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ABSTRACT Asthma is fundamentally a disease of airway constriction. Due to a variety of experimental challenges, the dy-
namics of airways are poorly understood. Of specific interest is the narrowing of the airway due to forces produced by the
airway smooth muscle wrapped around each airway. The interaction between the muscle and the airway wall is crucial for the
airway constriction that occurs during an asthma attack. Although cross-bridge theory is a well-studied representation of
complex smooth muscle dynamics, and these dynamics can be coupled to the airway wall, this comes at significant compu-
tational cost—even for isolated airways. Because many phenomena of interest in pulmonary physiology cannot be
adequately understood by studying isolated airways, this presents a significant limitation. We present a distribution-moment
approximation of this coupled system and study the validity of the approximation throughout the physiological range. We
show that the distribution-moment approximation is valid in most conditions, and we explore the region of breakdown. These
results show that in many situations, the distribution-moment approximation is a viable option that provides an orders-of-
magnitude reduction in computational complexity; not only is this valuable for isolated airway studies, but it moreover offers
the prospect that rich ASM dynamics might be incorporated into interacting airway models where previously this was pre-
cluded by computational cost.
INTRODUCTION
Asthma is characterized by bronchospasm and reversible
airway obstruction, along with persistent inflammatory
changes on a longer timescale. The former is driven by
the activation and subsequent constriction of airway smooth
muscle (ASM), which surrounds each airway. As such,
ASM has been the focus of much research into the underly-
ing pathophysiology of asthma, both experimentally (e.g.,
(1–4)) and theoretically (5–10). Often this is done on
ASM strips that have been excised from the surrounding
tissue; this has many benefits in terms of experimental con-
trol, but it raises questions about the nature of the interac-
tions between the ASM and other tissues that occur
in vivo. Recently, several studies using methods that pre-
serve some of this interaction have highlighted the impor-
tance of considering these interactions when attempting to
extrapolate from in vitro results to in vivo (11–16).
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Theoretical models have been developed in parallel with
these experimental findings in an attempt to understand the
complex interaction mechanisms between ASM and the
airway wall (17–19). These efforts are heavily influenced
by extensive efforts to model ASM in isolation: specifically,
the rich dynamics of ASM are arguably best described by
cross-bridge theory, originating with Huxley (20) for stri-
ated muscle, adapted to smooth muscle by Hai and Murphy
(5,6), and reaching its modern form for ASM with Mijailo-
vich et al. (7) and subsequent variants (e.g., (8,9); see (21)
for more details on cross-bridge theory and its evolution).
Although cross-bridge theory offers much insight into the
rich dynamics of ASM, it also presents a significant chal-
lenge, namely, that ASM cross-bridge models are typically
coupled systems of hyperbolic partial differential equations
(PDEs). These equations submit to analytic solution in very
few situations, and typically they must be solved numeri-
cally. Even then, the computational cost is significant, and
even more so when coupling with the airway wall is
introduced.

Several groups have successfully combined cross-bridge
PDEs with coupled airway wall models in investigations
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of key phenomena (17–19), but thus far only in isolated air-
ways. Unfortunately it is increasingly clear that whole-lung
behavior often cannot be easily inferred from isolated-
airway behavior (22) and that inter-airway interactions,
via both flow coupling and parenchymal interdependence,
must be considered. (Direct mechanical effects through
the parenchyma are also possible, but likely minimal unless
the airways are very close together (23,24).) These inter-
airway interactions, and their role in asthma, have also
been the subject of extensive theoretical investigation
(25–29), but typically using only vastly simplified models
for ASM. Thus, existing models exhibit a dichotomy:
incorporate rich cross-bridge ASM dynamics on an iso-
lated-airway basis, or explore inter-airway interactions and
abandon cross-bridge theory. At present, this is dictated by
computational complexity.

The obvious approach is to construct ASM models of
lesser complexity—typically ordinary, rather than partial,
differential equations (ODEs). Often this is done via cir-
cuit analog (e.g., (10)) or other phenomenological basis
(30). In this article, we derive a systematic reduction of
the cross-bridge PDEs to ODEs using the distribution-
moment (DM) approximation method due to Zahalak
(31). The central idea is that because the system of hyper-
bolic PDEs describes probability distribution functions
(PDFs) of the bonds, by making an ansatz regarding the
form of these distributions, one can reduce the governing
PDEs to a system of ODEs in terms of the DMs. Although
the DM method has been used for other types of muscle
(e.g., (32,33)), it is not widely used for ASM. In terms
of computational cost, the savings of such an approach
is potentially two orders of magnitude (or more). If appro-
priate, then, a DM approximation to the ASM-airway
coupled system would result in vast computational sav-
ings for isolated airways, but, perhaps more importantly,
it will open up the prospect of incorporating appropriately
rich ASM dynamics into lung-scale interacting-airway
models.

