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In this Supporting Material, we derive the recursion relation for the mean first passage time
to complete compartment maturation, we show how to obtain the mean-field approximation of
the stochastic compartment dynamics, we give details of the numerical procedure used for the
simulations, and we provide additional simulation results.

S1 Recursion relation

We start by deriving the classical equation on mean first passage times for a discrete one dimen-
sional system submitted to a stochastic dynamics governed by transition rates. We consider a
system described by a discrete variable n ∈ N. The dynamics of n is stochastic and the transition
rate from the configuration n to another configuration m is written Rn→m. We are interested
in the quantity τn which is the average time needed to reach the configuration 0 starting from
configuration n. We call p(n, t)dt the probability to reach 0 between t and t + dt starting from n
at t = 0. One can write an equation on the functions p(n, t) by computing the probability to reach
0 at time t+ dt starting from n. In order to do this, during a time dt the system will either jump
towards another configuration m or stay in n and then use a time t to reach the configuration 0.
Mathematically written, it reads:

p(n, t+ dt) =
∑
m6=n

Rn→mdt p(m, t) +

(
1−

∑
m 6=n

Rn→mdt

)
p(n, t) (S1)

This leads to a differential equation on p(n, t):

∂p(n)

∂t
=
∑
m6=n

Rn→m(p(m, t)− p(n, t)) (S2)

Multiplying by t and integrating on the time leads to an equation for the mean first passage time
τn to reach n = 0 starting at n, which a classical result obtained in [1] p298-303 in the restricted
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case of one-step processes:

∀n ∈ N : − 1 =
∑
m6=n

Rn→m(τm − τn). (S3)

This recursion relation is used is the main text (Eq.(9)) to compute the mean first passage time
to full maturation, Eq.(11).

S2 Mean-field approximation of the compartment dynam-

ics

The (inherently stochastic) compartment dynamics is defined by Eq.2 from the main text:

Fusion : (NA, NB)→(NA + nv, NB) at rate J(N, φ)

Maturation : (NA, NB)→(NA − 1, NB + 1) at rate km(φ)NA

Budding : (NA, NB)→(NA, NB − nv) at rate K(φ)NB if NB ≥ nv

(NA, NB)→(NA, 0) at rate K(φ)NB if NB < nv

(S4)

The compartment also contains a neutral species contributing to its total size N . Hence, for
completeness, we need to explicitly define the dynamics of N :

Fusion : N →N +Nv at rate J(N, φ)

Budding : N →N −Nv at rate K(φ)NB if NB ≥ nv

N →N −Nv at rate K(φ)NB if NB < nv

(S5)

From this set of stochastic equations, a first step towards constructing a mean-field approximation
is to compute the time derivative of the average quantities N ,NA and NB:

〈Ṅ〉 =Nv〈J(N, φ)〉 −Nv〈K(φ)NB〉
〈ṄA〉 =nv〈J(N, φ)〉 − 〈km(φ)NA〉
〈ṄB〉 =〈km(φ)NA〉 − nvPNB≥nv〈K(φ)NB〉NB≥nv − PNB≥nv〈K(φ)NB

2〉NB<nv

(S6)

Where, ∀t ≥ 0, 〈X〉Y is the (ensemble) average value of X(t) given constraint Y , and PY is the
probability that constraint Y is verified at time t. It is important to note Eq.(S6) is a direct
consequence from Eq.(S4) and Eq.(S5) and is therefore exact. Now to obtain a mean-field ap-
proximation, one traditionally replaces every average of products or non-linear combinations of
variables by products or combinations of the averages. Also fluctuations are neglected so PNB≥nv

is taken equal to 1 when 〈NB〉 ≥ nv. This leads to the following complete mean-field equation:

Ṅ =Nv(J(N, φ)−K(φ)NB)

ṄA =nvJ(N, φ)− km(φ)NA

ṄB =km(φ)NA − nvK(φ)NB if NB ≥ nv

ṄB =km(φ)NA −K(φ)NB
2 if NB < nv

(S7)

Because of the change of behavior when NB < nv, the general solution of this system is complex.
The mean-field equations are generally valid for large systems when fluctuations can be neglected.
In such cases we can assume that NB ≥ nv. In this case we can easily relate Ṅ and ṄA + ṄB:

Ṅ

Nv

=
ṄA + ṄB

nv
(S8)
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From this we conclude that the relation (NA + NB)/N = nv/Nv is valid for all time, provided
that it is verified at t = 0. This allows to derive the self-consistent equations for the mean-field
steady-state:

N

Nv

=
NA +NB

nv
=

J(N, φ)

(1− φ)km(φ)
φ =

km(φ)

km(φ) +K(φ)nv
(S9)

This corresponds to Eq.4 of the main text.

