the numerical efficiency is to determine the value of Nξ at which DM achieves the same error (relative to the gold
standard). In particular, we determined the maximum absolute error in the force produced between the MoC at Nξ = 2000
(gold standard) and the DM approximation. The number of ODEs for the MoC was then systematically reduced and at each
point, the maximum absolute error between this and the MoC at gold standard was found. The number of ODEs for which the
error in the MoC is approximately equal to the error between the DM and gold standard MoC, was then considered equivalent
to the DM approximation. This process is represented in Fig 1. For these parameter values, the MoC requires ≈ 690 = 3Nξ
ODEs compared with 7 ODEs required by the DM approximation to obtain the same relative error. These parameter values
were chosen as they represent a reasonable mid-range value in the main panel of Figure 4 of the main article. Other points in
parameter space were similarly explored for numerical efficiency and displayed similar improvements in DM vs MoC. Thus
using this approach, the DM method is approximately 100 times more efficient numerically than an equivalent MoC scheme.
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Order Ri(cm) rimax(cm) P1(cmH2O) n1 n2

1 0.0058 0.0296 0.1603 1 7
2 0.0065 0.0318 0.1768 1 7
3 0.0073 0.0337 0.1985 1 7.185
4 0.0083 0.0358 0.2319 1 7.778
5 0.0096 0.0384 0.2767 1 8
6 0.0113 0.0414 0.3283 1 8
7 0.0132 0.0445 0.4020 1 8
8 0.0156 0.0484 0.4803 1 8.148
9 0.0185 0.0539 0.5680 1 8.741
10 0.0222 0.0608 0.6669 1 9.333
11 0.0269 0.0692 0.7746 1 9.926
12 0.0326 0.0793 0.8976 1 10
13 0.0395 0.0913 1.0242 1 10
14 0.0475 0.1052 1.1569 1 10
15 0.0569 0.1203 1.3357 1 10
16 0.0686 0.1374 1.5605 1 10
17 0.084 0.1585 1.7763 0.952 10
18 0.1026 0.183 1.9933 0.893 10
19 0.1244 0.2108 2.2320 0.833 10
20 0.1537 0.2463 2.5690 0.774 10
21 0.1908 0.2885 3.0320 0.715 10
22 0.2315 0.3307 3.5675 0.656 10
23 0.2791 0.3763 4.2393 0.6 10
24 0.341 0.4319 6.5936 0.6 10
25 0.4261 0.4982 15.1759 0.578 10
26 0.5375 0.5819 34.1380 0.519 10
27 0.6694 0.6995 40.0637 0.5 10
28 0.8157 0.8686 40.0637 0.5 10

Table 1: Table showing parameter values used from (3). Additionally in order to maintain continuity at Ptm = 0 we have

P2 =
P1n2

(
R2
i − r2

imax

)
n1R2

i

.
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