We thus proceed as follows: starting from a coupled
cross-bridge-airway model (19), we derive the appropriate
DM approximation according to Zahalak’s approach (31).
(Zahalak’s original article pre-dates application of cross-
bridge theory to ASM theory; it describes a detailed appli-
cation of the DM approximation approach to the original
Huxley model, consisting of a single PDE. Although the
general principles are applicable to an ASM cross-bridge
system of PDEs, several adjustments are necessary to
accommodate such a system.) We then proceed to test
the validity of the approximation by making appropriate
comparisons between solutions to the DM approximation
model and solutions to the full cross-bridge PDE-based
model. In making this comparison, we are aided by
several aspects of the problem: first, that airways are typi-
cally subject to an oscillatory pressure environment (viz.
breathing), and second, that airway bistability (19,34,35)
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can provide a natural metric by discriminating between
‘‘open’’ and ‘‘closed’’ (or effectively closed) airway states.
In this way, we are able to establish regions of validity for
the DM approximation to the coupled airway-ASM sys-
tem. We show that most parameter space exhibits good
quantitative agreement between the DM approximation
model and its full PDE-based counterpart. Furthermore,
although significant quantitative deviations do begin to
appear when the airway is subjected to high-amplitude,
high-frequency oscillations near airway closure, it is
important to note that the qualitative behavior is main-
tained, suggesting that a relatively simple correction
factor might render the DM approximation acceptable
throughout parameter space. Thus, the DM approximation
to cross-bridge dynamics within a coupled ASM-airway
system provides a viable alternative to the solution of
the explicit cross-bridge PDEs and an avenue for future
inclusion of (systemically reduced) ASM dynamics in
lung-scale interacting airway models.
METHODS

Model

In this section, we describe two approaches to modeling the same system.

The first is to use an isolated, intact airway segment, with ASM and

airway wall intact but shorn of parenchymal attachments and with explicit

pressure control. By design, this mimics experimental apparatus (e.g.,

(13,14)). The fundamental model elements are the cross-bridge ASM

model of Mijailovich et al. (7) and the airway-wall model of Lambert

et al. (36), appropriately coupled together (19,37). This system will be

both solved directly and then reduced using the DM approximation.

Here, we briefly review key model elements before proceeding to the

DM derivation.
ASM cross-bridge model

At its most basic, cross-bridge theory involves the binding, unbinding,

and sliding of the so-called thick and thin filaments, myosin (M), and

actin (A). Binding and unbinding is governed not just by Ca2þ but by

the position of the actin and myosin filaments (21). The model proposed

by Mijialovich et al. (7) includes position-dependent rate transitions

between the phosphorylated populations Mp and AMp (unbound and

bound, respectively) and also between the unphosphorylated myosin

populations M and AM, analogous to that originally defined by Huxley

(20). This model can be represented as a system of four coupled

PDEs that express conservation for each myosin species and are

written as

Dnðx; tÞ
Dt

¼ Tðx; tÞnðx; tÞ; (1)

where the vector, nðx; tÞ, corresponds to each of the myosin states (nMðx; tÞ,
nMpðx; tÞ, nAMpðx; tÞ, and nAMðx; tÞ) which are all functions of space ðxÞ
and time ðtÞ. The operator D=Dt represents the material derivative,

v=vt � vðtÞv=vx, where vðtÞ is the velocity of the actin filament relative

to the myosin filament. The rate transition matrix Tðx; tÞ represents

the transitions between these states and how these rates vary with the posi-

tion of the myosin head relative to the actin filament. These rates then

depend on the binding-site positioning and hence the filament movement,

as represented by



Tðx; tÞ ¼

2
664
�k1ðtÞ k2 0 gðxÞ
k1ðtÞ ��k2 þ fpðxÞ

�
gpðxÞ 0

0 fpðxÞ ��k2 þ gpðxÞ
�

k1ðtÞ
0 0 k2 �ðk1ðtÞ þ gðxÞÞ

3
775: (2)

DM Approach to Coupled Airway Dynamics
Briefly, k1 and k2 are (spatially independent) phosphorylation and de-phos-

phorylation rates; fpðxÞ is the binding rate (phosphorylated), whereas gpðxÞ
and gðxÞ are the unbinding rates (phosphorylated and unphosphorylated,

respectively). Specific forms fpðxÞ, gpðxÞ, and gðxÞ are from Mijailovich

et al. (7) (see the Supporting Material). This system of PDEs is also subject

to the conservation equation

nMðx; tÞ þ nMp
ðx; tÞ þ nAMðx; tÞ þ nAMp

ðx; tÞ ¼ 1: (3)

The relative myosin filament velocity, v, is related to the muscle length, L,

by �gdLðtÞ=dt ¼ vðtÞ, and the force produced by the ASM is considered as

being proportional to the sum of the first moment of the bound states nAM
and nAMp (37) and is given as

FASMðtÞ ¼
Z N

�N

x
�
nAMðx; tÞ þ nAMpðx; tÞ

�
dx: (4)

The g proportionality constant relates the macroscopic scaling factor for the

relative change in cross-bridge velocity to the smooth muscle cell velocity.
Airway-wall model

The radius of the airway lumen is determined by the transmural pressure,

Ptm, and is given by the static model of Lambert et al. (36) as

RðPtmÞ ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i

 
1� Ptm

P1

!�n1
vuut ; Ptm%0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2imax �

�
r2imax � R2

i

� 
1� Ptm

P2

!�n2
vuut ; PtmR0

;

