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ABSTRACT We computationally study genetic circuits in bacterial populations with heterogeneities in the growth rate. To that
end, we present a stochastic simulation method for gene circuits in populations of cells and propose an efficient implementation
that we call the ‘‘Next Family Method’’. Within this approach, we implement different population setups, specifically Chemostat-
type growth and growth in an ideal Mother Machine and show that the population structure and its statistics are different for the
different setups whenever there is growth heterogeneity. Such dependence on the population setup is demonstrated, in the case
of bistable systems with different growth rates in the stable states, to have distinctive signatures on quantities including the dis-
tributions of protein concentration and growth rates, and hysteresis curves. Applying this method to a bistable antibiotic resis-
tance circuit, we find that as a result of the different statistics in different population setups, the estimated minimal inhibitory
concentration of the antibiotic becomes dependent on the population setup in which it is measured.
INTRODUCTION
Cellular functions and their adaptation to environmental
conditions are to a large extent encoded in the regulatory
connections of genetic circuits. Therefore, a quantitative un-
derstanding of the dynamics and the function of genetic cir-
cuits, combining predictive mathematical models with
quantitative experiments and with the design of engineered
circuits, is one of the key goals of systems biology (1–6).
Specifically, a large body of work has addressed multistabil-
ity (7–10) and stochastic effects (11–15), both of which
result in heterogeneous gene expression in a genetically ho-
mogeneous population of cells.

One complication in the quantitative study of genetic
circuits is that genetic circuits are usually coupled to the
physiological state of the cell (16). The latter, for
example, affects the availability of gene expression ma-
chinery and thereby influences the level of gene expres-
sion. In many cases, however, the expression status of a
gene also has an effect on the cellular physiology; for
example, in the case of essential enzymes limiting cell
growth. This coupling has mostly been studied in bacteria
in exponential growth phase, where the physiological state
of the cell can often be characterized by the growth rate
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(17,18). In the last 10 years such coupling has been
demonstrated for a variety of genetic circuits (19–25). In
these cases, heterogeneity in gene expression is accompa-
nied by heterogeneity in cell growth with part of the pop-
ulation growing faster than the rest. For some genetic
circuits, growth heterogeneity is a crucial part of their bio-
logical function; for example, bet hedging for survival in
varying environments as proposed for the formation of
bacterial persister cells (8,26), or for the heterogeneous
expression of genes conveying resistance to antibiotics
(23,27). In other cases, specifically in synthetic genetic
circuits, growth heterogeneity may arise as an unavoidable
and possibly unintended side effect of the desired func-
tion, but also allows for the implementation of more com-
plex functions (22,28,29).

To study the growth and the heterogeneity of populations
of cells, various setups have been used. Traditionally, bacte-
rial growth has been studied in batch cultures, where bacte-
ria grow exponentially until the medium gets depleted
(20,30), and in continuous cultures or the Chemostat, where
exponential growth is maintained by continuously diluting
the population by washing out cells with fresh medium
(17,31,32) (Fig. 1 a). More recently, microfluidic devices
have been developed to observe cell growth at the single
cell level (33–36). These devices include a microfluidic
version of a Chemostat (34) and the so-called Mother Ma-
chine, in which a cell is trapped in a dead-end channel
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FIGURE 1 Schematic representation of the two

population setups. The blue and red ellipsoids repre-

sent the two types of cells, fast and slow growing. (a)

Chemostat-type growth. Dilution of the population

is implemented by replacing a randomly chosen

cell in the population with the newly formed

daughter cell, whenever a cell divides. (b) Ideal

Mother-Machine. Upon division, one of its daughter

cells is flushed away whereas the other is kept. To

see this figure in color, go online.

Gene Circuits with Growth Heterogeneity
whereas its daughter cells are flushed away upon cell divi-
sion, enabling the long-time study of individual cells (35)
(Fig. 1 b).

By contrast, simulations of gene circuits have typically
been carried out for single cells and analyzed with statistics
over time using long trajectories rather than statistics over a
population (37,38). These two types of statistical ensembles
are usually equivalent, given sufficiently long trajectories
and in the absence of growth heterogeneity. Growth hetero-
geneity, however, can be expected to result in the accumula-
tion of the faster proliferating cells within a population, an
effect not seen in the time statistics of a typical simulation.
Indeed, the accumulation effect will in general depend on
the type of experimental setup used, so that the statistical re-
sults for populations heterogeneous in growth may be
different in different experimental setups. Recently, such
an effect has been shown experimentally and discussed
analytically for growth heterogeneity in a monostable sys-
tem (39).

