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ABSTRACT The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on ve-
sicular exchange between organelles and on the maturation of the organelle’s composition by enzymatic reactions or exchange
with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in
particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior
that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic
escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In
the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first
or second class is largely controlled by homotypic fusion.
INTRODUCTION
The hallmark of eukaryotic cells is their compartmentaliza-
tion into specialized organelles defining different biochem-
ical environments within the cell. These compartments are
bounded by a fluid lipid membrane and are highly dynam-
ical, constantly exchanging components with one another
through the budding and fusion of small transport vesicles
(1). The presence of different combinations of lipids and
proteins in the membrane of different organelles defines
different membrane identities and direct vesicular exchange
by controlling the activity of membrane-associated proteins,
such as coat proteins that drive vesicle budding, and tethers
and SNAREs that control vesicle fusion (2,3). This is
required for the existence of well-defined intracellular trans-
port pathways, such as the endocytic pathways, from the cell
plasma membrane to early endosomes and late endosomes
(4), and the secretory pathway, from the endoplasmic retic-
ulum (ER) to the Golgi apparatus and the trans-Golgi
network (5).

Members of the Rab GTPase family play an important
role in defining the membrane identity and regulate all
steps of membrane traffic (6–9). In particular, Rabs are
involved in homotypic fusion—the propensity of a vesicle
to fuse with a compartment of similar identity, a process
relevant for the spatio-temporal organization of both the
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endosomal network (10) and the Golgi apparatus (11).
Remarkably, the membrane identity of an organelle can
change over time in a process called maturation. Matura-
tion has been observed in the endosomal network, where
Rab5 positive early endosomes mature into Rab7 positive
late endosomes over a timescale on the order of 10 min
(10). It has also been observed in the Golgi apparatus of
Saccharomyces cerevisiae. In this organism, the Golgi
subcompartments, called cisternae, are dispersed
throughout the cytoplasm and can be seen to mature
from a cis (i.e., early) to a trans (i.e., late) identity in
�1–2 min (12,13).

Vesicular export from early to late compartments and the
biochemical maturation of early compartments into late
compartments constitute two distinct mechanisms allowing
progression along secretory and endocytic pathways, raising
a fundamental question as to their relative importance for
intracellular trafficking. In other words, are organelles
steady-state structures receiving, processing, and exporting
transiting cargoes, or are they transient structures that are
nucleated by an incoming flux and undergo full maturation
(see Fig. 1 for a sketch)? This question is particularly
debated for the Golgi apparatus. In most animal and plant
cells, it is made of individual compartment (cisternae),
stacked together in a polarized way with an entry (cis)
face and an exit (trans) face. Whether Golgi transport
occurs by intercisternal vesicular exchange or by full
cisternal maturation is still highly controversial (14). This
question is of high physiological relevance considering the
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FIGURE 1 (a) Sketch of the possible dynamics

of an organelle receiving a vesicular influx of early

(white) membrane identity undergoing maturation

into late (dark) identity inside the organelle and be-

ing exported by vesicular budding. The organelle

could represent an early endosome, for which the

source is the plasma membrane and the exit the

pool of late endosomes, or the Golgi apparatus,

for which the source is the ER and the exit the trans

Golgi network. The organelle can be at steady state

(vesicular exchange, left) where the influx of

immature vesicles is balanced by an outflux of

mature vesicles, or show a progressive evolution

from an early to a late identity (compartment matu-

ration, right), where the influx is balanced by an

outflux of mature compartments. (b) Sketches of

the theoretical model: incoming and outgoing ves-

icles contain Nv sites including nv immature (A,

gray) or mature (B, black) components, respec-

tively. The fusion of incoming vesicles requires

the presence of A sites in the compartment. Sto-

chastic fluctuations lead to full maturation and

the isolation of the compartment from the influx,

after which a new compartment is created de novo.
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involvement of Golgi dysfunction in many pathologies,
including Alzheimer and cancers (15–19).

Beyond the case of the Golgi apparatus, the interplay be-
tween biochemical maturation and vesicular exchange in
cellular transport pathways is an issue relevant for many as-
pects of intracellular organization, and we currently lack a
quantitative framework to address it. Several physical
models of intracellular transport have been developed in
recent years (20–23). These studies generally focus on
steady-state properties, and the inherently stochastic nature
of intracellular transport has been much less explored
(24,25). Stochasticity should, however, play an important
role, as the fusion/budding of a few tens of vesicles (of
diameter �50–100 nm) is enough to completely renew the
membrane composition of an endosome or a Golgi cisterna
(of area �0.2–0.5 mm2). This explains the strong fluctuation
of the size and composition of early endosomes (10).

We investigate theoretically a stochastic, one-compart-
ment model (sketched in Fig. 1) that includes both aspects
of organelle dynamics. Immature membrane components
are injected by the fusion of incoming vesicles, undergo
biochemical maturation, and are exported by vesicular
budding. We precisely quantify whether the outflux of
mature components predominantly occurs by vesicular
export from a steady-state compartment of fixed biochem-
ical identities or by the full maturation of the entire compart-
ment. Our model, which is investigated both analytically
and with numerical simulations, is an application of the
theory of birth-and-death stochastic processes, which are
used to a great extent in many areas of biology (26) and
population dynamics (27). It establishes the importance of
948 Biophysical Journal 114, 947–957, February 27, 2018
stochasticity in controlling the balance between vesicular
exchange and compartment maturation and identifies the
key control parameters as being the ratio of vesicle injection
to budding rate, and the ratio of biochemical maturation to
budding rates.
METHODS

We consider a membrane-bound compartment receiving a vesicular influx

of components of a given (early) identity called A which, after being con-

verted into a late identity B by a maturation process, exits the compartment

by selective vesicle budding (Fig. 1 b). At steady state, the vesicular influx

of immature components is entirely converted into vesicular outflux of

mature components, which corresponds to the vesicular exchange mecha-

nism. In practice, however, one expects that stochastic fluctuations around

the steady state, which will be comparatively more important for small

compartments, eventually lead to the full maturation of all A sites into

the B identity. Homotypic fusion makes it unlikely that a vesicle of imma-

ture identity Awill fuse with a fully mature compartment of B components.

To account for this, the vesicular influx (of immature A components) is

assumed to decrease with the compartment’s content in A components

and to vanish for a fully matured compartment. Therefore, a fully mature

compartment becomes isolated from the influx and exits the system as

part of the outflux while a new compartment is created de novo. This cor-

responds to the cisternal maturation mechanism of Golgi transport (14). Our

model thus includes both vesicular transport and cisternal maturation. The

balance between these two mechanisms strongly relies on stochastic effects

and is controlled by the ratio of maturation to vesicle budding rates and the

steady-state organelle size.