S3 First passage time for a deterministic maturation pro-

cess

In the main text, maturation of a single site is assumed to be a single step process. In reality
the maturation mechanism might involve several steps. As a consequence the distribution of the
maturation time of a given component would be different from a single exponential. The limit
where maturation involves a large number of independent steps can be discussed relatively easily.
Because of the central limit theorem, the distribution of the total maturation time of a single
component is expected to be a Gaussian with a relatively small standard deviation. The extreme
case is when the number of steps goes to infinity and the maturation is deterministic. We can
compute the first passage time to full maturation of the compartment in this case. We choose
the value 1/km for the deterministic maturation time of a single component in order to compare
with the result of the main text. Here each site of type A has a lifetime 1/km, therefore full
maturation occurs only if no new vesicle is injected during a time 1/km after the injection of the
last vesicle. Vesicles are injected at a rate J in the simplified model, and each injection completely
resets the maturation state of the system. Since vesicle injections are independent, this leads to
this expression for the average maturation time τ :

τ =
1

km
+ 〈ninj〉〈tinj〉 (S10)

where 〈ninj〉 is the average number of vesicle injections in addition to the first one and 〈tinj〉 is
the average waiting time between two injections. In order to compute these two quantities, we
define the survival probability pS(t) which is the probability to reach the time t without injecting
a vesicle. The equation satisfied by pS(t), and its solution, are:

dpS
dt

= −JpS(t) , pS(t) = e−Jt (S11)

The probability of reaching t = 1/km without experiencing a vesicle injection (a reset) is p0 ≡
pS(1/km), hence the probability of experiencing exactly n jumps before complete separation is
pn = p0(1− p0)n. Consequently, the mean number of jumps is

〈ninj〉 =
∞∑
n=1

npn =
1− p0

p0

(S12)

For one reset event, the probability density of the reset time is −dpS
dt

so the average waiting time
before a vesicle injection is given by:

〈tinj〉 =

∫ 1/km

0

t
dpS
dt

dt∫ 1/km

0

dpS
dt

dt

=

−p0/km +

∫ 1/km

0

pS(t)dt

1− p0

(S13)
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Introducing Eqs.(S12,S13) in Eq.(S10), we get the expression of the separation time:

τ =
1

pS(1/km)

∫ 1/km

0

pS(t)dt =
e

J
km − 1

J
(S14)

This is exactly the same result as in the main text where maturation is made of a single step
(Eq.(11)), which suggests that as long as the injection of new vesicle can be treated as a Poisson
process, the first passage time to full maturation should not be affected much by the actual
distribution of the maturation time of single components.

S4 Simulation scheme

S4.1 General framework

We make use of the Gillepie algorithm [2] to perform exact stochastic simulations of our system.
The Gillespie algorithm is a general method that allows to compute statistically correct trajectories
for a stochastic system. The system must be described by a discrete set S of states. Being in a
given state i ∈ S at time t, the system must have a probability Ri→jdt to jump from i to another
state j between t and t+dt. This definition is rather general, which allows the Gillespie algorithm
to be applied in a variety of Physical contexts. Here the state space S is composed of all the
possible configurations of the compartment. A single state is defined as a couple (NA, NB) (or
equivalently (N, φ) with N = NA +NB and φ = NB/N) in which NA and NB are the numbers of
A sites and B sites in the compartment. Below is the list of all the allowed transitions between
states together with their transition rates:

Fusion : (NA, NB)→(NA + nv, NB) at rate J(N, φ)

Maturation : (NA, NB)→(NA − 1, NB + 1) at rate km(φ)NA

Budding : (NA, NB)→(NA, NB −min(nv, NB)) at rate K(φ)NB

(S15)

Where the functions J(N, φ), km(φ) and K(φ) can be arbitrary but must remain positive. Af-
ter defining the system and its dynamics, the Gillespie algorithm can be employed to generate
statistically exact trajectories using the following scheme:

1. Initialize a random number generator.

2. Initialize the system at t = 0 in a state Ω. Here we choose the state Ω = (nv, 0), meaning
that we start with a single vesicle of type A as a compartment.

3. Compute the sum Σ of all the transition rates out of the state Ω, and use it to generate the
waiting time ∆t before the next event using the distribution Σe−∆tΣ.

4. Choose randomly the state Ω′ reached after ∆t from the list of possible states, knowing that
the probability of having Ω→ Ω′ is given by RΩ→Ω′/Σ.

