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I. GEOMETRICAL COUPLING WITH PHASE-SHIFTED, FREQUENCY-DEPENDENT ACTIVE FORCE
CONTRIBUTIONS

In the first and second example in the main text, geometrical coupling of active prestress has contributed only a
frequency-independent addition to the measured storage modulus of the system. In the following, we will present
an example where geometrical coupling gives rise to a complex-valued, frequency-dependent addition to the effective
elastic modulus of the system for the case of a deflected prestressed fibre with a viscoelastic connector between the
bead and the fiber (see Fig. 1B, main text). The bead is deflected in a vertical manner. The combined system has a
(complex) spring constant

kcomb = 1/(1/kconn + ]-/kfibre)a

where kconn and kjgipre are the effective (complex) spring constants of the connector and the fibre with respect to
vertical deflection. One finds

kfibre(aactv w) = 16hg (4h% + L2)3/2G:<neas (Uactv OJ),

where G}, ., equals the r.h.s of formula (6), main text. Thus, in the stiffness of the combined system kcomsp, the active

term in G}, ., contributes in general also to the imaginary part of the system and is frequency-dependent.

Il. DETERMINING THE GEOMETRICAL FACTOR FOR THE CASE OF A DEFLECTED PRESTRESSED
CYTOSKELETAL FIBRE

In the main text, we where discussing the example of geometrical coupling of active stress in a prestressed cytoskeletal
fibre tethered at its end points at a distance L (see Fig. 1A, main text). Height oscillations are imposed on the
fibre center with h(t) = ho + ﬁexp(iwt). Here, we derive the factor of geometrical coupling 1/go - g/€ for this specific
example. R
We make a perturbation calculation determining the fibre oscillation dynamics up to first order in height amplitude h.
We make the following expansions of the dynamic fibre length {(¢) and the dynamic angle «(t) between the substrate
and the fibre

1(t) = lo +  exp(iwt) + O(h?),
(t) = g + @aexp(iwt) + O(h?).
Using the geometrical relations sin(a(t)) = h(t)/(I(t)/2) and h(t)/(L/2) = tan(a(t)), we obtain

lo = \/4h% + L2,

ag = arctan(2hg/L),
& = (2hL)/(4h3 + L?),
[ = (4hoh)/y/4h% + L2. (1)
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We can thus calculate the time variation of the geometrical factor g(t) = 2sin(«(t)) to first order
9(t) = go + gexp(iwt) + O(h?)
= 2sin(ag) 4 2 cos(ag)a exp(iwt) + O(h?)

2 tan(ag) 2 . =
= exp(iwt) + O(h
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= ] t O h/
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where we have used Equ. (1) in the last transformation step. We conclude that go = \/% and g = M%.
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The strain amplitude of the fibre is ¢ = [, /lo. We thus obtain the coupling geometrical factor as
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