(5)

where the maximal radius, rimax, the radius Ri (at Ptm ¼ 0), and the param-

eters n1, n2, and P1 are all dependent on the airway order and P2 is calcu-

lated explicitly from rimax, Ri, n1, n2, and P1. (see Table S1). Using the

notation r for the time-dependent airway radius, we then impose first-order

relaxation dynamics toward the static equilibria,

dr

dt
¼ r½RðPtmÞ � r�; (6)

which has stable fixed points at open and closed states for the time constant

r> 0 (19,29).
ASM-airway model coupling

The ASM and the airway wall can be coupled by considering relationships

between the ASM length, the radius of the airway lumen, and the contribu-

tion of the tension of the ASM to the pressure balance. We assume that

any change in length ðLÞ of the ASM directly affects the radius
of the airway ðrÞ, which can be modeled via the relationship

vðtÞ ¼ �gðdL=dtÞ ¼ �g=2pðdr=dtÞ , for which L ¼ 2pr. Additionally,

the force produced by the ASM (37) to constrict the airway is modeled as

k ¼ l

Z N

�N

x
�
nAM þ nAMp

�
dx ¼ lFASM; (7)

which affects the transmural pressure via

Ptm ¼ P0 � k

r
: (8)

The 1=r dependence arises from the Laplace law approximation for a thin-

walled cylinder and Ptm refers to the effective transmural pressure, arising

as a combination between the imposed transmural pressure, P0, and the

constricting pressure of the ASM. Here, we see the coupling of the

force produced by the tension of the ASM to the airway wall, where

we introduce the force scaling parameter, l, which controls the magnitude

of the force. Additionally, for the coupling mechanism we use the length-

radius relationship, vðtÞfð�dr=dtÞ. Finally, substituting the relationship

g ¼ g0=rimax to adjust for the airway size of differing airway orders, we

obtain

vðtÞ ¼ �g0

2primax

�
dr

dt

�
; (9)

which relates the relative filament velocity of the muscle contractile units to

the rate of change of the radius of the airway lumen.
The DM approximation

The fundamental idea behind the DM approximation (31) is that the cross-

bridge equations describe solutions that are distributions. Thus, by

assuming a form for those distributions, under certain conditions (see the

Conclusions for more details regarding the conditions), the original system

of equations (PDEs) can be reduced to ODEs, which describe the evolution

of the moments of the distribution(s). Consider the following equations

representing the change in distribution populations of the attached phos-

phorylated myosin and the attached dephosphorylated myosin during the

cross-bridge cycle:

vnAMp

vt
� vðtÞ vnAMp

vx
¼ fpðxÞnMp �

�
k2 þ gpðxÞ

�
nAMp

þ k1nAM (10)

vnAM vnAM

vt

� vðtÞ
vx

¼ k2nAMp � ðk1 þ gðxÞÞnAM: (11)

If we multiply both sides of Eq. 10 by xL and integrate over the domain of x,

we obtain
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d

dt

Z N

�N

xLnAMpdx � vðtÞ
Z N

�N

xL
vnAMp

vx
dx

þ k2

Z N

�N

xLnAMpdx

Z N
L

Z N
L
¼

�N

x fpðxÞnMpdx �
�N

x gpðxÞnAMpdx

þ k1

Z N

�N

xLnAMdx:

Defining M1LðtÞ ¼
RN
�N xLnAMp dx to be the Lth moment of the bond

distribution, Eq. 10 further reduces to the ODE
d

dt
M1L þLvðtÞM1ðL�1Þ þ k2M1L ¼ AL � BL þ CL: (12)

After this process, Eq. 11 can be reduced to

d

dt
M2L þLvðtÞM2ðL�1Þ þ k1M2L ¼ DL � EL: (13)

Here, as in (31), we assume a Gaussian shape; hence, three moments are

required to define the distribution—the usual mean (first moment) and vari-

ance (second moment), but also normalization by the zeroth moment. The

right-hand-side terms AL to EL depend on the assumed form of the distri-

bution and are computed in terms of the moments—explicit derivation is

given in the Supporting Material.

In the original DM method (31), only one bound species was consid-

ered; here, our ASM cross-bridge system has two bound species and

two unbound species. Above, we have described the equations that govern

the moments of the bound species. In addition, we have the conservation

law (Eq. 3), which allows us to express one unbound species. To close the

system, we require one additional constraint; fortunately, the balance be-

tween phosphorylated and de-phosphorylated species can provide that

closure. Specifically, we write the dephosphorylated fraction, c, which is

then governed by

dc

dt
¼ �k1cþ ð1� cÞk2; (14)

where c ¼ R 1
0
nM dx þM20, the sum of the zeroth moments of nM and nAM

(see Supporting Material). This then allows us to close the system for the

unbound species nMp and nM (see the Supporting Material). Thus, the

DM system of ODEs consists of Eqs. 12, 13 (for L ¼ 0; 1; 2), 14, and 6.
Numerical methods

The DM system of ODEs is solved numerically using the standard fourth-

order Runge-Kutta method (RK4). The PDE-based cross-bridge system is

solved by first reducing to a larger system of ODEs using the method of

characteristics (MoC; e.g., (19)), which is then also integrated using the

RK4 method. In both models, the initial conditions were chosen as the

steady-state solution without ASM activation. Parameter values are given

in Table S1.
FIGURE 1 Underlying bistability response of a (static-force) peripheral

airway to an increase in force (dashed gray line), as well as sample trajec-

tories for each model (black lines) in the absence and presence of activated

(dynamic) ASM.
Inter-model comparison

Comparison between the full model (the PDE cross-bridge-based system)

and its DM-based approximation is complicated by the conditions imposed

on the system. For example, the accuracy of the DM approximation might
496 Biophysical Journal 114, 493–501, January 23, 2018
be very different in an iso-pressure contraction of a large, cartilaginous

central airway, as opposed to contraction of a small, peripheral airway

under periodic breathing. If one allows an arbitrary external pressure wave-

form, the space over which a comparison must be made is, in fact, of infinite

dimension.