The model is inspired by the regulatory role played by Rab GTPases on

organelles dynamics (6–9), but is designed to be general and molecule-in-

dependent. The membrane of vesicles and organelles is discretized into

patches of different membrane compositions, to which different biochem-

ical identities can be assigned. The molecular identity of a membrane patch

is defined by the presence of components that recruit proteins involved in
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membrane transport, but also by lipids that influence the membrane proper-

ties by changing biophysical parameters such as the membrane-bending ri-

gidity. The maturation of membrane identity can involve the so-called Rab

cascade, by which the activation of one Rab inactivates the preceding Rab

along the pathway (28), which is thought to operate both in endosomes (10)

and in the Golgi (11,29), but also the direct conversion of molecular com-

ponents by enzymes, such as the glycosylation of proteins and lipids in the

Golgi (30).
Model description

We assume that the vesicles responsible for the influx and the outflux are of

similar size, and we divide the membranes into patches of equal area so that

a transport vesicle contains Nv sites. A number nv of these sites are markers

of the early (A) identity or the late (B) identity for incoming or outgoing

vesicles, respectively, whereas the rest contains neutral species. The

compartment state is then entirely defined by the total number of sites N

and the numbers NA and NB of sites containing A and B components. We

define the relative fraction of B components f ¼ NB/(NA þ NB). To study

the dynamics of the compartment, one must specify how the different ki-

netic processes depend on the compartment size and composition. We adopt

the following notations for the influx of A components, the maturation flux

from A to B, and the exiting flux of B components:

JA;in ¼ JðN;fÞnv; JA/B ¼ kmðfÞNA;

JB;out ¼ KðfÞnvNB:
(1)

In case the number of mature sites in the compartment satisfies NB < nv, the

budding vesicle is assumed to remove all NB sites, and to contain a remain-

ing number Nv – NB neutral sites, so that JB,out ¼ K(f)NB
2 (see the Support-

ing Material). The different parameters involved in Eq. 1 are defined below.

The dynamics of the compartment is governed by the following set of sto-

chastic transitions:
Fusion : ðNA;NBÞ/ ðNA þ nv;NBÞ at rate JðN;fÞ;
Maturation : ðNA;NBÞ/ ðNA � 1;NB þ 1Þ at rate kmðfÞNA;
Budding : ðNA;NBÞ/ ðNA;NB � nvÞ at rate KðfÞNB if NBRnv;
ðNA;NBÞ/ ðNA; 0Þ at rate KðfÞNB if NB < nv;

(2)
At the mean-field level, the temporal evolution of the different components

is given by

_NA ¼ JðN;fÞnv � kmðfÞNA;

_NB ¼ kmðfÞNA � KðfÞnvNB:
(3)

This expression is valid, assuming that NB R nv and that the ratio of active

species (NA þ NB)/N in the compartment at t ¼ 0 matches the ratio nv/Nv in

the transport vesicles. It is derived in the Supporting Material, where the

case NB < nv is also discussed in more detail. This leads to the self-consis-

tent equations for the mean-field steady state:

N

Nv

¼ JðN;fÞ
ð1� fÞkmðfÞ; f ¼ kmðfÞ

kmðfÞ þ KðfÞnv: (4)

We show below that the dynamics of the system can be separated into two

main classes, regardless of the details of the functional form for the
different rates. The choices of functional form for the different fluxes dis-

cussed below are motivated by phenomenology rather than actual micro-

scopic models or quantitative measurements. Other choices are possible,

and will make quantitative differences. Our claim is that our general conclu-

sions regarding the existence of these two classes are model-independent.

The flux of incoming vesicles J(N,f) may depend on the size and compo-

sition of the receiving compartment. One can expect that J is independent of

the compartment size if it is limited by unidimensional diffusion (e.g., along

a fixed number of cytoskeleton tracks) and J � ffiffiffiffi
N

p
(linear with the

compartment size, and assuming a spherical compartment) if it is limited

by 3D diffusion. We require that J increases sublinearly with the compart-

ment size, as J � N would not lead to a steady state in our model. With re-

gard to the membrane composition, homotypic fusion suggests that J

decreases with increasing fraction f of mature components. We assume

here that no immature vesicles fuse with a fully mature compartment

(J(f ¼ 1) ¼ 0), and study two different models: a constant influx that

abruptly vanishes when f ¼ 1, and a linear dependence: J f (1 � f), as

simple choices.

Maturation (JA/B) is assumed to be a one-step process with a rate km that

may involve some cooperativity and depend on the local concentration of B,

hence of f. As an example, in a Rab cascade, a Rab A recruits the effectors

(GEF) that attract another Rab B. Subsequently, the Rab B can recruit other

effectors (GAP) that favor the unbinding of Rab A (28). These complex in-

teractions can lead to a certain amount of cooperativity. This is taken into

account here by writing km(f) ¼ km(1 þ af), where km is the basal matu-

ration rate and a represents the catalyzing effect of neighboring B compo-

nents for the maturation of A components. A high value of a is a simple way

to implement a switchlike behavior between early and late identities, which

could result from the feedback loops in the Rab cascade (31,32).

Vesicle budding (JB,out) is assumed to extract specifically theB components,

and the budding rateK(f) could be sensitive to the local composition ofB com-

ponents, e.g., if several B sites are needed to create a vesicle. After each

budding event, nv sites of type B are removed in a vesicle of size Nv. If the

compartment contains a smaller number ofmature sitesNB< nv, all these sites

are removed by the budding of one vesicle and both NB and f vanish.
We have assumed that maturation and budding depend on local proper-

ties (the concentration), but not on the compartment size. This assumption

could break down for small compartments, where maturation could be

influenced by the total number of B components in the compartment, and

budding could be reduced due to mechanical effects. We disregard these

complexities here to reduce the number of parameters. This model, of

course, does not capture the full complexity of real cellular organelles. In

addition to coated vesicles, transport between cisternae within the Golgi

apparatus might also proceed via membrane tubules connecting different

cisternae (33). If such connections are transient, they can be described at

a coarse-grained level within our framework of composition-dependent

fluxes. Another important issue in Golgi dynamics is the recycling of Golgi

resident enzymes. Recycling is essential in the cisternal maturation model

to ensure that the enzymes remain at a particular location within the Golgi,

and is expected to proceed via retrograde (trans-to-cis) vesicular transport

(34). Such complexity is not included in our model, which aims at

answering well-defined questions: what are the conditions under which a

steady-state mixed compartment undergoes full maturation, and how rele-

vant is this process to the net outflux? Our analysis shows that the answer
Biophysical Journal 114, 947–957, February 27, 2018 949
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to these questions requires a stochastic analysis of compartment concentra-

tion fluctuations, which possess universal features that we identify.

Including additional dynamical fields, such as the concentration of enzymes

responsible for maturation, will be interesting, but is left for future work.
Output parameter

The initial state is a compartment equivalent to one immature vesicle

(N ¼ Nv, NA ¼ nv, NB ¼ 0). The compartment evolves toward and fluc-

tuates around a steady state in which the vesicular outflux compensates

the vesicular influx. However, this steady state has a finite lifetime, if

it is reached at all. The compartment will necessarily reach full matura-

tion (f ¼ 1) at some point due to stochastic fluctuations, and become iso-

lated from the influx. To quantify the fraction of vesicular transport

contributing to the total outflux, we propose to compute the output

parameter h defined as follows:

h ¼ hNvesi
hNvesi þ hNmati; (5)

where hNvesi is the average number of matured (type B) vesicles emitted by

the compartment before full maturation (f ¼ 1), and hNmati is the average
size (measured in vesicle-equivalents) N/Nv of the fully matured compart-

ment. The outflux is dominated by vesicular transport if h x 1 and by

full compartment maturation if h << 1.
RESULTS

In this section, we first present analytical results for a
simplified model where fusion, maturation, and budding
occur at constant rates and nv ¼ 1. We then explore the
case of composition-dependent rates numerically and
explain the main differences that arise based on the mean-
field dynamics of the system. The effect of size-dependent
fusion, which we found to be minor, is discussed in the Sup-
porting Material.
Analytical solution for constant rates

We start by analyzing the simplest version of the model
with nv ¼ 1 and where the influx J, the maturation rate km,
and the fusion rate K are all constant, independent of the
compartment size and composition. In this case, one may
obtain an analytical solution for the isolation time of a
compartment, and an approximate analytic expression for
the output parameter h. The mean first passage time to isola-
tion, namely the time needed to reach NA ¼ 0 starting at
NA ¼ 1, can be calculated exactly, as the dynamics of A
components in the compartment is independent from the dy-
namics of the B components. The transition rates governing
the evolution of NA(t) are

NA/
J
NA þ 1; NA!kmNA

NA � 1: (6)

The average time tn needed to reach NA ¼ 0 starting from a
state NA ¼ n following this simple stochastic process sat-
isfies the classical recursion law for mean first passage times
950 Biophysical Journal 114, 947–957, February 27, 2018
(35), which is derived in the Supporting Material. For the
rates defined in Eq. 6, the recursion relation reads:

�1 ¼ kmnðtn�1 � tnÞ þ Jðtnþ1 � tnÞ: (7)

An expression for the average time to full maturation start-
ing from a newly created compartment, t1, can be obtained
by solving Eq. 7 recursively to obtain the expression:

tnþ1 � tn
n!