Here we present a method for stochastic simulations of
genetic circuits in populations of growing cells, specifically
populations that are heterogeneous in growth. The method is
based on Gillespie’s stochastic simulation algorithm
(40,41), for which we propose a computationally efficient
implementation, the Next Family Method; this is particu-
larly suitable for a scenario with many cells. Within this
approach, we implement Chemostat-type and Mother Ma-
chine-type population setups. We use a bistable mutual
repression system with growth inhibited in one of the two
states to demonstrate explicitly how growth heterogeneity
results in different statistics in these two setups for
commonly measured quantities such as subpopulation
fractions, growth rates, and hysteresis curves. We then apply
the method to study growth bistability in an antibiotic resis-
tance system (23). In that case, we find a dependence of the
minimal inhibitory concentration (MIC) of the antibiotic, a
parameter commonly used to quantify the effect of an anti-
biotic on bacterial populations, on the experimental setup.
METHODS

Simulating gene circuits in populations
of growing cells

To simulate the dynamics of a genetic circuit in a population of growing

cells, allowing also for the possibility of phenotype switching, we adapt

Gillespie’s stochastic simulation algorithm for a set of chemical reactions

or other stochastic processes (40,41). In the Gillespie algorithm, each reac-

tion (protein synthesis/degradation/dilution) is characterized by a propen-

sity aj corresponding to its reaction rate in the deterministic rate

equation. These propensities determine the probabilities of the time, t,

when the next reaction will take place, and the type of reaction, j, which

will take place at that time. There are multiple ways to generate t and j.

In the Direct Method, two random numbers are drawn in each step to deter-

mine the time and index of the next reaction, the simulation time is

advanced to t, the reaction j is carried out, and the reaction rates are updated

for the next reaction to reflect changes in the copy number of relevant

reactants.

This method can be applied directly to a population of cells, by consid-

ering reactions that occur in different cells as parallel reaction channels.

Thus, for simulating a set of s reactions in a population of N cells, one

has to evaluate sN propensities in total, and use them to calculate t and j

as before. This will give the time and the index of the next reaction

happening in any of the N cells. However, to apply this method to a popu-

lation of proliferating cells, we also need to account for cell division and to

that end implement the different population setups. Implementing a

growing population also means that the computational effort grows with

increasing cell number. The implementation of the different population

setups that we propose here also limits the increase of the cell number.

Several different methods for limiting that increase are possible, and those

correspond to different population setups and as we will show below, result

in different predictions for experiments. Here, we specifically consider two

setups of populations of proliferating cells that correspond to the ideal

Mother Machine and the Chemostat. In both cases, we simulate a fixed pop-

ulation size N. In the first case, corresponding to an ideal Mother Machine,
Biophysical Journal 114, 484–492, January 23, 2018 485
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every time a cell divides, we keep only one of its daughter cells. This is very

similar to how simulations are done for a single cell (which corresponds to

the special case N ¼ 1). To implement this scenario, we do not need to

describe the formation of the daughter cells through cell division explicitly,

but only a dilution term for the proteins. In the second case, the Chemostat,

we keep the population size constant by removing a random cell whenever a

cell divides, mimicking the continuous dilution. This scenario corresponds

to a variant of the Moran process (42), a stochastic model in evolution, with

continuous time and a population with heterogeneous growth rates. In this

case, an explicit description of the formation of daughter cells is required,

because typically both cells remain in the population. We implement this

production of daughter cells by introducing an additional propensity func-

tion asþ1 ¼ l for each of the cells, with l being the growth rate of that cell.

This gives the probability that a cell divides into two daughter cells, both of

which are in the same expression state and follow the original model for the

dynamics of protein numbers. Whenever this reaction is selected, we pro-

duce an identical copy of the cell and replace a randomly selected member

of the population with this copy, thereby mimicking the flushing out of cells

and keeping the total number of cells (N) constant. We note that our method

is not restricted to this Poissonian description of cell division. More detailed

descriptions of cell division (with more realistic distributions of the division

times) have been implemented in stochastic simulation of single cells (38),

and can be implemented in our method for populations. One such case will

be considered below.
FIGURE 2 Speedup of simulations by the Next Family Method. Shown

here are runtimes for a simulation of the toggle switch (see next section)

in a Chemostat population of N cells, using the proposed Next Family

Method (blue squares) as compared to that using the Direct Method

(magenta diamonds) and the Next Reaction Method (green triangles),

with all parameters being the same (in all these cases the system is evolved

for 6000 min in total). To see this figure in color, go online.
Efficient implementation: the Next Family Method

The Gillespie algorithm using the Direct Method becomes quite slow when

the number of reaction channels is large, as it spends a lot of computational

time in determining the reaction channel j. Therefore, alternative but math-

ematically equivalent implementations have been developed. For example,

in the First Reaction Method (41,43), the expected times are calculated for

all individual reactions rather than just one, and the reaction to occur, i.e.,

the reaction number j, is determined by searching for the minimum among

them. The reaction j is carried out and then the new time for that reaction is

calculated. The Next Reaction Method (44) improves upon it by using an

indexed heap data structure in which the reaction times are stored. This

data structure generally speeds up sorting and finding a minimum (45),

which is used here to determine the next reaction that occurs. However,

the method loses this advantage when many of the reactions are coupled,

so that the heap structure needs to be repaired for each of the coupled reac-

tions when their corresponding reaction times are modified. A generaliza-

tion, the First Family Method (43), partitions the reactions into families

and then considers these families as pseudo-reactions. The First Reaction

Method is then applied to determine which of these families or pseudoreac-

tions occur next and the Direct Method to determine the actual reaction

within that family.

Even though the First Family Method was originally introduced mainly

as a book-keeping method, in our case a natural classification of reactions

into families is provided by the different cells. Moreover, as there is no

interaction between the cells, these pseudoreactions given by the grouped

reactions in each cell are decoupled. We, therefore, calculate the expected

time of next reaction for each of the N families (cells), heapify these reac-

tion times so that any node has reaction times larger than its parent node

(45), and identify the cell at the top of the heap as the one in which reaction

will take place next. Once this reacting cell is identified, we can then use the

Direct Method to find the actual reaction that occurs in that cell. A heap

repair step is only required for this one cell in which reaction takes place.