To simplify this comparison to workable form, we make two key

reductions:

1. We assume a three-parameter external pressure waveform consisting

of triangular waves; thus, the frequency, amplitude, and minimum

pressure (three parameters) are sufficient to define this space. This is

designed to mimic both common experimental protocols and also in vivo

considerations.

2. Rather than attempting to quantify the entire time-series solutions to the

system, we define a key measure based on the relevant physiological

concerns. These are that, first, the airway luminal radius is the primary

quantity of interest, and second, the existence of airway bistability can

be exploited. Namely, for a given airway size, degree of activation,

and fixed external pressure waveform, an airway can respond in only

three qualitatively distinct ways: a) remain in the open state; b) close,

and remain in the closed state; or c) switch between open and closed

states indefinitely. The basic idea is illustrated in Fig. 1, showing the un-

derlying bistability (gray), as well as sample trajectories for each model

(black).

Using this latter idea, we define l� as the degree of activation (e.g., the

value of the parameter l) at which the a/b transition occurs (e.g., airway

closure). This critical transition value l� then is itself a function of the

external pressure waveform, e.g., it is a function of the external pressure fre-

quency, amplitude, and minimal external pressure. We then define a range

of these parameters of physiological interest and compute l� over this

parameter space for both the full model and the DM approximation; by

then comparing these, we are able to understand the situations under which

the DM approximation is most accurate, and those in which deviations are

larger.

To determine l�, we consider a threshold radius (denoted r) within the

unstable region of the open-to-closed transition (see Fig. 1) and then use

the bisection method to determine the value of l required to constrict the

airway lumen past r, within the set integration time.
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FIGURE 2 (A) Predicted monotonic increase in closure points for both models due to increasing static external pressure. The DM shows great quantitative

and qualitative agreement to the full MoC model for this static case, with a 2 to 5% difference, as well as having absolute differences in the range 0–1.2.

(B and C) Comparison of the sum of the attached myosin populations for both models at P0 ¼ 5 cmH2O and P0 ¼ 25 cmH2O, respectively. These distribution

plots were taken at the first instant after the closure threshold, r, was passed. At low external pressure, the moment matching of the DM is a good

approximation to the exact distribution of the MoC (B), but it deviates as the external pressure is increased, as seen in (C), which leads to qualitative

differences in l�.

DM Approach to Coupled Airway Dynamics
Indefinite switching between open and closed states occurs when the

airway is subject to large-amplitude, slow-frequency oscillations and min-

imal l. At these values, the radius of the airway lumen is reduced past r, but

the force provided by the ASM is not sufficient to keep the airway at the

closed state and it thus returns to the open state. Because this occurs in

only a very small portion of the physiological parameter space, we concen-

trate here on the ða/bÞ transition.
RESULTS AND DISCUSSION

Static pressure conditions

The simplest case for comparison between the DM
approximation model and its full cross-bridge counterpart
is simply to narrow the airway against a static external
pressure. As described in the previous section, we
compute l� as a function of this imposed pressure for
both models and compare these critical closure values;
the results are given in Fig. 2, with l� given for DM
ð � Þ and MoC (+). In this simplest case, both models
show good agreement both with expectations and with
one another. Specifically, one would qualitatively expect
a monotonic increase in l� as the external pressure in-
creases, as shown by both models. Furthermore, DM
shows excellent quantitative agreement with the full
model, with a 2–5% difference, as well as having absolute
differences in the range 0–1.2. This suggests that the DM
approximation is suitable at least for this simplest, static
case; however, as the entire protocol is quasi-isometric,
one might have expected that accurate estimation of the
first bond moment is all that is necessary here. Further
comparison of the bound-state distributions is given in
Fig. 2, B and C, for both low and high static external
pressure, respectively. In (31), although the distributions
themselves showed significant departures, the moments
agreed rather better; here, a similar observation can be
made regarding the relatively large deviation in the
distributions versus the rather better performance of the
coupled system (in terms of l�).
External-pressure oscillations

A more realistic and challenging scenario is to impose
external-pressure oscillations, mimicking either the breath-
ing environment or common experimental protocols. Hence
we impose triangular pressure oscillations determined by
three parameters: amplitude, frequency, and minimal
external pressure. For fixed-pressure oscillations, then, the
critical value l� can be found in that environment, for
each model, and again compared. The central idea is illus-
trated in Fig. 3, which shows individual radius trajectories
for each model for fixed external-pressure oscillations; the
transition from trajectories that remain in the open state to
those that transition to closed occurs at l�. To characterize
this relationship for not just one fixed-pressure waveform
but more generally, we compute l� for a range of pressure
waveforms within the three-parameter space, famplitudeg
� ffrequencyg � fminimal external pressureg, throughout
the physiological range. The percentage difference between
the l� values (DM versus MoC) is given in Fig. 4, chosen at
an amplitude of 25 to illustrate maximumal percentage dif-
ferences. Broadly speaking, there is good qualitative agree-
ment between the DM and MoC models for much of this
parameter space, with differences of <10% existing for
broad regions, in particular for larger minimal pressures,
lower amplitudes, and lower frequencies. On the other
hand, differences of �40% appear for high-frequency,
large-amplitude oscillations with low minimal pressures.
To better illustrate the behavior of these differences, we
also show selected ‘‘slices’’ of the parameter space in
Fig. 4, A–F; the location of each ‘‘slice’’ is also noted in
the main figure.