¼
�
km
J

�n

t1 � 1

J

Xn�1

i¼ 0

1

ðn� iÞ!
�
km
J

�i

: (8)

For n >> J/km, the mean field analysis, Eq. 3, suggests that
the system first evolves toward the (quasi) stationary state
given by Eq. 4, in a typical time of the order of 1/km inde-
pendent of n, and remains there for a (potentially long)
time before full maturation. Therefore, we expect that
limn[ J=kmðtnþ1 � tnÞ=n! ¼ 0, which leads to an explicit
formula for t1:

t1 ¼ e
J
km � 1

J
¼ eNð1�fÞ � 1

kmNð1� fÞ; (9)

where N and f are the steady-state average size and compo-
sition of the compartment (Eq. 4).

To estimate the value of the output parameter h (Eq. 5),
we must compute the average number of vesicles emitted
before compartment isolation hNvesi, and the average size
of the fully matured compartment hNmati. Calculating these
quantities analytically is difficult, because it requires solv-
ing the 2D isolation problem for NA and NB. An estimate
of the size of the matured compartment is hNmati x Nf.
This amounts to saying that isolation occurs due to a tempo-
rary lack of incoming vesicles, whereas the number of B
components retains its steady-state value due to a balance
between maturation and vesicle secretion. An estimate of
the amount of emitted vesicles before maturation can be ob-
tained by supposing that the system spends most of its time
undergoing small fluctuations around the steady state, so
that Nves z KNft1 ¼ eN(1�f) �1. The fact that newly
formed compartments are initially small and may reach
full maturation without ever reaching the steady state mod-
ifies this estimate. This can be crudely taken into account by
considering that the initial compartment made of one
vesicle can mature directly and become isolated in only
one step. This one-step maturation event corresponds to
Nves ¼ 0 and Nmat ¼ 1 and happens with the probability:

p1 ¼ km
km þ J

: (10)

Taking this into account, we obtain the following estimates:

Nveszð1� p1Þ
�
eNð1�fÞ � 1

�
Nmatzp1 þ ð1� p1ÞNf ; (11)
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from which we get the approximate results:

h

1� h
¼

J
km

�
e
J
km � 1

�

1þ J2

Kkm

¼ Nð1� fÞ�eNð1�fÞ � 1
�

1þ N2fð1� fÞ : (12)

Numerical simulation under constant maturation
and budding rates

We performed numerical simulations of the stochastic dy-
namics of Eq. 2, following the Gillespie scheme described
in the Supporting Material. We first restrict ourselves to
the case where the maturation and fusion rates are constant
and where the content of transport vesicles corresponds to a
single membrane patch: (Nv ¼ nv ¼ 1). We focus our anal-
ysis on two experimentally observable quantities: the
dynamical features of individual time traces of size and con-
centration fluctuations of compartments, and the size distri-
bution of fully mature compartments. Averaging over many
simulations, we construct a phase diagram for the output
parameter as a function of the different exchange rates
that illustrates the regions where maturation and vesicular
exchange dominate the compartment dynamics.

Constant influx

Wefirst report the results of simulationswhen all the exchange
rates (Influx J, maturation rate km, and budding rate K) are
a

b

FIGURE 2 Simulation results for constant rates. (a) Typical time traces are gi

(NA and NB) and total size N/Nv ¼ NA þ NB as a function of the dimensionless t

vesicular (h ¼ 0.95, J/km ¼ 6, and K/km ¼ 0.3) regimes. The steady-state value o

(b) Size distribution of fully matured compartments (Nmat) was obtained from 32

parameters are N¼ 121,NB/NA¼ 33.6, 23.4, and 16.2 from left to right. (c) Given

of the pseudo steady-state compartment size N and ratio NB/NA, showing the tran

(hx 0) regimes. The three shaded lines represent constant values of h as given b

cuts through the phase diagram varying the compartment size for two fixed pseu

the dots are the simulation results and the associated error bars.
constant, as in the analytical calculation of the previous sec-
tion. A typical evolution of the number of A components
and the total number of components in the compartment is
shown in Fig. 2 a. Depending on the ratio of maturation to
budding rate, the system either displays strong fluctuations
around the steady state (Eq. 4), which eventually lead to the
complete maturation of all A components, or exhibits full
maturation before reaching the steady state.

After many independent realizations of the maturation
process, one obtains a distribution of values for the size of
the fully mature compartment Nmat and the number of ves-
icles exported before the full maturation Nves, from which
the output parameter h (Eq. 5) can be calculated. Fig. 2 b
shows that the distribution of Nmat is rather broad in the
maturation-dominated regime (small values of h) and shows
a peak at the steady-state compartment size in the regime
dominated by vesicular exchange (h x 1). The values of
Nmat and Nves for different parameters are represented as
scatter plots in the Supporting Material. They are well fitted
by assuming that the compartment follows the mean field
dynamics given by Eq. 3 and assuming that full maturation
occurs after a time tmat:

Nves ¼
Z tmat

0

KNBðtÞdt; Nmat ¼ NBðtmatÞ: (13)

This shows that, for the parameters of Fig. 2, the main
source of fluctuation comes from the distribution of the
isolation time tmat.
C

ven, showing the fluctuations of the compartment’s content in A and B sites

ime kmt, in the maturation (h ¼ 0.29, J/km ¼ 4.16, and K/km ¼ 0.1905) and

f N is shown as a dashed line and full maturation is indicated by a solid star.

0 independent simulations (for three different values of h). The steady-state

here is a phase diagram for the value of the output parameter h as a function

sition between the vesicular exchange (hx 1) and compartment maturation

y the approximate analytical computation of Eq. 12. (Inset) Shown here are

do steady-state compositions. The solid lines are obtained using Eq. 12 and
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The phase diagram for the output parameter is shown in
Fig. 2 c as a function of the steady-state compartment size
and distribution. The same diagram is shown as a function
of the model parameters J/K and km/K in the Supporting Ma-
terial. The two extreme mechanisms of vesicular exchange
(h z 1) and compartment maturation (h z 0) are observed
for extreme values of the parameters, namely large steady-
state compartment size N for the former and high value of
the steady-state fraction f for the latter. However, the phase
diagram shows a richer picture, with a gradual transition be-
tween the two mechanisms upon variation of the ratio of
maturation to budding rates for intermediate compartment
size. The analytical calculation of the output parameter
(Eq. 12) faithfully reproduces the numerical results, except
for very small compartments.