We note that if the reaction chosen is cell division and results in the produc-

tion of a daughter cell in the case of Chemostat growth, one needs to

perform an additional heap repair step on this new cell, which randomly re-

places one of the existing cells (see the Supporting Material for more de-

tails). However, as long as there is no cross talk between different cells,

this method, which may be called the Next Family Method, will be more

efficient than any of the previous methods. Even under cross talk, it may
486 Biophysical Journal 114, 484–492, January 23, 2018
be possible to group the cells into modules that interact more among them-

selves than with cells of other modules, thereby making this current method

quite powerful. In principle, this method can be generalized to any system

where there are clustered reactions.

In Fig. 2, we demonstrate the significant speedup of simulations using the

Next Family Method as compared to the Direct Method and the Next Reac-

tion Method. Although the runtime scales as N2 for the Direct Method, it

scales as Nlog(N) for the Next Reaction Method as well as for the Next

Family Method. Here, the first factor comes from the number of reactions

occurring in a given time, which scales as N irrespective of the method used.

The second factor comes from the time it takes to find j for each of the re-

action steps. This scales as N for the Direct Method, which is the timescale

required to scan through the propensities, and as log(N) for the Next Reac-

tion and the Next Family Methods, which is the timescale required to repair

the heap (45). As expected, there is a difference of a multiplicative factor

between the runtimes of the Next Reaction and Next Family Methods.

This difference corresponds to the extra heap repair steps needed for each

of the coupled reactions and it will linearly increase with increasing number

of coupled reactions. In Fig. S1, we show that the results obtained from

these methods are statistically identical. We mention that other methods

for implementing Gillespie’s algorithm can also speed up the simulations.

However, they either assume that some of the reactions can be introduced

later (46) or that the reactions have widely different rates (47,48), neither

of which is applicable in the situation we consider here.
RESULTS AND DISCUSSION

Test system: a toxic genetic toggle switch

To study the effect of the different growth setups on the
observed behavior of growth heterogeneous systems, we
first consider a bistable system with different growth rates
in the two states. Specifically, we study a mutual repressor
system or toggle switch with one toxic protein (Fig. 3 a).
In a simple mutual repressor system, two proteins P1 and
P2 repress the transcription of each other. This system is
known to exhibit bistability: For sufficiently strong repres-
sion, there are two stable states. In one of them, the



a b FIGURE 3 Toxic toggle switch. (a) Shown here

is a schematic representation of the mutual repres-

sion circuit with growth inhibition by one of the

two proteins (P1). The black arrows represent spe-

cific gene regulation (here transcriptional repres-

sion), whereas the blue dashed arrows represent

effects of the global state of the cell (pointed arrow-

heads are for positive regulation and flat arrow-

heads for negative). (b) Dynamics of the protein

concentrations from simulations of a single cell

without growth inhibition (top, Dl ¼ 0 min�1)

and with growth inhibition by protein P1 (bottom,

Dl ¼ 0.01 min�1). Here we show a small segment

of the whole temporal dynamics to clearly see the

switching events. For the used parameters, see the

Supporting Material. To see this figure in color,

go online.

Gene Circuits with Growth Heterogeneity
concentration of P1 (denoted by p1) is high and the concen-
tration of P2 (denoted by p2) is low; in the other, the roles are
reversed (1). In simulations, a single cell switches stochas-
tically between these two states (Fig. 3 b, upper panel).
We modify this simple toggle switch by assuming that one
of the proteins (say P1) inhibits the growth of the cell,
such that the growth rate of the cell is different in the two
stable states. To keep the analysis simple, we describe the
dependence of the growth rate on the concentration of P1

by a simple interpolation between a maximal growth rate
lmax for small p1 and a minimal growth rate lmin for large
p1. The strength of the growth inhibition is modulated by
varying Dl ¼ lmax – lmin. Furthermore, we make the
following simplifications: we consider the symmetric case,
where both genes/proteins are characterized by the same pa-
rameters except for the growth inhibition, and growth is
taken to affect gene expression only through dilution, ne-
glecting a growth rate dependence of the protein synthesis
rate (19) (see the Supporting Material for details). A sce-
nario with more realistic assumptions is studied below. As
a consequence of the symmetry of the parameters, a cell
spends equal amounts of time in the high p1 and high p2
states in the absence of growth inhibition (Fig. 3 b, top
panel). With increasing toxicity of P1, the reduction in
growth rate in the high p1 state leads to reduced dilution
(reduced effective degradation rate of the proteins) and
thereby increases the concentration of P1 in the high p1
state. As a consequence, the symmetry between the high
p1 and high p2 states is broken. This in turn affects the rates
of stochastic switching between the two states: a larger fluc-
tuation is needed to switch from high p1 to low p1 than from
high p2 (low p1) to low p2, making the cell spend more and
more time in the slower growing (high p1) state (Fig. 3 b,
bottom panel).