Several observations are apparent. First, parametric
dependence on minimal external pressure (Fig. 4, A and D)
and oscillation amplitude (Fig. 4, B and E) are relatively
simple and in good qualitative agreement, even within the
region of relatively large quantitative departure (25–40%
relative error). On the other hand, the frequency response
Biophysical Journal 114, 493–501, January 23, 2018 497
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FIGURE 3 (A) Individual radius trajectories for each model for fixed-external-pressure oscillations; the transition from trajectories that remain in the

open state to those that transition to closed state occurs at l�. (B) Comparison of the sum of the attached myosin populations for both models at frequency

f ¼ 0.33 Hz, amplitude a ¼ 25 cmH2O, and minimal external pressure Pmin ¼ 2 cmH2O. The distribution plot was also taken at the first instant the closure

threshold, r, was passed.
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(Fig. 4, C and F) is more complex, being both non-linear and
non-monotonic, with relative percentage differences ranging
from 5–40% in Fig. 4 C and 5–25% in Fig. 4 F. It is worth a
mention that although the percentage differences are rela-
tively large, the absolute error between predicted l� values
at the largest deviation isz5 and that at the lowest percent-
age differences is z0.5. Even so, because of the persistent
qualitative agreement through parameter space, these differ-
ences can be reduced to <15% everywhere with a relatively
simple second-order polynomial correction factor.
ASM without airway-wall coupling

For completeness, we also show a more explicit comparison
between the Mijailovich cross-bridge PDE model, without
the airway attached, and the DM approximation. These re-
sults are given in Fig. 5 for the length-controlled protocol
used in (7); specifically, isometric contraction was followed
by a period of 1% length oscillation at 0.33 Hz, then
increased to 4% length oscillation. Fig. 5, A and B, show
the bulk observables of force, stiffness, and phosphorylation
for each model. Fig. 5, C and D, give a more detailed
breakdown by cross-bridge state. Although differences
are certainly in evidence, broadly speaking, the ASM-only
model agreement suggests that relatively modest differences
in ASM during forced oscillations, particularly in the form
and structure of the myosin bond populations, as well as
the macroscopic muscle behavior, are amplifed by non-
linear interactions with the airway wall into more complex
differences, especially in terms of frequency dependence
(and at higher oscillation frequencies/amplitudes).
Numerical efficiency

We quantified the numerical efficiency of the DM approach
relative to MoC in terms of the number of (ordinary) differ-
ential equations that must be solved in each. For DM, this
is fixed at 7, whereas for MoC, a spatial discretization
498 Biophysical Journal 114, 493–501, January 23, 2018
(consisting of Nx points) must be chosen. Because Nx

applies to three PDEs (the fourth can be obtained by conser-
vation), the overall numerical efficiency can be estimated
as 7=3Nx. Our ‘‘gold-standard’’ MoC uses Nx ¼ 2000 and
so, naively, the efficiency ratio is � 1=850. However, this
does not account for the reduction in numerical accuracy.
To do so, we estimate an equivalent MoC discretization
for which the error is equivalent to the DM approximation
(for details, see the Supporting Material). This varies
across parameter space, but on average the efficiency ratio
is � 1=98. Thus, the DM provides a reduction in computa-
tional cost by nearly two orders of magnitude relative to an
MoC approach of equivalent accuracy.
CONCLUSIONS

In this study, we have derived a DM approximation method
for a coupled cross-bridge-airway-wall system. The goal
was to find a reduced model that retains a rich set of
cross-bridge dynamics coupled to the airway-wall model,
at the same time substantially reducing the computational
complexity of numerical solution. This is motivated not
just by studies of isolated airway dynamics, but with an
eye toward incorporation of such a reduction into whole-
lung models with coupled (interacting) airways.

By making suitable comparisons between the DM model
and the full coupled cross-bridge-airway model, we show
that 1) the DM approximation is accurate when static
external pressures are imposed; 2) for much of the oscilla-
tory waveform parameter space, with the possible exception
of high-frequency, large-amplitude oscillations with low
minimal pressures, the DM approximation again provides
a satisfactory approximation; and 3) even within this region
of relatively large quantitative departure, persistent qualita-
tive agreement allows a relatively simple correction factor
to reduce relative errors to <15% throughout the physio-
logical range. Taken together, this suggests that the DM
approximation provides a viable method for vast reduction
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FIGURE 4 Percentage error in closure points (l�DM versus l�MoC) for a range of external-pressure waveforms within the three-parameter space,

famplitudeg � ffrequencyg � fminimal external pressureg. (A–F) Selected slices of the parameter space. The locations of these slices are noted in the

main figure. To see this figure in color, go online.
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in computational complexity while retaining key ASM
dynamics through a systematic reduction. Because of this,
it provides a plausible route forward toward inclusion of
such ASM dynamics in coupled airway systems. It is also
conceivable that a hybrid approach might be adopted in
which DM approximation dynamics in a coupled airway
system might be selectively validated using MoC methods.