5. Update the time to t+∆t and the state Ω accordingly with whatever event has been selected.

6. Loop back to step 3.

This scheme has been proved to generate trajectories that are exact in the sense that the
probability for the program to generate a given trajectory is equal to the probability of observing
this trajectory in the real system. In this paper we implemented this algorithm in the C language
using the Mersenne-Twister pseudo random number generator.
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S4.2 Construction of the phase diagram

We aim at computing the value of the parameter η defined in the main text. In order to compute
this quantity we need to obtain average values for Nves the total number of emitted vesicles and
Nmat the final size of the compartment after complete maturation. We therefore performed a large
number of simulations all identical apart from the initial state of the random number generator.
We initialize the system at t = 0 with (NA, NB, Nves) = (nv, 0, 0) and let the simulation run.
After each time step we increase Nves if a vesicle budding has happened and check for complete
maturation which is defined by NA = 0. Once complete maturation or a maximum number of
simulation steps is reached the simulation is stopped. Nves is registered together with the final
size Nmat of the compartment. We perform 320 of these simulations (for each set of parameters)
and we require that at least 90% of them went to full maturation to compute satisfying estimates
of the average values 〈Nves〉 and 〈Nmat〉 (see error bars on Fig.3 - main text). This gives the value
of η for a specific value of J , km and K, which corresponds to one point in the phase diagram of
Fig.3 in the main text. The process is then repeated in an automated way to compute the value
of η for all the 20x20 points. For certain points (small values of φB and/or large values of N),
less than 90% of the simulations get to full maturation. We therefore cannot precisely compute η
but we verified that we always had η > 0.99. The value of η displayed on Fig.3 for these points is
arbitrarily set to 1.

S5 Additional results

S5.1 Phase diagram for constant rates

In Fig.2 of the main text the phase diagram for the transition between the vesicular export domi-
nated regime and the compartment maturation dominated regime is presented as a function of the
quasi-steady-state values of the compartment size and composition. This is to ease the comparison
between the different models, for which a given steady-state corresponds to different values of the
kinetic rates. For completeness, we present in Fig.S1 the same phase diagram as a function of the
model parameters J/K and km/K.
As discussed in the text, the size distribution of mature compartment presents a peak at small
size in the basic model. This corresponds to the direct maturation of small compartments with
a size comparable to that of a single vesicle. This contribution is due to the fact that our model
does not include any specific process for the nucleation of a compartment and the initiation of
maturation. To see the influence of direct maturation on the output parameter η, we present in
Fig.S1c modified output parameters where direct maturation events have been removed, and where
all events for which the fully matured compartment is of unit size (because of direct maturation
or following several fusion and budding events), have been removed. It shows that these types of
events do not qualitatively modify the picture, and make a quantitative difference only for very
small steady-state compartment size.

S5.2 Scatter plots for the outflux

The output parameter η is computed using the average of Nves and Nmat over many simulations,
and therefore brings no information on the fluctuations of these quantities. These fluctuations are
shown as scatter plots of Nves and Nmat on Fig.S2a for constant rates and Fig.S2b with homotypic
fusion. The distribution of the values can be understood using mean-field arguments. Assuming
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Figure S1: Simulation results. a. Phase diagram: the value of the output parameter η as a function
of the in-flux J and maturation rate km, normalized by the budding rateK, illustrates the transition
between the vesicular exchange (η ' 1) and compartment maturation (η ' 0) regimes. The black
lines show constant values of the compartment size in the pseudo steady-state (Eq.4 - main text).
The three colored lines represent constant values of η as given by the approximate analytical
computation of Eq.12 - main text. b. Cuts through the phase diagram varying the compartment
size for two fixed pseudo steady-state compositions. c. Output parameter as a function of the
steady-state compartment size for two values of the steady-state composition NB/NA, as in Fig.2c
of the main text. The black curves includes all possible events and is identical to the curves of
Fig.2c. For the red curve, all direct maturation of a compartment, prior to any fusion event, have
been removed. For the blue curve, all events where the fully matured compartment is of unit size,
either because of direct maturation or after fusion and budding events, have been removed.
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Figure S2: Scatter plots for the distributions of Nves and Nmat (crosses) obtained from 320 inde-
pendent simulations (for three different values of η) for a. a constant influx and b. a composition-
dependent influx J ∼ (1− φ). The solid lines are analytical estimates obtained with Eq.(S16).

that full maturation occurs after a time tmat, One may defined Nves and Nmat as:

Nves =

∫ tmat

0

KNB(t)dt Nmat = NB(tmat) (S16)

where NB(t) is assumed to follow the mean-field evolution given by Eq.(S17). This estimate, shown
as solid lines in Fig.S2, accurately reproduces the observed distribution. This suggests that, for the
parameters of Fig.S2, the main source of fluctuation comes from the distribution of the isolation
time tmat.