We then simulated the dynamics of this genetic circuit for
the two population setups with 1000 cells each, varying the
growth rate difference Dl between the high p2 and high p1
states. The distribution of the concentration of protein P1

obtained from the simulations for the three scenarios are
shown in Fig. 4. Due to the bistability of the genetic circuit,
the distributions typically exhibit two (broad, but well-sepa-
rated) peaks corresponding to the subpopulations with high
and low p1 (and low and high p2). In the absence of a growth
difference (Dl ¼ 0), the distributions are exactly the same
for all three simulation scenarios. In addition, due to the
symmetry of the parameters, the system spends an equal
amount of time in the two states. This is reflected in the pop-
ulation fractions of the two states (obtained as the areas un-
der the two peaks) being equal.

The distributions for a single cell show that with
increasing growth difference, the population with high p1
is shifted to even higher p1, and at the same time the prob-
ability of that subpopulation is increased. This reflects the
observations made in Fig. 3 b above about the breaking of
symmetry between the two states due to growth rate
modulation.

The distribution obtained for the two population setups,
which both coincided with the distribution for a single cell
in the case Dl ¼ 0, are in general different from each other
for Dl > 0. As expected, the results for the population in an
ideal Mother Machine is identical to those for a single cell
for all values of Dl. This is because the ideal Mother Ma-
chine is essentially an array of many individual cells and
studying it is equivalent to taking an ensemble average
over the individual cells (possibly in addition to a time
average). The choice of one over the other is mostly a ques-
tion of practicalities, e.g., if dynamics is observed over times
in which no steady state is reached because of rare switch-
ings, one might prefer statistics over a population. Note
that even if sampling is done over all cells in a real Mother
Machine with 10–20 cells per channel (most of which are
flushed out after some time) rather than the one cell in our
ideal Mother Machine (which is not flushed out), the results
are very similar (Fig. S2). Therefore, in the rest of this study
we will be referring to our ideal Mother Machine simply as
the Mother Machine.

For the Chemostat, the results are quantitatively and qual-
itatively different. In the presence of a growth rate
Biophysical Journal 114, 484–492, January 23, 2018 487
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FIGURE 4 Distribution of the concentration of

protein P1 of the toxic toggle switch. Results are

shown for three levels of growth inhibition by P1

and three population scenarios. (a, c, and e) Single

cell (dashed curves) and Mother Machine (shaded

down curves). (b, d, and f) Chemostat (solid

curves). The insets in (d) and (f) plot the same

data on a log-linear scale to show the existence

or absence of the small second peak. Sampling is

done over 108 time steps of 5 min each for the Sin-

gle cell, and over N ¼ 1000 cells and 107 time

steps of 5 min for the two populations. The param-

eters are given in the SupportingMaterial. It can be

seen that the distribution is identical for the Single

cell and the Mother Machine (see text). To see this

figure in color, go online.
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difference, the dominant population is not the slow growing
high p1 subpopulation as in the single cell and the Mother
Machine scenarios, but the fast growing low p1 subpopula-
tion. This can also be seen in Fig. S3 where we plot the dis-
tribution of the growth rates explicitly. This could be either
because of the low p1 state suddenly becoming more stable,
which should not be the case as individual cells are still the
same, or because there are more of these fast growing low p1
cells. Indeed, unlike the Mother Machine where the
daughter cells are washed away, a Chemostat has both
daughter and mother cells in the population. As a result, a
Chemostat population will contain more offspring of the
fast growing cells than of the slow growing ones.

The distribution of switching times between the two
states, defined as the time interval between two instances
of p1 and p2 crossing each other in one cell, is plotted in
Fig. S4. The switching times are seen to be exponentially
distributed and symmetric between the two states for the
nontoxic case. In the toxic case, as expected, the switching
times from the slow to fast growing state gets increased.
Again, we see that the results are identical for the single
cell and the Mother Machine, apart from the noise.

In Fig. S5, we plot the hysteresis curves when the synthe-
sis rate a1 is modulated. Here, the switching to and from the
low p1 state happens at larger values of a1 in the Chemostat
than in the Mother Machine/Single cell, because in the low
p1 state the fast growing cells accumulate more by replacing
the slow growing ones.

The subpopulation fractions for a bistable system with
growth differences can be estimated with a two-state model
originally used in the context of persister cells (8,49). This
488 Biophysical Journal 114, 484–492, January 23, 2018
model describes the population as consisting of two subpop-
ulations (which in our case correspond to the high p1 and
high p2 states) with different growth rates (l1 and l2) and
with stochastic switching between the two subpopulations,
but in contrast to our full model assumes the growth rate
to have a unique sharp value in each state. In that case,
the population fraction of the slow growing state (l2) is
given by (49)

N2

N1 þ N2

z
k

l1 � l2
; (1)

where k is the switching rate from the fast growing to the
slow growing state. The rate for switching in the opposite di-
rection does not affect the population fractions. A simple
interpretation of this relation is that the population fractions
are determined by a balance between two processes: slow
growing cells are outgrown by the fast growing cells, but
the slow growing population does not disappear because it
is continuously restored by switching of fast growing cells
to the slow growing state. Simulating this two-state model
with our method, we find excellent agreement between the
population fractions obtained from the simulation and the
prediction of this relation, as shown in Table 1. (We note
that this agreement also provides a quantitative test of our
simulation method.) In our full model, the distribution of
the growth rate is not sharp, but we can extract the average
single cell growth rates (l1 and l2) as well as the size of the
two subpopulations (N1 and N2) from the Chemostat simu-
lations shown in Fig. S3. The switching rates are estimated
as the inverse of the average switching times in the Single