Several more subtle points deserve additional analysis.
First, throughout this analysis, we have treated the cross-
bridge-airway coupled model as an appropriate standard
of comparison. Because of the systematic-reduction
approach, this is the most valid comparison; however, one
should be aware that aspects of this model are known to
depart from observations, for example, in terms of thin-
walled assumptions (17,18), the validity of the Huxley
model for ASM (9), and also more complex phenomena,
potentially involving length-tension characteristics, which
are not yet fully understood (15,19). Although in principle
the same comparison might be made with experimental
data, at this time, the authors unfortunately are not aware
of any such data set.

Second, the relatively complex frequency dependence
of the coupled model suggests that care should be
taken within the high-frequency, large-amplitude oscillation
regime. This is consistent with observations about the prod-
uct of frequency and amplitude setting key behavior in ASM
(38). Despite the fact that empirical correction is possible
in this regime, the complexity of frequency-dependent
behavior suggests that this regime should be treated
carefully.

Third, although the bistability airway model used in this
study allowed for direct comparison between the MoC and
DM methods within a space of tractable size, there are situ-
ations in which such a comparison may be less relevant, for
Biophysical Journal 114, 493–501, January 23, 2018 499
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FIGURE 5 ASM-only solutions, without the airway wall. A length-controlled protocol of isometric contraction was followed by a period of 1% length

oscillations at 0.33 Hz, and then increased length oscillations at 4%. (A and B) Shown are the bulk observables of force, stiffness, and phosphorylation

for DM and MoC, respectively. (C and D) Breakdown of the state-population transitions for the DM and MoC models, respectively.
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example, when the region of bistability is reduced or elim-
inated, perhaps due to airway size or parenchymal tethering
(23,39). However, the bistable regime is arguably the most
challenging because of the sensitivity of airway behavior
to relatively small changes in ASM behavior near the
transition; thus, an approximation that performs well in
the bistable regime might reasonably be expected to do
well in a simpler monostable regime.

Finally, it is worth discussing some aspects of the DM
approximation that affect its extensibility to other sys-
tems. In the model derivation, we noted that there were
conditions imposed on the DM reduction method; here,
we outline the restrictions. First, observe that the DM
approximation technique is not restricted to assuming a
Gaussian form of the bond distribution. In principle, one
could assume any distribution, so long as both the
moment integrals and the product of the rate functions
with the assumed distribution can be written in closed
form. (If the rate functions are piecewise polynomial, as
is usual, then the product-form terms are expressible in
terms of higher-order moments.) The size of the reduced
system would then be determined by the number of mo-
ments required to identify the distribution. It is also worth
noting that the approach we used here for expressing the
500 Biophysical Journal 114, 493–501, January 23, 2018
unbound species in terms of both conservation and phos-
phorylation balance depends on the facts that 1) the phos-
phorylation and de-phosphorylation rates k1 and k2 are
spatially independent, and 2) the phosphorylation and
de-phosphorylation rates are the same for both bound
and unbound species. Both assumptions are typical of
this family of models, but variants for which this is not
true would require a modified approach.
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The piecewise functions fp(x) , gp(x) and g(x) are defined as

fp (x) =


0 x < 0

fp1x

h
0 ≤ x ≤ h

0 x > h

(1)

gp (x) =


gp2 x < 0
gp1x

h
0 ≤ x ≤ h

(gp1 + gp3)x

h
x > h

(2)

g (x) =


g2 x < 0
g1x

h
0 ≤ x ≤ h

(g1 + g3)x

h
x > h

. (3)

Additionally, fp1 = 2k3, gp1 = 2k4, g1 = 2k7, gp2 = 4 (fp1 + gp1), g2 = 20g1, gp3 = 3gp1 and g3 = 3g1. The values of
k1 to k7 as well as gp1 to gp3 and g1 to g3 are chosen to match experimental values (1).

The functions AΛ to EΛ for the Distribution Moment Approximation are constructed explicitly as follows. Given the
reduced ODE form

d

dt
M1Λ + Λv (t)M1(Λ−1) + k2M1Λ = AΛ −BΛ + CΛ (4)

the functions AΛ-CΛ are given by

AΛ =

∫ ∞
−∞

fp (x) xΛnMpdx (5)

BΛ =

∫ ∞
−∞

gp (x) xΛnAMpdx (6)

CΛ = k1

∫ ∞
−∞

xΛnAMdx (7)

whereas the functions DΛ and EΛ of
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d

dt
M2Λ + Λv (t)M2(Λ−1) + k1M2Λ = DΛ − EΛ. (8)

are given by

DΛ = k2

∫ ∞
−∞

xΛnAmpdx (9)

EΛ =

∫ ∞
−∞

g (x)xΛnAMdx. (10)

We assume a Gaussian distribution for nAMp of the form

nAMp =
M10√
2πq1

e
−

(x− p1)
2

2q2
1 (11)

for which

p1 =
M11

M10
, q1 =

√
M12

M10
−
(
M11

M10

)2

. (12)