S5.3 Role of homotypic fusion: Linear stability analysis of the steady-
state

The mean-field equations, in the presence of homotypic fusion and cooperative maturation, read:

Ȧ = nvJ(φ)− Jm and Ḃ = Jm − nvKB
with J(φ) = J0(1− φ) and Jm = kmA(1 + αφ) (S17)

with φ = B
A+B

.

In the following, we normalise rates by the budding rate: j0 = J0/K and k̄m = km/(nvK). One
fixed point of these equations is A = B = 0, the other satisfies the equations:

A =
B2

j0 −B
k̄mαB

2 − (1 + k̄m(1 + α))j0B + j2
0 = 0 (S18)
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A non-zero fixed point always exists, given by:

A =
B2

j0 −B
B =

j0

2k̄mα

(
1 + k̄m(1 + α)−

√
1 + 2k̄m(1− α) + k̄2

m(1 + α)2

)
(S19)

This fixed point is always stable, but one can show that the kinetics toward the fixed point is
overdamped only if

−2(α + 1)3k̄3
m +

(
5α2 + 2α− 2

)
k̄2
m − 4αk̄m + 1 >

2k̄m
(
(α + 1)2k̄m − α

)√
k̄m
(
−2α + (α + 1)2k̄m + 2

)
+ 1 (S20)

This means that there is a decreasing function k̄m,crit(α) (shown in Fig.S3, and whose maximum
is k̄m,crit(0) ' 0.42) such that when k̄m > k̄m,crit(α) the system reaches the steady-state undergoing
oscillations. The larger k̄m, the closer the oscillations bring the system to the full maturation
adsorbing boundary A = 0. The full maturation probability thus becomes relatively independent
on the system’s size in that case. Note that this behaviour rely mostly on the existence of ho-
motypic fusion, and can in principle be observed in the absence of cooperativity α = 0, although
cooperativity does decreases the threshold k̄m,crit beyond which relaxation is underdamped.

Figure S3: Left, Value of the critical maturation rate k̄m,crit beyond which the system shows
damped oscillations around the fixed point. Right. Trajectories in the phase space {A(t), B(t)}
for k̄m = 1 and different values of α (= 0, = 1, = 5). The black (gray) lines are the corresponding
null clines Ȧ = 0 (Ḃ = 0).

S5.4 Phase diagrams for the full model.

In the full model, the fluxes characterising the influx of immature (A) components, their maturation
into mature (B) components, and the exit of B components, are written, respectively:

JA,in = J(N, φ)nv , JA→B = km(φ)NA , JB,out = K(φ)nvNB

J(N, φ) = Nβ(1− φ) , km(φ) = km(1 + αφ) , K(φ) = Kφ (S21)

where the parameter β quantifies the size dependence of the influx and the parameter α quantifies
the cooperativity of the maturation process. Fig.S4 shows different phase diagrams varying these
parameters. It complements the Fig4 of the main text, which only shows transition boundaries for
η− 0.5. In addition, it explores the case where the influx depends on the size of the compartment:
β = 1/2, which corresponds to a diffusion-limited fusion of the vesicular influx. The main result
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Figure S4: Phase diagram for the output parameter η as in Figs.2-3 of the main text, for different
values of the parameters of the full model: a. J = J0(1− φ), nv = 1 b. J =

√
NJ0(1− φ), nv = 1

c. basic model, d. J = J0

√
N , nv = 1 e. nv = 10 and f. km(φ) = km(1 +αφ) with α = 50, nv = 1.
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is that the width of the transition is mostly influenced by the mechanism of homotypic fusion.
The transition is smoother when homotypic fusion is treated in a continuous manner (J ∼ (1− φ)
- Fig.S4a,b). This reflects the fact that in the former case, full compartment maturation is an
almost deterministic process that occurs during the first oscillation, hence lacks the exponential
nature related to stochasticity. One the other hand, a size dependent influx makes little difference
to the phase diagram (compare Fig.S4 a and b, or Fig.S4 c and d).

Supporting references

[1] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 2007.

[2] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys.,
81(25):2340–2361, 1977.

10


	bpj_8794_mmc1.pdf
	Recursion relation
	Mean-field approximation of the compartment dynamics
	First passage time for a deterministic maturation process
	Simulation scheme
	General framework
	Construction of the phase diagram

	Additional results
	Phase diagram for constant rates
	Scatter plots for the outflux
	Role of homotypic fusion: Linear stability analysis of the steady-state
	Phase diagrams for the full model.

	Supporting references


