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1 Theory 
1.1 Stokes-Einstein equations 
 The anhydrous diffusion coefficients of a molecule in solution are related to the 
equivalent size, anhydrous sphere by the Stokes-Einstein equations, 
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where DT is the translational diffusion coefficient, DR is the rotational diffusion coefficient, 
kB is the Boltzmann constant, T is temperature, η0 is the solvent viscosity, and R0 is the 
radius of the equivalent size, anhydrous sphere.  
 For a protein or nucleic acid in solution the operative radius is not the radius, R0, of 
a sphere equivalent to the anhydrous volume of the molecule, but rather the equivalent 
radius, RH, of the hydrated molecule that includes any waters of hydration that transiently 
interact with the molecule and affect its diffusion, times a shape factor, FS, to account for 
non-sphericity. As discussed below, both the hydrated radii and the shape factors are 
different for translational and rotational diffusion.   

1.2 Hydration water considerations 
 The amount of hydration water, and therefore the expansion of RH over R0, has 
been a controversial topic. Kuntz and Kauzmann originally reviewed this topic and 
concluded that proteins may have between 0.3 and 0.6 grams of hydration water per gram 
of protein (1). Importantly, different proteins appear to have different apparent fractions of 
hydration water. This fact means that assumption of a uniform hydration fraction in the 
calculation of hydrodynamic properties would lead to variable errors depending on the 
specific protein. To account for hydration when calculating hydrodynamic coefficients 
from structure, various approaches have been employed, and most use an empirically 
derived best-fit uniform value for the hydration. In the boundary element method, the 
triangulated protein surface is expanded by some thickness optimized for all proteins in a 
data set (2). In the bead-modeling method the size of the beads is expanded to some 
radius also optimized for all proteins in the data set (3, 4) or molecular dynamics 
simulations may be used to identify specific hydration waters that are then used in the 
calculation (5). In an ellipsoid model a hydration layer equal to the diameter of a water 
molecule (2.8 Å) is added to the surface of the ellipsoid (6). And for the numerical path 
integration method individual residues are modeled as expanded spheres to account for 
hydration (7). 
 Such adjustments for hydration water imply that this water is rigidly bound to the 
surface of the protein and increases its apparent size. However, the diffusion rate of 
surface water has been shown by both computational (8) and experimental methods (9) to 
be orders of magnitude greater than the protein. Therefore, significant hydration water is 
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not rigidly bound to the surface of the protein. This apparent paradox may be reconciled 
by assuming that the hydration waters transiently interacting with the protein surface 
experience a modest viscosity enhancement (10).  
 In addition to the hydration waters described above, which may be considered an 
inherent part of the macromolecule, some water is also likely to be hydrodynamically part 
of the diffusing particle due to the shape irregularities of the macromolecule. There is 
evidence that water flow in surface crevices of irregularly shaped particle aggregates 
(analogous to the surface crevices on proteins or the major groove around DNA duplexes) 
is retarded (11). This latter situation would make the fraction of apparent hydration 
partially dependent on the shape and size of surface crevices. As stated by Tanford, 
“…sharp indentations on the surface, will naturally contain solvent, and…this “trapped” 
solvent will travel with the same velocity as the adjoining macromolecular substance…” 
(12) (cf. Figures 2, 8 and 9 in the main text).  

1.3 Effective hydration layers are different for translational and rotational diffusion 
 A frequently unappreciated aspect of hydration water is that the hydration layer has 
different effects on translational and rotational diffusion (1). In order to correctly model the 
hydration layer in calculations of diffusion coefficients this difference must be taken into 
account. Consideration of the varied solvent velocities around a translating and rotating 
sphere explains the origin of this difference (13). The velocity components of a solvent 
molecule for the case of translational diffusion may be visualized as in Supplemental 
Figure 1 (adapted from (13)).  
 The apparent velocity of solvent at any point r around a sphere of radius R during 
translational diffusion at low Reynolds number conditions can be described by two 
vectors, 𝜈.	and 𝜈0, 
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where 𝜈2 is either the velocity of the sphere in stationary bulk solvent or the velocity of 
the bulk fluid around a stationary sphere. The relative velocity of fluid at r = R is zero 
(stick boundary conditions), and approaches ν∞ as 1/r moving away from the surface.  
 
 For rotational diffusion only, the solvent angular velocity at point r, relative to the 
sphere surface, is equal to, 
 

 𝑣∅ = 𝜈B𝑅
*D

.D
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where 𝜈B is the angular velocity of the sphere and the relative velocity approaches bulk 
values as 1/r2. Because the solvent velocity field around a rotating sphere decays as 1/r2, 
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but decays as 1/r around a translating sphere, the viscous energy dissipation must occur in 
a thinner shell around a rotating sphere. This results in an apparent increased effect of the 
solvation water on rotational diffusion and must be compensated appropriately when 
calculating hydrated radii for rotational diffusion. 