Similarly nAM is Gaussian with moments M20,M21,M22.
We also consider integrals of the form

JΛ (η) =
1√

2πq1

∫ η

−∞
xΛe

−
(x− p1)

2

2q2
1 dx (13)

KΛ (η) =
1√

2πq2

∫ η

−∞
xΛe

−
(x− p2)

2

2q2
2 dx (14)

If yi = (x−pi)
qi

and τi = (η−pi)
qi

for i = 1, 2, we may write JΛ (η) and KΛ (η) of the form

JΛ (τ1) =
1√
2π

∫ τ1

−∞
(p1 + q1y1)

Λ
e−

y2
1
2 dy1 (15)

KΛ (τ2) =
1√
2π

∫ τ2

−∞
(p2 + q2y2)

Λ
e−

y2
2
2 dy2. (16)

Expanding these integrals results in a series of integrals of the form

I1Λ =
1√
2π

∫ τ1

−∞
yΛ

1 e
− y2

1
2 dy1 (17)

I2Λ =
1√
2π

∫ τ2

−∞
yΛ

2 e
− y2

2
2 dy2. (18)

We define the error function as I10 (τ1)=φ1 (τ1)= 1√
2π

∫ τ1
−∞ e−

y2
1
2 dy1 and I20 (τ2) =φ2 (τ2)= 1√

2π

∫ τ2
−∞ e−

y2
2
2 dy2. These

lead to the following
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J0 (τ) = φ1 (τ) (19)
K0 (τ) = φ2 (τ) (20)

J1 (τ) = p1φ1 (τ)− q1
e−τ

2/2

√
2π

(21)

K1 (τ) = p2φ2 (τ)− q2
e−τ

2/2

√
2π

(22)

J2 (τ) = p2
1φ1 (τ)− 2p1q1

e−τ
2/2

√
2π

+ q2
1

{
φ1 (τ)− τe−τ

2/2

√
2π

}
(23)

K2 (τ) = p2
2φ2 (τ)− 2p2q2

e−τ
2/2

√
2π

+ q2
2

{
φ2 (τ)− τe−τ

2/2

√
2π

}
(24)

J3 (τ) = p3
1φ1 (τ)− 3p2

1q1
e−τ

2/2

√
2π

+ 3p1q
2
1

{
φ1 (τ)− τe−τ

2/2

√
2π

}
− q3

1

(
2 + τ2

) e−τ2/2

√
2π

(25)

K3 (τ) = p3
2φ2 (τ)− 3p2

2q2
e−τ

2/2

√
2π

+ 3p2q
2
2

{
φ2 (τ)− τe−τ

2/2

√
2π

}
− q3

2

(
2 + τ2

) e−τ2/2

√
2π

(26)

Considering BΛ, DΛ and the Gaussian assumed for nAMp we obtain

BΛ =
M10√
2πq1h

∫ 0

−∞
gp2x

Λe
−

(x− p1)
2

2q2
1 dx+

∫ 1

0

gp1x
Λ+1e

−
(x− p1)

2

2q12
dx



+
M10√
2πq1h

∫ ∞
1

(gp1 + gp3)xΛ+1e
−

(x− p1)
2

2q2
1 dx


(27)

DΛ =
k2M10√
2πq1h

∫ 0

−∞
xΛe
− (x− p1)

2

2q2
1 dx+

∫ 1

0

xΛe
−

(x− p1)
2

2q2
1 dx



+
k2M10√
2πq1h

∫ ∞
1

xΛe
−

(x− p1)
2

2q2
1 dx


(28)

Similarly by considering the Gaussian for nAM we obtain the expressions for CΛ and EΛ

CΛ =
k1M20√
2πq2h

∫ 0

−∞
xΛe

−
(x− p2)

2

2q2
2 dx+

∫ 1

0

xΛe
−

(x− p2)
2

2q2
2 dx



+
k1M20√
2πq2h

∫ ∞
1

xΛe
−

(x− p2)
2

2q2
2 dx


(29)

Biophysical Journal 00(00) 1–6



4 Biophysical Journal

EΛ =
M20√
2πq2h

∫ 0

−∞
g2x

Λe
−

(x− p2)
2

2q2
2 +

∫ 1

0

g1x
Λ+1e

−
(x− p2)

2

2q2
2 dx



+
M20√
2πq2h

∫ ∞
1

(g1 + g3)xΛ+1e
−

(x− p2)
2

2q2
2


(30)

Finally in order to compute a form for AΛ we consider the conservation condition [nM ]+[nAM ]+[nMp]+[nAMp]=1 and
obtain,

d

dt
([nM ] + [nMp]) = −k1 ([nM ] + [nAM ]) + k2 ([nMp] + [nAMp]) (31)

If we then make the substitution of c=[nM ] + [nAM ] (equivalently
∫ 1

0
nM (x, t) dx+M20 in the DM system) we are then able

to calculate [nMp]=1− c−M10 (required by the expression of AΛ), as well as [nM ]=1−M20−M10− [nMp]. The resulting
expression for AΛ is then given by

AΛ =
fp1 (1− c)
(Λ + 2)h

− fp1
M10√
2πq1

∫ 1

0

xΛ+1e
−

(x− p1)
2

2q2
1 dx. (32)