TABLE 1 Subpopulation Fraction of the Slow Growing State

Case k l1 l2 N2/(N1 þ N2) k/(l1�l2)

Two-state model 0.001 0.04 0.03 0.0983 0.1

Toggle switch with Dl ¼ 0.01 4.36 � 10�5 0.03746 0.03268 4.2 � 10�3 9.12 � 10�3

Toggle switch with Dl ¼ 0.005 7.58 � 10�5 0.03863 0.03623 1.7 � 10�2 3.16 � 10�2

Subpopulation fraction obtained directly from Chemostat simulation (N2/(N1 þ N2)) of the two-state system matches almost exactly with that estimated from

the ratio of switching rate to the slow growing state (k) and relative growth rate of fast growing state (l1�l2). For the toggle switch, the agreement is within a

factor of 2.

Gene Circuits with Growth Heterogeneity
cell or Mother Machine simulations (Fig. S4). Doing so, we
still find agreement with Eq. 1 within a factor 2 (Table 1),
which appears to result from the broad distribution of
growth rates within the subpopulations.

So far, we have presented results for a highly simplified
model with a very particular type of growth rate modulation.
However, these qualitative results are generally expected
whenever there is heterogeneity in the growth rate. As a
test that the results are not dependent on the specific as-
sumptions we have made, we also considered a more real-
istic model, in which the growth rate depends on the
concentration p1 through a Hill function. In that case, the
toxicity of the protein P1 is modulated by changing the
threshold concentration (Kl) of that Hill function. We also
included a growth rate dependence of the protein synthesis
rates (50) (see the Supporting Material for details). The re-
sults for this model are qualitatively the same as for the
simplified model, as shown in Fig. S6. In particular, we
observe again that growth heterogeneity (finite threshold
Kl) results in an increase of the slow growing (high p1)
a b

FIGURE 5 Growth bistability in an antibiotic resistance circuit. (a) Given her

tance system. (b) Shown here is the distribution of concentration of the resistance

Chemostat andMother Machine simulations for three different antibiotic concent

the Chemostat and the shaded down-curves and the shaded circles with dotted

Supporting Material. The sampling is done over 1000 cells and for 106 time ste
subpopulation in the Mother Machine, but to an increase
in the fast growing (low p1) subpopulation in the Chemostat.

Another aspect of our current model that is highly simpli-
fied is the description of cell division as a Poissonian pro-
cess. More detailed descriptions can be implemented
within our method. As an example, we have used a Gaussian
distribution of division times, without correlations between
subsequent generations. Fig. S7 compares the results in the
Chemostat scenario for the two descriptions of division and
shows that the differences between them are very small in
this case. In general, however, the mechanism of division
can affect the results. For example, in a recent study, Hashi-
moto et al. (39) concluded that for a system with a monomo-
dal distribution of growth rates, the measured population
doubling time is smaller than the mean doubling time of
the constituent single cells, indicating a dominance of the
faster growing cells. This conclusion was reversed in
another recent study by Lin and Amir (51) by including cor-
relations between the division times of mother and daughter
cells that result from the underlying size homeostasis
e is the schematic representation of the growth-modulating antibiotic resis-

protein CAT (top) and of the growth rates of cells (bottom), as obtained from

rations. The solid curves and the diamonds with solid dropdown lines are for

dropdown lines are for the Mother Machine. For parameter values, see the

ps of 60 min each. To see this figure in color, go online.
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FIGURE 6 Dependence of the MIC on the population setup. (a) Shown

here is the average growth rate of the population as a function of the

(increasing) Cm concentration in the Chemostat (solid lines) and the

Mother Machine (dotted lines). The dashed black line shows the corre-

sponding result from the deterministic model. (b) Shown here are growth

rate averages within the two subpopulations of fast growing (green) and

slow growing cells (magenta). (c) Shown here are fractions of fast growing

and slow growing cells in the two setups. Cells with l > 0.0005 min�1 are

taken as fast cells (we note that the jumps in b and c arise when the discrete

values of the growth rate cross this cutoff upon increase of the antibiotic

concentration). The averaging is done over 10,000 cells and over 10 time

steps of 30 min each, after equilibrating for 1000 min in the corresponding

antibiotic concentration. To see this figure in color, go online.
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mechanism. In that case, the population growth rate was
found to be lower than the average growth rate of the cells
rather than higher. In the bistable systems we consider
here, however, the growth heterogeneity is dominated by
the difference in growth rate between the phenotypes, which
exceeds the more subtle growth heterogeneity due to sto-
chastic cell division control and size homeostasis in the
monostable systems discussed in (39,51). As a result, the
impact of the mechanism of division can be expected to
be weaker than in those systems.
A bistable antibiotic-resistant system

Next, we apply our approach to growth bistability in an anti-
biotic resistance circuit, which has been demonstrated
recently (23): for translation-targeting antibiotics, a positive
feedback results from the growth modulation by a resistance
gene and the growth-rate-dependent expression of that
resistance gene. Specifically, we consider the constitutive
expression of chloramphenicol acetyltransferase (CAT),
490 Biophysical Journal 114, 484–492, January 23, 2018
which modifies and deactivates the translation-targeting
antibiotic chloramphenicol (Cm). Under growth modulation
by translation-inhibiting antibiotics, constitutively ex-
pressed genes display a linearly increasing dependence of
the concentration of their protein product on the growth
rate (20). Increased expression of CAT results in a reduced
intracellular concentration of Cm and thereby to an
increased growth rate, establishing the positive feedback
(Fig. 5 a) (see the Supporting Material for details of the
model).