1.4 The effects of shape are different for translational and rotational diffusion 
 Most proteins are not perfectly spherical in shape and it is common to model this 
non-sphericity with ellipsoids, either ellipsoids of revolution where two axes are identical 
or general tri-axial ellipsoids where all three axes may be of different lengths. For identical 
volumes, an ellipsoid will have more surface area compared to a sphere and will have 
greater friction during diffusion. Analytical expressions for the dependence of the 
diffusional frictional coefficient on the axial ratio of ellipsoids of revolution have been 
worked out for both translational diffusion (14) and rotational diffusion (15, 16). For 
translational diffusion, the friction is averaged over random orientations of the ellipsoid 
and, for example, an axial ratio of 3 results in a ~10% increase in the frictional coefficient; 
similar effects are observed for both prolate and oblate ellipsoids with axial ratios <10 
where the difference between prolate and oblate ellipsoids is 5.5%.  
 For rotational diffusion, the situation is more complex. There are two frictional 
coefficients, one for rotation about the major axis and one for rotation about the minor 
axis. The dependence of these coefficients on axial ratios is significantly different for 
prolate and oblate ellipsoids and the rotational frictional coefficients are generally greater 
than the translational coefficients.  In the case of rotational diffusion, axial ratios of only 
1.5 result in significant increases in friction (17). For elongated molecules, the rotational 
diffusion is better described by anisotropic tumbling rather than axially symmetric 
tumbling. Although it is not possible to analytically define a single rotational frictional 
coefficient, the practical outcome is that for NMR data analysis of small monomeric 
proteins an axially symmetric model is sufficient to describe the measured tumbling (6). 
Such a simplification may not be accurate for multi-domain proteins or very elongated 
structures. Therefore, as stated in the main text, the HullRad program prints a warning to 
the user concerning rotational properties if the axial ratio of a particular molecule is 
greater than that tested here by comparison to experimental data (a/b=2.62). 
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2 Supplemental Figures 
2.1 Supplemental Figure 1 
 

 
 
Supplemental Figure 1. Solvent velocity components around a sphere for flow at low 
Reynolds number. Here the fluid is flowing around a stationary sphere but the relative 
relationships are general and applicable to the case of a sphere diffusing in a stationary 
fluid. Adapted from (13). This figure was created in Microsoft PowerPoint. 
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2.2 Supplemental Figure 2 

   
 
Supplemental Figure 2. Representation of the pseudo-atom side chain protein model. Left 
column: common name, PDB file and molecular mass; Middle column: atomic sphere 
representations; Right column: Unified atom side chain model (green side chain pseudo-
atoms) with convex hull edges (orange sticks). Vertices of the convex hull are at the 
centers of the outer-most backbone atoms and side chain pseudo-atoms of the model.  
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2.3 Supplemental Figure 3 
 

 
Supplemental Figure 3. Optimization of the hull expansion value to account for 
hydration. A. Translational hydrodynamic radii (RT) corrected with a prolate ellipsoidal 
shape factor (FT) were calculated for the proteins listed in Table 1 and the root mean 
squared deviations of convex hull to experimental values for different hydration shell 
thicknesses are shown as black circles. The data were fit to a quadratic expression (red 
line) and the minimum deviation is obtained at 2.83 Å shell thickness. B. Rotational 
hydrodynamic radii (RR) corrected with a prolate ellipsoidal shape factor (FR = FT

4) were 
calculated for the proteins listed in Table 2 and the root mean squared deviations of 
convex hull to experimental values for different hydration shell thicknesses are shown as 
circles. The data were fit to a quadratic expression (red line) and the minimum deviation is 
obtained at 4.30 Å shell thickness. 
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2.4 Supplemental Figure 4 

   
Supplemental Figure 4. Comparison of the effective translational hydrodynamic radii of 
disordered state ensemble protein structures calculated by HullRad and HYDROPRO. 
The red line represents a slope of one and intercept of zero; the correlation coefficient, R, 
for a linear regression of the data (not shown) is 0.95. The HYDROPRO hydrodynamic 
radii are, on average, ~0.7% larger than the HullRad hydrodynamic radii, but this is 
largely due to larger predicted values for compact structures. The ensemble contains 575 
generated structures of α-synuclein from the Protein Ensemble Database (Accession 
number PED9AAC). 
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2.5 Supplemental Figure 5 

   
Supplemental Figure 5. Comparison of calculated to experimental RR using different 
rotational shape factors. The rotational hydrodynamic radius (RR) was calculated using 
HullRad with different rotational shape factors as follows: Open circles, FR = FT

5; red solid 
circles, FR = FT

4; open square, FR = FT
3; solid triangle, FR = FT

2. The red line represents a 
slope of one and intercept of zero. The plotted data are from Supplemental Table 1. 
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3 Supplemental Tables 
3.1 Supplemental Table 1 

 
Shape Factor Correction for Rotational Diffusiona 

 
DNA Duplex 

RR,exp
 

 

RR,calc
b

 

FT5 
RR,calc

c
 

FT4 
RR,calc

d
 

FT3 
RR,calc

e
 

FT2 
Axial 
Ratiof 

  8mer 14.5 14.8 14.8 14.9 15.0 1.13 
12mer 18.3 18.1 18.0 17.9 17.8 1.61 
20mer 25.0 25.6 24.7 23.8 22.9 2.62 

 

aThe rotational hydrodynamic radii for three DNA duplexes were calculated with different 
rotational shape factors. In each case the optimal hydration shell expansion was 
determined for the specific shape factor using the protein data set listed in Table 2 in the 
main text in a manner similar to that shown in Supplemental Figure 3B. 
bA shell expansion of 4.2 Å and shape factor equivalent to FT

5 as the FR was used. 
cA shell expansion of 4.3 Å and shape factor equivalent to FT

4 as the FR was used. 
dA shell expansion of 4.4 Å and shape factor equivalent to FT

3 as the FR was used. 
eA shell expansion of 4.5 Å and shape factor equivalent to FT

2 as the FR was used. 
fAxial ratio of a prolate ellipsoid of revolution with volume equal to convex hull volume of 
the molecule. 
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