Expressing M10√
2πq1

∫ 1

0
xΛ+1e

− (x−p1)2

2q21 dx using Eq (13) leads to

AΛ =
fp1 (1− c)
(Λ + 2)h

− fp1 (JΛ+1(1)− JΛ+1(0))M10 (33)

Finally the coupled system of ODEs is now given as

dM10

dt
= A0 −B0 + C0 − k2M10 (34)

dM11

dt
= A1 −B1 + C1 − k2M11 − v (t)M10 (35)

dM12

dt
= A2 −B2 + C2 − k2M12 − 2v (t)M11 (36)

dM20

dt
= D0 − E0 − k1M20 (37)

dM21

dt
= D1 − E1 − k1M21 − v (t)M20 (38)

dM22

dt
= D2 − E2 − k1M22 − 2v (t)M21 (39)

dc

dt
= −k1c+ (1− c) k2 (40)

dr

dt
= ρ (R (Ptm)− r) (41)

The transmural pressure Ptm for the DM system is then given by

Ptm = P0 −
λFASM

r
(42)
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Figure 1: L∞ norm of the absolute error between the force produced by the MoC at each point and the MoC evaluated at
“gold standard” of Nξ = 2000 ODEs. The number of ODEs are reduced until the error is approximately equal to the norm of
the absolute error between the DM approximation and the MoC at gold standard. The dashed line indicates the level of error
from the 7 ODE DM approximation. Here α0 = 20, Pmin = 20, f = 0.2.

where FASM is given by FASM (t) =

∫ ∞
−∞

x [nAM (x, t) + nAMp(x, t)] dx and written as FASM = λ [M10 +M20] for

the DM. P0 is the pressure through the airway and the parameters ρ = 1s−1 and γ0 = 25. Crossbridge model parameter
are from (2), specifically: k2 = 0.1s−1, fp1 = 0.88s−1, gp1 = 0.22s−1, g1 = 0.01s−1 and k1 = 0.1s−1 for 0 < t <
5s and 0.06s−1, for t > 5s. For this work, h = 1.

Numerical efficiency

In order to compare the efficiency of the DM to the MoC, we considered the number of ODEs required to be solved by each
method. For the DM method, this is fixed: 7 ODEs. For the MoC approach, one must choose the spatial discretization; specifi-
cally, the Nξ points over the spatial domain. We consider Nξ = 2000 as our “gold standard” solution. The key idea is that one
might also reduce the computational cost by reducing Nξ, though doing so introduces additional error. Thus our approach to
quantifying the numerical efficiency is to determine the value of Nξ at which DM achieves the same error (relative to the gold
standard). In particular, we determined the maximum absolute error in the force produced between the MoC at Nξ = 2000
(gold standard) and the DM approximation. The number of ODEs for the MoC was then systematically reduced and at each
point, the maximum absolute error between this and the MoC at gold standard was found. The number of ODEs for which the
error in the MoC is approximately equal to the error between the DM and gold standard MoC, was then considered equivalent
to the DM approximation. This process is represented in Fig 1. For these parameter values, the MoC requires ≈ 690 = 3Nξ
ODEs compared with 7 ODEs required by the DM approximation to obtain the same relative error. These parameter values
were chosen as they represent a reasonable mid-range value in the main panel of Figure 4 of the main article. Other points in
parameter space were similarly explored for numerical efficiency and displayed similar improvements in DM vs MoC. Thus
using this approach, the DM method is approximately 100 times more efficient numerically than an equivalent MoC scheme.
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Order Ri(cm) rimax(cm) P1(cmH2O) n1 n2

1 0.0058 0.0296 0.1603 1 7
2 0.0065 0.0318 0.1768 1 7
3 0.0073 0.0337 0.1985 1 7.185
4 0.0083 0.0358 0.2319 1 7.778
5 0.0096 0.0384 0.2767 1 8
6 0.0113 0.0414 0.3283 1 8
7 0.0132 0.0445 0.4020 1 8
8 0.0156 0.0484 0.4803 1 8.148
9 0.0185 0.0539 0.5680 1 8.741
10 0.0222 0.0608 0.6669 1 9.333
11 0.0269 0.0692 0.7746 1 9.926
12 0.0326 0.0793 0.8976 1 10
13 0.0395 0.0913 1.0242 1 10
14 0.0475 0.1052 1.1569 1 10
15 0.0569 0.1203 1.3357 1 10
16 0.0686 0.1374 1.5605 1 10
17 0.084 0.1585 1.7763 0.952 10
18 0.1026 0.183 1.9933 0.893 10
19 0.1244 0.2108 2.2320 0.833 10
20 0.1537 0.2463 2.5690 0.774 10
21 0.1908 0.2885 3.0320 0.715 10
22 0.2315 0.3307 3.5675 0.656 10
23 0.2791 0.3763 4.2393 0.6 10
24 0.341 0.4319 6.5936 0.6 10
25 0.4261 0.4982 15.1759 0.578 10
26 0.5375 0.5819 34.1380 0.519 10
27 0.6694 0.6995 40.0637 0.5 10
28 0.8157 0.8686 40.0637 0.5 10

Table 1: Table showing parameter values used from (3). Additionally in order to maintain continuity at Ptm = 0 we have

P2 =
P1n2

(
R2
i − r2

imax

)
n1R2

i

.
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