In Fig. 5 b, we plot distributions of the CAT concentration
and of the growth rate for three different extracellular anti-
biotic concentrations, as obtained from simulations with the
Mother Machine and Chemostat setups. For the highest of
the three Cm concentrations, all cells are slow growing;
for the lowest concentration, (almost) all cells are fast
growing. For the intermediate concentration, the circuit is
bistable, with fast growing and slow growing subpopula-
tions. In the two monomodal situations (high and low Cm
concentrations), the two population setups result in almost
the same distributions, in agreement with the general picture
obtained for the toggle switch example discussed above. In
the bistable regime (intermediate Cm concentration), how-
ever, we see again that the results are different for the two
setups: the Mother Machine has more of the slower growing
cells, whereas the Chemostat has more of the faster growing
cells.

The impact of the growth setup on the population struc-
ture has an important consequence for the measurement of
MIC. The MIC is often determined as the concentration,
where the growth rate drops abruptly to a very low value.
Because, in our model, the drop is gradual rather than
abrupt, we determine an MIC as the antibiotic concentra-
tion, for which the growth rate drops below 2% of the
growth rate in absence of the antibiotic. As can be seen in
Fig. 6 a, the MICs obtained in the two scenarios differ
substantially (1000 mM for the Chemostat simulations and
450 mM for the Mother Machine). This difference reflects
again that the cells in the Mother Machine population pref-
erentially stay in the more long-lived slow growing state,
whereas in the Chemostat, fast growing cells will dominate
the population, whenever some of them appear (Fig. 6 c).

Conversely, the measured MIC has been used to deter-
mine parameters of the circuit (23). In doing so, one will
get different results based on which growth scenario is
used in the simulation one fits the experimental data with,
and care has to be taken to use the growth setup matching
the experimental conditions.

Experimentally, MICs are usually measured in growing
populations, either in batch cultures or petri dishes rather
than in a system with a fixed number of cells. We emphasize
that our Chemostat simulation is designed to reflect the
properties of such a growing population, despite the fact
that the number of cells is constant. To check this explicitly,
we also simulated a population with a growing number of
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cells and determined growth rates from the growth curves.
The results, including the resulting MIC, are in excellent
agreement with the results from the Chemostat simulation
(Fig. S8). We note that in the experiments of (23), the
drop in growth rate at the MIC is sharper than in our simu-
lations. This discrepancy is likely due to the stochastic
description, possibly the relatively wide distribution of
growth rates it generates (Fig. 5 b, bottom panel), as a sharp
drop is also seen in the deterministic version of the same
model (Fig. 6 a). However, because the dependence of the
MIC on the population setup is a consequence of the
different population statistics, this would also be seen in
modifications of the stochastic description. We reiterate
that the presence of growing cells above the MIC of the
deterministic model is a result of fast growing cells replac-
ing slow growing ones, rather than transient resistance due
to stochastic gene expression (27).
Concluding remarks

In summary, we developed a computational formalism to
simulate a set of reactions in a population of growing cells,
implementing two types of experimental setups, the Mother
Machine and the Chemostat. We also developed a modified
version of Gillespie’s stochastic simulation algorithm,
which is extremely efficient in simulating a set of reactions
that are clustered, in our case, into the different cells. With
the help of two test genetic circuits, a mutual repressor with
growth reduction in one state and a bistable antibiotic-resis-
tant system, we then showed how various measurable quan-
tities can have the distinct signature of the experimental
setup being studied. This was seen to be a result of the
different subpopulation structures in the different setups
whenever there is heterogeneity in growth, such as the
growth bistability in the two cases we studied. Specifically,
we showed for the resistance circuit that the MIC of the anti-
biotic may depend on the experimental setup.

We expect that our method, which may be extended to
other population setups, will provide a basis for future
studies of any genetic circuit where growth heterogeneity
has the potential to modify the subpopulation structures.
With the broad current interest in microbial communities,
from single-species biofilms to the diversity of the micro-
biome, we expect that there will be many other applications
for our approach.
SUPPORTING MATERIAL

Supporting Materials and Methods and eight figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(17)35007-5.
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Simulation algorithm

All simulations are run with different versions of Gillespie’s stochastic simulation algo-

rithm [1, 2]. In these simulations, the dynamics of the various reaction channels are charac-

terized by their propensities aj. These propensities determine the probabilities of the time τ

when the next reaction will take place, given by the probability density p(τ) = a exp(−aτ),

where a =
∑
j

aj is the sum of propensities, and which of the reactions is chosen, determined

by the probabilities p(j) = aj/a. In the Direct Method (which we use here for comparison)

we draw two random numbers r1 and r2 from a uniform distribution on the unit interval and

calculate the time of the next reaction as τ = t+ 1
a

ln( 1
r1

) and the index of the next reaction

as j = the smallest integer satisfying
j∑

j′=1

aj′/a > r2. With this we proceed the time of the

simulation to t = τ , carry out the reaction j, record the desired quantities and calculate

new set of propensities for the next reaction.