The size distribution of mature compartments (Fig. 2 b)
shows a large peak at very small size (Nmatx 1). This corre-
sponds to cases where a young compartment undergoes
direct maturation before any, or after a few, fusion and
budding events. Such a fullymature compartment is structur-
ally indistinguishable from a budded vesicle, and itmay seem
arbitrary to include the former in the maturation flux and the
latter in the vesicular flux, as is done in the definition of the
output parameter (Eq. 5). This is nevertheless reasonable
within our model, where the difference between the two
fluxes is a matter of kinetic processes rather than a difference
of structure. For completeness, we show in the Supporting
Material an equivalent of Fig. 2 c for two alternative defini-
tions of the output parameter, either removing all directmatu-
ration events, or removing all events where the fully mature
compartment is of unit size (e.g., following the same number
of fusion and budding events). The difference is only quanti-
tative, and only appreciable for very small steady-state size.
a

b

FIGURE 3 Simulation results with homotypic fusion. Identical to Fig. 2, but

of the compartment composition are given for two values of the output parame

responds to J/km ¼ 26 and K/km ¼ 0.5). (b) Shown here is the size distribution o

NB/NA ¼ 23.4, 11.3, 5.46 from left to right). (c) Phase diagram is shown for th

compartment size N and ratio NB/NA of the two components. The three gray lin
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Composition-dependent influx

The previous model with a composition-independent influx
possesses the rather arbitrary feature that the influx abruptly
drops to zero when the compartment reaches full matura-
tion. Although it is possible that homotypic fusion could
permit a steady influx of immature vesicles with only one,
or a few, immature site in the compartment, one may also
expect a more gradual dependence of the influx with the
compartment concentration. We present in Fig. 3 the same
results as in Fig. 2, but with an influx that linearly decreases
with the composition of the compartment: J ¼ J0(1 � f)
(henceforth called the ‘‘homotypic fusion model’’). The
general features of the phase diagram are conserved, namely
the dominance of maturation for small compartments and
large steady-state fraction of B components. A composi-
tion-dependent influx, however, brings three important qual-
itative differences: 1) the vesicular exchange-to-maturation
transition shows a much weaker dependence upon the
steady-state compartment size (for large sizes); 2) the size
distribution of a fully mature compartment is always peaked
around a large size and direct maturation of incoming vesi-
cles (Nmat ¼ 1) is very rare; and 3) the time trace of the
compartment composition in A and B species seems anticor-
related, and displays oscillations for large h. We show below
that these features can be understood by analyzing the
mean-field dynamics of the system.

Effect of the other parameters

We now relax the assumption that the entire content of
incoming vesicles matures as one entity and assume that
the incoming and outgoing vesicles contain Nv independent
membrane sites, of which nv are active sites as in Fig. 1 b.
C

for a concentration-dependent influx J ¼ J0(1 � f). (a) Typical time traces

ter (h ¼ 0.3 corresponds to J/km ¼ 26 and K/km ¼ 0.06, and h ¼ 0.92 cor-

f fully matured compartments (the steady-state parameters are N ¼ 121 and

e value of the output parameter h as a function of the pseudo steady-state

es represent constant values of h ¼ 0.2, 0.5, and 0.8, as in Fig. 2.
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We also include the possibility for cooperative maturation
(km(f) ¼ km(1 þ af) in Eq. 1). The impact of these param-
eters on the transition between compartment maturation and
vesicular exchange is shown in Fig. 4, which displays the
boundary corresponding to h ¼ 0.5 for constant and compo-
sition-dependent influx, varying the maturation cooperativ-
ity parameter a and using two values of the number of
active molecules in the incoming vesicles: nv ¼ 1 and
nv ¼ 10. The latter value is the typical number of Rab mol-
ecules in a transport vesicle (36). The global trends are as
follows: cooperativity in the maturation process disfavors
maturation for very small compartments but favors it for
large compartments (N T 10 Nv). The number of maturing
components per vesicle nv has a strong impact on the posi-
tion of the boundary—is favoring full compartment matura-
tion—for constant influx, but only has a weaker effect with
composition-dependent influx. Combining homotypic
fusion with high maturation cooperativity renders the transi-
tion almost independent of the compartment size. The full
phase diagrams, displayed in the Supporting Material,
show that the width of the transition does not depend on
nv or a, but only on whether the influx is composition-
dependent.

As a final refinement of the model, we also consider the
possibility that the maturation of A into B components might
involve several steps. This is, for instance, the case of
the Rab cascade, which includes the recruitment of GEF
and GAP molecules. At our level of description, the prin-
cipal consequence of having several reaction steps is that
the maturation waiting time might not be exponentially
100 101 102 10310-1

100

101

102

FIGURE 4 Level curves (h ¼ 0.5) extracted from phase diagrams similar to th

cesses in Eq. 1. The vesicular influx J(N,f) is either constant (left panel) or cont

cooperativity in the maturation process is seen by varying the coefficient a (wi

vesicle is nv ¼ 1 (solid curves) and nv ¼ 10 (shaded curves). The curves correspo

left and right panels, respectively.
distributed. In the Supporting Material, we study the
extreme case where the maturation of a single A component
involves a very large number of independent steps and be-
comes an almost deterministic process with a fixed waiting
time. Remarkably, we show that the average maturation
time t1 is still given by Eq. 9. This suggests that our results
do not depend much on the distribution of maturation times.
Role of homotypic fusion

The peculiar dynamics of compartments experiencing
composition-dependent influx, namely the anticorrelated
nature of composition variations of A and B components
before maturation, the peaked size distribution of a fully
matured compartment, and the weak dependence of the
full maturation probability on the compartment steady-state
size, can all be understood from the mean-field dynamics
given by Eq. 3. The steady state (Eq. 4) is always stable
in our model, but the relaxation toward the fixed point is
either overdamped if J is constant, or underdamped (oscilla-
tory) with homotypic fusion (J � (1 � f)), beyond a critical
ratio of km ¼ km=K. This is analyzed in the Supporting
Material. In the absence of cooperativity in the maturation
process (a ¼ 0), the critical ratio obeys

4k
3

m þ 4k
2

m � 1 ¼ 0 or km=Kx0:42: (14)

This threshold decreases with increasing a (see the Support-
ing Material).
100 101 102 10310-1

100

101

102

e one in Fig. 3 for composition-dependent rates of the different kinetic pro-

rolled by linear homotypic fusion (J ¼ J0(1 – f), right panel). The effect of

th a maturation rate km(f) ¼ km(1 þ af)). The number of components per

nding to the phase diagram of Figs. 2 and 3 are shown as a dotted line in the
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Far above threshold (km/K >> 1), the compartment first
grows through a burst of vesicle injection (NA >> 1,
NB z 0), followed by a slower maturation process
(NA z 0, NB >> 1). During the latter, only a few stochastic
maturation steps are needed to reach full maturation. The
likelihood of this to happen becomes weakly dependent
on the compartment size, and on the level of coarse-graining
nv. The size distribution of fully mature compartments re-
flects these dynamics. If J is constant, it is peaked at the
mean-field steady-state size (Eq. 4) when vesicular ex-
change dominates the outflux (h ( 1), but is rather broad
in the maturation dominated regime; see Fig. 2 b. With
composition-dependent influx, full maturation occurs pre-
dominantly during phases of the spiraling trajectories where
NA is small, leading to a large matured compartment with a
well-defined range of sizes Fig. 3 b. Finally, the absence of
direct maturation of incoming vesicles (Nmat ¼ 1) with
homotypic fusion can be understood as follows: a
given steady state (N, f) corresponds to a smaller value of
the ratio of influx over maturation rate for a constant influx
(J0/km ¼ N(1 – f)) than for a composition-dependent influx
(J0/km ¼ N). The likelihood of direct maturation of
incoming vesicles (the probability p1 in Eq. 10) before a
fusion event is thus strongly reduced by homotypic fusion.

