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I. GEOMETRICAL COUPLING WITH PHASE-SHIFTED, FREQUENCY-DEPENDENT ACTIVE FORCE
CONTRIBUTIONS

In the first and second example in the main text, geometrical coupling of active prestress has contributed only a
frequency-independent addition to the measured storage modulus of the system. In the following, we will present
an example where geometrical coupling gives rise to a complex-valued, frequency-dependent addition to the effective
elastic modulus of the system for the case of a deflected prestressed fibre with a viscoelastic connector between the
bead and the fiber (see Fig. 1B, main text). The bead is deflected in a vertical manner. The combined system has a
(complex) spring constant

kcomb = 1/(1/kconn + 1/kfibre),

where kconn and kfibre are the effective (complex) spring constants of the connector and the fibre with respect to
vertical deflection. One finds

kfibre(σact, ω) = 16h40/(4h
2
0 + L2)3/2G∗

meas(σact, ω),

where G∗
meas equals the r.h.s of formula (6), main text. Thus, in the stiffness of the combined system kcomb, the active

term in G∗
meas contributes in general also to the imaginary part of the system and is frequency-dependent.

II. DETERMINING THE GEOMETRICAL FACTOR FOR THE CASE OF A DEFLECTED PRESTRESSED
CYTOSKELETAL FIBRE

In the main text, we where discussing the example of geometrical coupling of active stress in a prestressed cytoskeletal
fibre tethered at its end points at a distance L (see Fig. 1A, main text). Height oscillations are imposed on the

fibre center with h(t) = h0 + h̃ exp(iωt). Here, we derive the factor of geometrical coupling 1/g0 · g̃/ε̃ for this specific
example.
We make a perturbation calculation determining the fibre oscillation dynamics up to first order in height amplitude h̃.
We make the following expansions of the dynamic fibre length l(t) and the dynamic angle α(t) between the substrate
and the fibre

l(t) = l0 + l̃ exp(iωt) +O(h̃2),

α(t) = α0 + α̃ exp(iωt) +O(h̃2).

Using the geometrical relations sin(α(t)) = h(t)/(l(t)/2) and h(t)/(L/2) = tan(α(t)), we obtain

l0 =
√

4h20 + L2,

α0 = arctan(2h0/L),

α̃ = (2h̃L)/(4h20 + L2),

l̃ = (4h0h̃)/
√

4h20 + L2. (1)

We can thus calculate the time variation of the geometrical factor g(t) = 2 sin(α(t)) to first order

g(t) ≡ g0 + g̃ exp(iωt) +O(h̃2)

= 2 sin(α0) + 2 cos(α0)α̃ exp(iωt) +O(h̃2)

=
2 tan(α0)√
1 + tan(α2

0)
+

2α̃√
1 + tan(α2

0)
exp(iωt) +O(h̃2)

=
4h0√

4h20 + L2
+

4h̃L2

(4h20 + L2)3/2
exp(iωt) +O(h̃2),

where we have used Eqn. (1) in the last transformation step. We conclude that g0 = 4h0√
4h2

0+L2
and g̃ = 4h̃L2

(4h2
0+L2)3/2

.

The strain amplitude of the fibre is ε̃ = l̃/l0. We thus obtain the coupling geometrical factor as

1

g0

g̃

ε̃
=

1
4h0√

4h2
0+L2

4h̃L2

(4h2
0+L2)3/2

l̃
l0

=
L2

4h20
.