In the Next Family Method we group the reactions into families; each family consists

of the reactions of one cell. These families are then considered as pseudo-reactions with

propensities af =
lf∑
j=1

afj , where lf is the number of reactions in the family/cell f . Next,

we generate the expected times of the next reaction for each family as τ f = t + 1
af

ln( 1
r1

)

and heapify these so that they are in a tree-ordered data structure, in which the node

representing the family (say m) is the one with the smallest time τm [3]. This gives us the

time of the next reaction in the population as t = τm and the cell in which the reaction is

happening as m. To obtain the actual reaction that is firing we apply the Direct Method

to the lm reactions in this family. With this we then proceed the time of the simulation

to t = τm, implement that reaction, sample the desired quantities, calculate the new set of

propensities (amnew) and repair the heap starting from this nodal position based on its new

expected time for the next reaction, τmnew = t + 1
amnew

ln( 1
r1

). If no other cell is affected by

this reaction, we do not have to do any other heap repair step and can read off the time and

index of the next reaction in the population from the updated heap in similar way. For the

Chemostat, if the next reaction happens to be the production of a daughter cell, we produce

a copy of the dividing cell and replace a randomly chosen cell (say r3) with it. In this case

the heap has to be repaired starting at the position of the cell r3. To obtain this position

we use indexed heap data structure so that if the heap consists of ordered pairs (f, τ f ), the
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f -th element of the index structure will point to the position of the (f, τ f ) pair in the heap.

Mutual repressor system with growth inhibition

In a simple Mutual Repressor the deterministic equations for the evolution of the con-

centrations of the two proteins pi are given by

dp1
dt

= α1
1

1 + (p2/K2)n2
− (β01 + λ)p1

dp2
dt

= α2
1

1 + (p1/K1)n1
− (β02 + λ)p2 (1)

where αi are the synthesis rates of the proteins, β0i are the degradation rates due to prote-

olysis and λ is the growth rate, related to cell division time Td as λ = ln 2/Td. Note that

here we have described the two step protein synthesis process, involving transcription and

translation, as an effective one step process. Moreover, it is an implicit cell division model

where we include the dilution rate due to cell growth and division into the degradation

term, i.e., we study the effective average behavior in the cell at times longer than the cell

division time. Ki are the threshold concentrations for repression and ni, the Hill coefficients,

represent the cooperativity of binding needed for repression, both being determined by the

architecture of the corresponding promoter regions.

The above system is known to exhibit bistability for ni ≥ 2. To incorporate a difference

in growth rates between the two states, we assume the protein P1 to be inhibitory to the

growth of the cell. We model this toxicity to growth as

λ = λmin +
∆λ

(1 + p1/Kλ)
, (2)

where ∆λ = (λmax − λmin) and Kλ is the characteristic concentration for the protein to be

toxic. To study phenotype switching, we treat the above set of equations as a stochastic

chemical reaction system and simulate it with the Stochastic Simulation Algorithm de-

scribed above. The propensities for this system are given as a1 = α1
1

1+(p2/K2)n2
, a2 =

α2
1

1+(p1/K1)n1
, a3 = (β01 + λ)p1 and a4 = (β02 + λ)p2. λ is instantaneously determined by

Eq. 2. The parameters used are α1 = α2 = 3 µM min−1, β01 = β02 = 0.005 min−1, Ki =

Kλ = 20 µM, λmax = 0.04 min−1. λmin is varied to modulate the toxicity.

In the more realistic case, the synthesis rate is taken to depend on the growth rate of the
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cell using the expression from ref. [4]

dp1
dt

=
α1[1 − exp(−λ/λ′)]

1 + (p2/K2)n2
− β1p1

dp2
dt

=
α2[1 − exp(−λ/λ′)]

1 + (p1/K1)n1
− β2p2. (3)

The toxicity is described by

λ =
λmax

(1 + p1/Kλ)
. (4)

and varied by modulating the threshold concentration Kλ. The parameter values are given

in the caption of Fig. S6.

Bistable antibiotic resistance circuit

The bistable resistance circuit described in Ref. [5] is based on a positive feedback in which

expression of a resistance gene reduces the intracellular antibiotic concentration. The latter

reduction speeds up growth, which has a positive effect on expression of the resistance gene,

because growth in translation-limited conditions increases the expression of constitutively

expressed genes [6] such as the resistance gene. The three components of that positive

feedback are described as follows: The growth rate of the cell in the presence of antibiotic

is given by

λ =
λ0

(1 + [Cm]int/I50)
,

where λ0 is the growth rate in the absence of intracellular antibiotic and I50 is the con-

centration of intracellular antibiotic that reduces the growth rate by half. [Cm]int is the

concentration of the antibiotic inside the cell, which is obtained from the extracellular con-

centration by balancing its diffusion in and out of the cell with its degradation or deactivation