The linear stability analysis of the mean-field equations
can easily be extended to any functional form one wishes
to explore, but what really matters is whether the system
is in the overdamped or underdamped regime. As we
show above, this is mostly controlled by homotypic fusion.
Using a linear stability analysis method, one can easily
convince oneself that if the budding rate increases with
the concentration of B component, as could be expected if
budding is a cooperative process, the range of parameter
for which the dynamics is overdamped is increased (the
fixed point is stabilized) and full maturation is disfavored.
If the budding rate is assumed to follow a Michaelis-Menten
kinetics with saturation at high concentration, the effect is
reversed, and full maturation is favored.
DISCUSSION

Are membrane-bound organelles along the cellular secre-
tory and endocytic pathways steady-state structures
receiving, processing, and exporting transiting cargoes, or
are they transient structures that grow by fusion of smaller
structures until they reach full maturation? To address this
question from a theoretical viewpoint, we have developed
a minimal stochastic model combining compartment matu-
ration and vesicular exchange. The model is based on two
fundamental assumptions: that there exists a steady state
where the outflux balances the influx, and that there exists
a particular composition of the system for which it becomes
committed to full maturation. The former assumption is a
widespread concept for cellular organelles in general (37),
and the endomembrane system in particular (38). The latter
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is supported by observations of early endosomes (10) and
S. cerevisiae Golgi cisternae (12,13). We show that the or-
ganelle’s dynamics is essentially controlled by two parame-
ters: the ratio of vesicle injection to budding rate, which
controls the steady-state size of the organelle; and the ratio
of biochemical maturation to budding rate, which controls
the organelle’s steady-state composition.

Our main results are summarized Figs. 2 and 3. For low
maturation rates (compared to the budding rate), the flux
of mature material leaving the system is predominantly
composed of budded vesicles of mature components. The
organelle remains at steady state for a long time while ex-
porting vesicles of mature component. When full maturation
occurs, the mature compartment has a size distribution
peaked around the steady-state size. For high maturation
rates on the other hand, full maturation typically occurs
before the steady state is reached and the outflux is mostly
composed of fully mature compartment. Importantly, full
maturation can follow one of two types of dynamics: the tra-
jectory in the phase space (size and composition) is either a
quasi-random walk eventually hitting the full maturation
threshold, or is a spiraling trajectory around the fixed point
that reaches full maturation in a quasi-deterministic fashion.
The difference is important, as the fully mature organelles
produced by the former mechanism are unlikely to be
very large and have a broad size distribution, whereas those
produced by the latter can be large and have a peaked size
distribution. A necessary condition for the occurrence of
deterministic maturation is that the influx decreases as the
organelle becomes more mature, which is an expected
consequence of homotypic fusion. Positive feedback in the
maturation process renders full compartment maturation
more deterministic.

Figs. 2 and 3 suggest that the dominant export mechanism
of an organelle could be inferred by analyzing individual
time series of the organelle’s size and composition. Matura-
tion of S. cerevisiae Golgi cisternae from a cis to a trans
identity appears fairly deterministic, with a gradual evolu-
tion from one identity to the other (12,13). This suggests
that this organelle is in the maturation-dominated regime
helped by homotypic fusion, a conclusion reinforced by
the observation that different time traces of compartment
composition display reproductible dynamics (13). Matura-
tion of early endosomes into late endosomes appear much
more stochastic, with large composition fluctuations (10).
In this case, our results suggest that vesicular export of the
late membrane identity (which has not been investigated
in (10)) might dominate the dynamics. Note that the individ-
ual fluorescence tracks shown in (10) seem to display large
amplitude oscillations before full maturation, similar to the
theoretical tracks shown in Fig. 3. In our model, these oscil-
lations are a consequence of the spiraling (overdamped) tra-
jectories in the phase space, a signature of homotypic
fusion. This suggests that, although in the vesicular ex-
change regime, these endosomes are fairly close to the
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maturation transition, and that endosomal dynamics could
be converted to a maturation-dominated regime by a small
change of parameters, such as an increase in the ratio of
maturation rate to budding rate. These considerations are
clearly very preliminary, and a more systematic analysis is
needed to reach a more definite conclusion, but these exam-
ples illustrate the intimate link between the temporal fluctu-
ations of individual components and the time-average
export dynamics of organelles.
Vesicular exchange and maturation in the Golgi
apparatus

Are Golgi cisternae stable structures that receive and export
material while retaining their identity, or are they transient
structures that progressively mature from the cis to the trans
identities? Although evidence for the latter dynamics exists
in endosomes and the Golgi cisternae of the yeast
S. cerevisiae, this issue is not resolved for the stacked Golgi
of most higher eukaryotes including mammalian cells, for
which a long-lasting controversy exist between the cisternal
maturation and vesicular exchange transport models. The
reality might lie between these two extreme scenarios, and
our model can in principle give a quantitative answer as to
the fraction contributed by each mechanism to the total out-
flux, provided that the rates of vesicular influx, maturation,
and budding are known. The challenge in comparing our
theory to experiments lies in obtaining accurate values for
these rates. In the following, we concentrate on the dy-
namics of the Golgi apparatus, and we adopt the estimate
10�3 % K % 10�2 s�1 for the budding rate for COPI
vesicles (39). Values for the influx depend on whether one
considers the Golgi ribbon of vertebrate cells that
receives influx from the entire ER (40), for which we
estimate J � 10 – 102 s�1, or individual Golgi mini-
stacks formed at ER exit sites, for which we estimate
J � 10�2 – 10�1 s�1 (41,42). We also take the latter value
for the influx toward individual cisternae of the dispersed
Golgi of yeast S. cerevisiae. Maturation of Golgi cisternae
of the yeast S. cerevisiae has been monitored by live imag-
ing, yielding an isolation time of order tz 102 s (12,13,43).
For a stacked Golgi, and assuming the isolation time is
of the order of the typical transit time of cargoes across
the stack (a lower bound corresponding to the cisternal
maturation model), it is of order t z 103 s (44,45). With
these parameters and assuming a constant influx, the
maturation rate can be obtained from Eq. 9 and the
steady-state size and composition of cisternae from
Eq. 4. We find km � 10�2 – 10�1 s�1 for S. cerevisiae,
and km � 10�3 – 10�2 s�1 for Golgi ministacks. The output
parameter (Eq. 5) is of order h ¼ 0.1–0.5 for S. cerevisiae
and h ¼ 0.5–0.9 for ministacks, placing the former in the
maturation-dominated regime (in agreement with previous
studies (13,46)) and the latter in the vesicular exchange-
dominated regime (as studies based on cargo transport
dynamics also concluded (45,47)). The predicted steady-
state size N � 10–100 for both is reasonable. These conclu-
sions remain qualitatively valid with the homotypic fusion
model and a composition-dependent influx. It is unclear
whether the rather simple model developed here is adequate
to describe the Golgi ribbon, itself a compact assembly
of somewhat interconnected Golgi mini-stacks (40). With
the corresponding parameters, we find a maturation rate
km � 1 – 10 s�1, corresponding to h � 0.5–0.9, also in the
vesicular exchange-dominated regime, and a steady-state
size N ¼ 104 � 105.

It is interesting to notice that the Golgi in the two different
cell types are predicted to be on opposite sides of the bound-
ary between vesicular exchange and cisternal maturation,
and also have very distinct morphologies (dispersed versus
stacked), suggesting a possible correlation between dy-
namics and morphology. When S. cerevisiae is starved in
a glucose-free environment, the isolation time of Golgi
cisternae increases to t¼ 3� 102 s (48). Within our model,
an increase of t can result from an increase of J or a decrease
of km (Eq. 9). The latter seems much more likely than the
former in a starved situation. The slowing down of Golgi
kinetics leads to a shift toward the vesicular exchange-domi-
nated regime (h� 0.2–0.7). Remarkably, the Golgi structure
is also modified, and resembles the stacked Golgi structure
in Pichia pastoris (48). This observation strengthens the
proposal that correlations exist between Golgi structure
and transport kinetics. The Golgi of P. pastoris could be in-
termediate, both in terms of transport dynamics and struc-
ture, between the Golgi of S. cerevisiae and the stacked
Golgi of most eukaryotes, as it is at the same time stacked
and shows continuous cisternae turnover akin to cisternal
maturation at its trans face (49). Unfortunately, we could
not evaluate the output parameter for P. pastoris, as there
is to our knowledge no available quantitative data of Golgi
transport kinetics in this organism.
Quantitatively testable predictions of the model

Statistics of individual time traces

Our model makes a number of experimentally testable pre-
dictions, regarding the relationship between the dynamics of
individual compartments, and in particular the concentra-
tion fluctuations over time, the size distribution of mature
compartment, and the dominant export mechanism. The
time average dynamics of the system can in principle be ob-
tained from a statistically significant set of individual time
series of compartment size and composition. The crude
rule of thumb is that if an organelle spends a significant frac-
tion of time at a quasi-steady state, possibly undergoing
large fluctuations around it, its dynamics is likely to be in
the vesicular exchange regime. The distribution of matura-
tion time, experimentally more accessible than the size dis-
tribution of mature compartments as those might undergo
Biophysical Journal 114, 947–957, February 27, 2018 955
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further homotypic fusion, is less discriminatory as it is
model-dependent. Although a broad distribution is a signa-
ture of a maturation-dominated regime with a constant (or
weakly composition-dependent) influx, a peaked distribu-
tion could correspond to a regime dominated by vesicular
exchange, but also to a maturation-dominated regime with
a composition-dependent influx (related to homotypic
fusion), which renders full maturation almost deterministic.
Thus, the combined analysis of individual time trace and the
distribution of isolation time can inform us both on the
dominant export mechanism, and on the specificity of
the fusion, maturation, and budding processes.

Rate of cargo transport

Our model produces an interesting prediction with regard to
cargo transport. At steady state, a cargo exported in vesicles
should leave organelles such as the Golgi at a rate J, whereas
a cargo unable to enter a transport vesicle and relying solely
on cisternal maturation should be exported at a (potentially
much) slower rate 1=t1 � Je�J=km according to the constant
flux model, Eq. 9. This could apply to large protein com-
plexes such as procollagen, whose progression through the
Golgi stack, which is about twice as slow as that of smaller
membrane proteins such as VSVG (47), has been taken as
evidence for cisternal maturation (44,50). Regulation of
the export mechanism could be very important for the trans-
port of such large cargoes that do not fit inside export vesi-
cles. Our results suggest a possible mechanism for this
regulation. The presence of such large cargo as procollagen
in Golgi cisternae could reduce the rate of vesicle secretion
K, e.g., by mechanical means through an increase of mem-
brane tension imposed by the distension of the cisternal
membrane. This would favor full cisternal maturation and
permits the progression of the large cargo through the Golgi
stack. Interestingly, VSVG has been observed to move syn-
chronously with procollagen when both are present in the
Golgi (44), lending support to this regulatory mechanism.
Note, however, that quantitative analysis of intra-Golgi
transport suggests that procollagen transport does not solely
rely on cisternal maturation (47).
CONCLUSIONS

The highly dynamical nature of intracellular organization
requires the exchange processes between organelles to be
tightly regulated to yield robust directional flow of material
through the cell. Whereas the cell may to some extent be
viewed as the steady state of a complex dynamical system,
the specific budding, fusion, and maturation events that
shape its organization are inherently stochastic processes.
Owing to the relatively small size of many cellular organ-
elles, stochastic fluctuations must be accounted for in
models of their dynamics. We have developed a stochastic
dynamical model to study the interplay between maturation
and exchange in intracellular trafficking. Our model can
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reproduce both the strong fluctuations of size and composi-
tion seen in early endosomes (10) (Fig. 2) and the more
deterministic maturation of individual Golgi cisternae in
S. cerevisiae. It includes as asymptotic limits the two
extreme exchange mechanisms at the heart of the Golgi
transport controversy (14): vesicular exchange and compart-
ment maturation. We identify full compartment maturation
as a first-passage process, whose likelihood decreases with
increasing organelle size. We also found that the interplay
of homotypic fusion and cooperative maturation increases
the probability of full maturation and reduces its size depen-
dence. These mechanisms therefore act as regulators to pro-
vide robustness to full compartment maturation against
stochastic fluctuations.
SUPPORTING MATERIAL

Supporting Materials and Methods and four figures are available at http://
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In this Supporting Material, we derive the recursion relation for the mean first passage time
to complete compartment maturation, we show how to obtain the mean-field approximation of
the stochastic compartment dynamics, we give details of the numerical procedure used for the
simulations, and we provide additional simulation results.

S1 Recursion relation

We start by deriving the classical equation on mean first passage times for a discrete one dimen-
sional system submitted to a stochastic dynamics governed by transition rates. We consider a
system described by a discrete variable n ∈ N. The dynamics of n is stochastic and the transition
rate from the configuration n to another configuration m is written Rn→m. We are interested
in the quantity τn which is the average time needed to reach the configuration 0 starting from
configuration n. We call p(n, t)dt the probability to reach 0 between t and t + dt starting from n
at t = 0. One can write an equation on the functions p(n, t) by computing the probability to reach
0 at time t+ dt starting from n. In order to do this, during a time dt the system will either jump
towards another configuration m or stay in n and then use a time t to reach the configuration 0.
Mathematically written, it reads:

p(n, t+ dt) =
∑
m6=n

Rn→mdt p(m, t) +

(
1−

∑
m 6=n

Rn→mdt

)
p(n, t) (S1)

This leads to a differential equation on p(n, t):

∂p(n)

∂t
=
∑
m6=n

Rn→m(p(m, t)− p(n, t)) (S2)

Multiplying by t and integrating on the time leads to an equation for the mean first passage time
τn to reach n = 0 starting at n, which a classical result obtained in [1] p298-303 in the restricted
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case of one-step processes:

∀n ∈ N : − 1 =
∑
m6=n

Rn→m(τm − τn). (S3)

This recursion relation is used is the main text (Eq.(9)) to compute the mean first passage time
to full maturation, Eq.(11).