by the resistance protein CAT. This balance is given by

κ([Cm]ext − [Cm]int) =
kcp

1 +Km/[Cm]int

or, [Cm]int =
1

2

[
[Cm]ext − (Km +

kc
κ
p) +

√
(Km +

kc
κ
p− [Cm]ext)2 + 4Km[Cm]ext

]
,

where κ is the permeability of the cell membrane to Cm, Km is the affinity of CAT to Cm,

kc the maximal rate of turnover of Cm by CAT , and p is the concentration of CAT.
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The expression levels of unregulated proteins in the cell depend linearly on the growth

rate of the cell under sub-inhibitory concentrations of translation-inhibiting antibiotics, so

that

p =
p0
λ0
λ,

where quantities with suffix 0 indicate values in the absence of the antibiotic. This depen-

dence is included in the model by choosing the synthesis rates as a quadratic function of the

growth rate. Similar to the model of the toggle switch, we formulate a deterministic rate

equation as

dp

dt
= αλ2 − (β0 + λ)p,

with α = p0/λ0, so that now the propensities for the stochastic simulation are a1 =

αλ2 and a2 = (β0 + λ)p. We simulate the above set of equations in the same way as

for the previous model, with λ and [Cm]int taken as instantaneous quantities. The model

parameters are obtained from Table S2 of Ref. [5] as λ0 = 0.01 min−1, I50 = 5.5 µM,Km =

12 µM, kc = 36000 min−1, p0 = 14.2 µM for the strain Cat1; β0 was set to a small non-

zero value, β0 = 0.0002 min−1 and κ was taken to be 126 min−1 to match the MIC in the

Chemostat simulation to the experimentally observed value.
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FIG. S1. Distribution of protein concentration obtained from the three methods are statistically

identical. Here, the sampling is done over 106 steps of 5 min each after 1000 min of equilibration

(i.e. for 5,001,000 min) and over 1000 cells.
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FIG. S2. Distribution of protein concentration obtained in the ideal Mother Machine is qualitatively

similar to that in a 20 cell long channel Mother Machine. Here the results are for the case where

P1 is toxic so that high p1 state is more probable.
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FIG. S3. Distribution of growth rates for the toxic toggle switch in a single cell (squares with

dashed dropdown lines) and in the two population setups (shaded circles with dotted dropdown

lines for the Mother Machine and diamonds with solid dropdown lines for the Chemostat). The

parameters are the same as in Fig. 4. A bin of 0.002 min−1 has been used.
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FIG. S4. Distribution of phenotype switching times for the toxic toggle switch: switching times

from slow growing to fast growing (dark green, blue, red) and from fast growing to slow growing

(light green, cyan, orange) states, for a single cell (dashed curves) and for the Mother Machine

population (solid curves). The sampling is done over 108 time steps of 15 min each for the single

cell, and over 1000 cells and 107 time steps of 15 min each for the Mother Machine population. A

bin of 600 min has been used.
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FIG. S5. Hysteresis curves for the toxic toggle switch: Hysteresis plots for the concentration of

protein P1 as its synthesis rate is varied (dark green, blue, red for shift up of the synthesis rate and

light green, cyan, orange for shift down). The dashed curves are for the single cell, the shaded down

curves are for the Mother Machine and the solid curves are for the Chemostat. The averaging is

done for 100 steps of 2 min each for the Single cell. For the two populations a further averaging over

10000 cells has been done. We note that the noise in the single cell plots is because of averaging

over a small time. Averaging over times longer than switching times will collapse the hysteresis

curves. This further highlights the advantage of having the possibility to average over many cells

in the Mother Machine, even for studying single cell statistics.
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FIG. S6. Results for a more realistic model of toxic toggle switch: The toggle switch model with

growth inhibition by one of the two proteins (P1) is extended to include a growth-rate dependence

of the synthesis rates; growth inhibition is modulated by varying the threshold concentration in

a repression function. Distributions of (a) the concentration of the protein P1, (b) of the growth

rate (green curves are without growth inhibition (infinite Kλ, non-toxic), red curves are with

growth inhibition (Kλ = 160 µM , toxic)) and (c) of the switching times from slow growing to

fast (dark green, red) and from fast growing to slow (light green, orange). (d) Hysteresis curves

upon variation of the synthesis rate of protein P1 (dark green and red curves for shift-up and

light green and orange for shift-down). The parameters are α1 = α2 = 2 µM min−1, β01 = β02 =

0.005 min−1,K1 = K2 = 10 µM,λmax = 0.04 min−1, λ′ = 0.02 min−1. Dotted curves are for the

Mother Machine population, while the solid curves are for the Chemostat population. Parameters

for averaging and binning are the same as in the corresponding figures of the simple toxic toggle

switch.
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FIG. S7. Distribution of protein concentration obtained by selecting division times from an un-

correlated Gaussian distribution is qualitatively similar to that obtained by selecting from an

uncorrelated exponential distribution as in Poisson processes. The result is for the simple toxic

toggle switch with ∆λ = 0.01 min−1.
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FIG. S8. Growth curve obtained from a growing population gives similar result to that obatined

from the Chemostat population : (a) The system is equilibrated at different antibiotic concentra-

tions and then grown for 900 min, starting from 100 cells. The result plotted is average over 1000

such realizations. (b) The average growth rates at each antibiotic concentrations is obtained by

fitting an exponential to the curves in (a).
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