S2 Mean-field approximation of the compartment dynam-

ics

The (inherently stochastic) compartment dynamics is defined by Eq.2 from the main text:

Fusion : (NA, NB)→(NA + nv, NB) at rate J(N, φ)

Maturation : (NA, NB)→(NA − 1, NB + 1) at rate km(φ)NA

Budding : (NA, NB)→(NA, NB − nv) at rate K(φ)NB if NB ≥ nv

(NA, NB)→(NA, 0) at rate K(φ)NB if NB < nv

(S4)

The compartment also contains a neutral species contributing to its total size N . Hence, for
completeness, we need to explicitly define the dynamics of N :

Fusion : N →N +Nv at rate J(N, φ)

Budding : N →N −Nv at rate K(φ)NB if NB ≥ nv

N →N −Nv at rate K(φ)NB if NB < nv

(S5)

From this set of stochastic equations, a first step towards constructing a mean-field approximation
is to compute the time derivative of the average quantities N ,NA and NB:

〈Ṅ〉 =Nv〈J(N, φ)〉 −Nv〈K(φ)NB〉
〈ṄA〉 =nv〈J(N, φ)〉 − 〈km(φ)NA〉
〈ṄB〉 =〈km(φ)NA〉 − nvPNB≥nv〈K(φ)NB〉NB≥nv − PNB≥nv〈K(φ)NB

2〉NB<nv

(S6)

Where, ∀t ≥ 0, 〈X〉Y is the (ensemble) average value of X(t) given constraint Y , and PY is the
probability that constraint Y is verified at time t. It is important to note Eq.(S6) is a direct
consequence from Eq.(S4) and Eq.(S5) and is therefore exact. Now to obtain a mean-field ap-
proximation, one traditionally replaces every average of products or non-linear combinations of
variables by products or combinations of the averages. Also fluctuations are neglected so PNB≥nv

is taken equal to 1 when 〈NB〉 ≥ nv. This leads to the following complete mean-field equation:

Ṅ =Nv(J(N, φ)−K(φ)NB)

ṄA =nvJ(N, φ)− km(φ)NA

ṄB =km(φ)NA − nvK(φ)NB if NB ≥ nv

ṄB =km(φ)NA −K(φ)NB
2 if NB < nv

(S7)

Because of the change of behavior when NB < nv, the general solution of this system is complex.
The mean-field equations are generally valid for large systems when fluctuations can be neglected.
In such cases we can assume that NB ≥ nv. In this case we can easily relate Ṅ and ṄA + ṄB:

Ṅ

Nv

=
ṄA + ṄB

nv
(S8)
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From this we conclude that the relation (NA + NB)/N = nv/Nv is valid for all time, provided
that it is verified at t = 0. This allows to derive the self-consistent equations for the mean-field
steady-state:

N

Nv

=
NA +NB

nv
=

J(N, φ)

(1− φ)km(φ)
φ =

km(φ)

km(φ) +K(φ)nv
(S9)

This corresponds to Eq.4 of the main text.

S3 First passage time for a deterministic maturation pro-

cess

In the main text, maturation of a single site is assumed to be a single step process. In reality
the maturation mechanism might involve several steps. As a consequence the distribution of the
maturation time of a given component would be different from a single exponential. The limit
where maturation involves a large number of independent steps can be discussed relatively easily.
Because of the central limit theorem, the distribution of the total maturation time of a single
component is expected to be a Gaussian with a relatively small standard deviation. The extreme
case is when the number of steps goes to infinity and the maturation is deterministic. We can
compute the first passage time to full maturation of the compartment in this case. We choose
the value 1/km for the deterministic maturation time of a single component in order to compare
with the result of the main text. Here each site of type A has a lifetime 1/km, therefore full
maturation occurs only if no new vesicle is injected during a time 1/km after the injection of the
last vesicle. Vesicles are injected at a rate J in the simplified model, and each injection completely
resets the maturation state of the system. Since vesicle injections are independent, this leads to
this expression for the average maturation time τ :

τ =
1

km
+ 〈ninj〉〈tinj〉 (S10)

where 〈ninj〉 is the average number of vesicle injections in addition to the first one and 〈tinj〉 is
the average waiting time between two injections. In order to compute these two quantities, we
define the survival probability pS(t) which is the probability to reach the time t without injecting
a vesicle. The equation satisfied by pS(t), and its solution, are:

dpS
dt

= −JpS(t) , pS(t) = e−Jt (S11)

The probability of reaching t = 1/km without experiencing a vesicle injection (a reset) is p0 ≡
pS(1/km), hence the probability of experiencing exactly n jumps before complete separation is
pn = p0(1− p0)n. Consequently, the mean number of jumps is

〈ninj〉 =
∞∑
n=1

npn =
1− p0

p0

(S12)

For one reset event, the probability density of the reset time is −dpS
dt

so the average waiting time
before a vesicle injection is given by:

〈tinj〉 =

∫ 1/km

0

t
dpS
dt

dt∫ 1/km

0

dpS
dt

dt

=

−p0/km +

∫ 1/km

0

pS(t)dt

1− p0

(S13)
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Introducing Eqs.(S12,S13) in Eq.(S10), we get the expression of the separation time:

τ =
1

pS(1/km)

∫ 1/km

0

pS(t)dt =
e

J
km − 1

J
(S14)

This is exactly the same result as in the main text where maturation is made of a single step
(Eq.(11)), which suggests that as long as the injection of new vesicle can be treated as a Poisson
process, the first passage time to full maturation should not be affected much by the actual
distribution of the maturation time of single components.

S4 Simulation scheme

S4.1 General framework

We make use of the Gillepie algorithm [2] to perform exact stochastic simulations of our system.
The Gillespie algorithm is a general method that allows to compute statistically correct trajectories
for a stochastic system. The system must be described by a discrete set S of states. Being in a
given state i ∈ S at time t, the system must have a probability Ri→jdt to jump from i to another
state j between t and t+dt. This definition is rather general, which allows the Gillespie algorithm
to be applied in a variety of Physical contexts. Here the state space S is composed of all the
possible configurations of the compartment. A single state is defined as a couple (NA, NB) (or
equivalently (N, φ) with N = NA +NB and φ = NB/N) in which NA and NB are the numbers of
A sites and B sites in the compartment. Below is the list of all the allowed transitions between
states together with their transition rates:

Fusion : (NA, NB)→(NA + nv, NB) at rate J(N, φ)

Maturation : (NA, NB)→(NA − 1, NB + 1) at rate km(φ)NA

Budding : (NA, NB)→(NA, NB −min(nv, NB)) at rate K(φ)NB

(S15)

Where the functions J(N, φ), km(φ) and K(φ) can be arbitrary but must remain positive. Af-
ter defining the system and its dynamics, the Gillespie algorithm can be employed to generate
statistically exact trajectories using the following scheme:

1. Initialize a random number generator.

2. Initialize the system at t = 0 in a state Ω. Here we choose the state Ω = (nv, 0), meaning
that we start with a single vesicle of type A as a compartment.

3. Compute the sum Σ of all the transition rates out of the state Ω, and use it to generate the
waiting time ∆t before the next event using the distribution Σe−∆tΣ.

4. Choose randomly the state Ω′ reached after ∆t from the list of possible states, knowing that
the probability of having Ω→ Ω′ is given by RΩ→Ω′/Σ.

5. Update the time to t+∆t and the state Ω accordingly with whatever event has been selected.

6. Loop back to step 3.

This scheme has been proved to generate trajectories that are exact in the sense that the
probability for the program to generate a given trajectory is equal to the probability of observing
this trajectory in the real system. In this paper we implemented this algorithm in the C language
using the Mersenne-Twister pseudo random number generator.
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S4.2 Construction of the phase diagram

We aim at computing the value of the parameter η defined in the main text. In order to compute
this quantity we need to obtain average values for Nves the total number of emitted vesicles and
Nmat the final size of the compartment after complete maturation. We therefore performed a large
number of simulations all identical apart from the initial state of the random number generator.
We initialize the system at t = 0 with (NA, NB, Nves) = (nv, 0, 0) and let the simulation run.
After each time step we increase Nves if a vesicle budding has happened and check for complete
maturation which is defined by NA = 0. Once complete maturation or a maximum number of
simulation steps is reached the simulation is stopped. Nves is registered together with the final
size Nmat of the compartment. We perform 320 of these simulations (for each set of parameters)
and we require that at least 90% of them went to full maturation to compute satisfying estimates
of the average values 〈Nves〉 and 〈Nmat〉 (see error bars on Fig.3 - main text). This gives the value
of η for a specific value of J , km and K, which corresponds to one point in the phase diagram of
Fig.3 in the main text. The process is then repeated in an automated way to compute the value
of η for all the 20x20 points. For certain points (small values of φB and/or large values of N),
less than 90% of the simulations get to full maturation. We therefore cannot precisely compute η
but we verified that we always had η > 0.99. The value of η displayed on Fig.3 for these points is
arbitrarily set to 1.

S5 Additional results

S5.1 Phase diagram for constant rates

In Fig.2 of the main text the phase diagram for the transition between the vesicular export domi-
nated regime and the compartment maturation dominated regime is presented as a function of the
quasi-steady-state values of the compartment size and composition. This is to ease the comparison
between the different models, for which a given steady-state corresponds to different values of the
kinetic rates. For completeness, we present in Fig.S1 the same phase diagram as a function of the
model parameters J/K and km/K.
As discussed in the text, the size distribution of mature compartment presents a peak at small
size in the basic model. This corresponds to the direct maturation of small compartments with
a size comparable to that of a single vesicle. This contribution is due to the fact that our model
does not include any specific process for the nucleation of a compartment and the initiation of
maturation. To see the influence of direct maturation on the output parameter η, we present in
Fig.S1c modified output parameters where direct maturation events have been removed, and where
all events for which the fully matured compartment is of unit size (because of direct maturation
or following several fusion and budding events), have been removed. It shows that these types of
events do not qualitatively modify the picture, and make a quantitative difference only for very
small steady-state compartment size.

S5.2 Scatter plots for the outflux

The output parameter η is computed using the average of Nves and Nmat over many simulations,
and therefore brings no information on the fluctuations of these quantities. These fluctuations are
shown as scatter plots of Nves and Nmat on Fig.S2a for constant rates and Fig.S2b with homotypic
fusion. The distribution of the values can be understood using mean-field arguments. Assuming
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Figure S1: Simulation results. a. Phase diagram: the value of the output parameter η as a function
of the in-flux J and maturation rate km, normalized by the budding rateK, illustrates the transition
between the vesicular exchange (η ' 1) and compartment maturation (η ' 0) regimes. The black
lines show constant values of the compartment size in the pseudo steady-state (Eq.4 - main text).
The three colored lines represent constant values of η as given by the approximate analytical
computation of Eq.12 - main text. b. Cuts through the phase diagram varying the compartment
size for two fixed pseudo steady-state compositions. c. Output parameter as a function of the
steady-state compartment size for two values of the steady-state composition NB/NA, as in Fig.2c
of the main text. The black curves includes all possible events and is identical to the curves of
Fig.2c. For the red curve, all direct maturation of a compartment, prior to any fusion event, have
been removed. For the blue curve, all events where the fully matured compartment is of unit size,
either because of direct maturation or after fusion and budding events, have been removed.
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Figure S2: Scatter plots for the distributions of Nves and Nmat (crosses) obtained from 320 inde-
pendent simulations (for three different values of η) for a. a constant influx and b. a composition-
dependent influx J ∼ (1− φ). The solid lines are analytical estimates obtained with Eq.(S16).

that full maturation occurs after a time tmat, One may defined Nves and Nmat as:

Nves =

∫ tmat

0

KNB(t)dt Nmat = NB(tmat) (S16)

where NB(t) is assumed to follow the mean-field evolution given by Eq.(S17). This estimate, shown
as solid lines in Fig.S2, accurately reproduces the observed distribution. This suggests that, for the
parameters of Fig.S2, the main source of fluctuation comes from the distribution of the isolation
time tmat.

S5.3 Role of homotypic fusion: Linear stability analysis of the steady-
state

The mean-field equations, in the presence of homotypic fusion and cooperative maturation, read:

Ȧ = nvJ(φ)− Jm and Ḃ = Jm − nvKB
with J(φ) = J0(1− φ) and Jm = kmA(1 + αφ) (S17)

with φ = B
A+B

.

In the following, we normalise rates by the budding rate: j0 = J0/K and k̄m = km/(nvK). One
fixed point of these equations is A = B = 0, the other satisfies the equations:

A =
B2

j0 −B
k̄mαB

2 − (1 + k̄m(1 + α))j0B + j2
0 = 0 (S18)
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A non-zero fixed point always exists, given by:

A =
B2

j0 −B
B =

j0

2k̄mα

(
1 + k̄m(1 + α)−

√
1 + 2k̄m(1− α) + k̄2

m(1 + α)2

)
(S19)

This fixed point is always stable, but one can show that the kinetics toward the fixed point is
overdamped only if

−2(α + 1)3k̄3
m +

(
5α2 + 2α− 2

)
k̄2
m − 4αk̄m + 1 >

2k̄m
(
(α + 1)2k̄m − α

)√
k̄m
(
−2α + (α + 1)2k̄m + 2

)
+ 1 (S20)

This means that there is a decreasing function k̄m,crit(α) (shown in Fig.S3, and whose maximum
is k̄m,crit(0) ' 0.42) such that when k̄m > k̄m,crit(α) the system reaches the steady-state undergoing
oscillations. The larger k̄m, the closer the oscillations bring the system to the full maturation
adsorbing boundary A = 0. The full maturation probability thus becomes relatively independent
on the system’s size in that case. Note that this behaviour rely mostly on the existence of ho-
motypic fusion, and can in principle be observed in the absence of cooperativity α = 0, although
cooperativity does decreases the threshold k̄m,crit beyond which relaxation is underdamped.

Figure S3: Left, Value of the critical maturation rate k̄m,crit beyond which the system shows
damped oscillations around the fixed point. Right. Trajectories in the phase space {A(t), B(t)}
for k̄m = 1 and different values of α (= 0, = 1, = 5). The black (gray) lines are the corresponding
null clines Ȧ = 0 (Ḃ = 0).

S5.4 Phase diagrams for the full model.

In the full model, the fluxes characterising the influx of immature (A) components, their maturation
into mature (B) components, and the exit of B components, are written, respectively:

JA,in = J(N, φ)nv , JA→B = km(φ)NA , JB,out = K(φ)nvNB

J(N, φ) = Nβ(1− φ) , km(φ) = km(1 + αφ) , K(φ) = Kφ (S21)

where the parameter β quantifies the size dependence of the influx and the parameter α quantifies
the cooperativity of the maturation process. Fig.S4 shows different phase diagrams varying these
parameters. It complements the Fig4 of the main text, which only shows transition boundaries for
η− 0.5. In addition, it explores the case where the influx depends on the size of the compartment:
β = 1/2, which corresponds to a diffusion-limited fusion of the vesicular influx. The main result
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Figure S4: Phase diagram for the output parameter η as in Figs.2-3 of the main text, for different
values of the parameters of the full model: a. J = J0(1− φ), nv = 1 b. J =

√
NJ0(1− φ), nv = 1

c. basic model, d. J = J0

√
N , nv = 1 e. nv = 10 and f. km(φ) = km(1 +αφ) with α = 50, nv = 1.
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is that the width of the transition is mostly influenced by the mechanism of homotypic fusion.
The transition is smoother when homotypic fusion is treated in a continuous manner (J ∼ (1− φ)
- Fig.S4a,b). This reflects the fact that in the former case, full compartment maturation is an
almost deterministic process that occurs during the first oscillation, hence lacks the exponential
nature related to stochasticity. One the other hand, a size dependent influx makes little difference
to the phase diagram (compare Fig.S4 a and b, or Fig.S4 c and d).
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