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MODELING THE INTERACTION OF A PROTEIN WITH CHROMATIN

We study here the following dynamical process. A protein (point particle) starts from a

distance a from monomer, part of a long polymer. The protein diffuses until encountering

a monomer again. Upon encounter, it binds for a certain amount of time and finally disas-

sociates and diffuses until encountering another monomer to which it can bind (main text

Fig.1a,b).

Our goal is to estimate the overall protein dynamics and the time it takes for the protein

to find a specific monomer. Chromatin is represented by flexible chain polymer [1], which

describes a linear chain of beads (monomers) connected with the following potential:

φ(R) =
κ

2

N∑
n=2

(Rn −Rn−1)2 , (1)

where R = (R1,R2, ...,RN), the spring constant κ = dkBT/b
2 is related to the standard-

deviation b of the distance between adjacent monomers [1], with kB is the Boltzmann co-

efficient, T the temperature and d the dimensionality (dim 3). Since a chromatin locus

(monomer) moves 3 orders of magnitude slower than a protein, we shall assume that the

particle is moving while the monomer positions are drawn from the polymer equilibrium

distribution in a domain Ω, which we will take to be a sphere of radius A representing the

nucleus.

1. The monomer site are traps of size ε

The protein starts at t = 0 at a distance a from monomer n, whose position is given

by Rn (main text Fig.1b). The protein diffuses until being absorbed on another monomer.

Absorption occurs at a distance ε from the monomer (main text Fig.1b). The pdf of the

protein position (p(x, t)) satisfies the Forward-Fokker-Planck equation with mixed boundary

conditions

1

D

∂p(x, t)

∂t
= ∆p(x, t), x ∈ Ω̃ε,N , (2)

P (x, 0) = δ(x− (Rn + a)),

∂p

∂ni

= 0 for x ∈ ∂Ω,

p(x, t) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi ,
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where D is the diffusion coefficient of the particle, Ω̃ε,N = Ω \ Ωa = ∪Ni=1Ωεi , ∂Ωεi is the

surface of a ball centered around monomer i

Ωεi := B(Ri(t), ε). (3)

Finding the MFPT τ(x) for the protein to find any of the traps (monomers), starting from

position x is equivalent to solving the following boundary value problem (b.v.p) [2]

∆τ(x) = − 1

D
, x ∈ Ω̃ε,N , (4)

∂nτ = 0 for x ∈ ∂Ω,

τ(x) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi .

2. The transition probability depends on the Neumann Green’s in the spherical

domain with traps

We first find the probability that the protein finds monomer l before finding any other

monomer, which we denote the transition probability. Finding this probability is equivalent

to solving the following b.v.p [3]

∆ul(x) = 0, x ∈ Ω̃ε,N , (5)

∂nul = 0 for x ∈ ∂Ω,

ul(x) = 0 for x ∈ ∂Ωa = ∪Ni=1,i 6=l∂Ωεi ,

ul(x) = 1 for x ∈ ∂Ωεl .

Starting from position x, the probability ul to find monomer l is given by [3]

ul(x) =
Cl
NC̄

+ 4πεCl

[
G(x,Rl)−

1

NC̄

(
N∑
j=1

CjG(x,Rj)

)]
+ εχl, (6)

where Cl is the capacity of monomer l in units of ε and C̄ is the average capacity. Indeed,

the absorbing monomers can be thought of as capacitors with certain boundary condition

on their surface. The higher their capacity is, the larger is the probability that the particle

will be captured by them. If we were to take non-spherical traps, that would change the

capacity by some numerical constant (O(1)) and thus, the capture time and probability.
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G(x,y) is the Neumann Green’s function of the Laplacian in a sphere of radius A, which

is given by [3]

G(x,y) =
1

4π|x− y|
+

A

4π|x|r′
+

1

4πA
log

[
2A2

A2 − |x||y| cos θ + xr′

]
+

1

6|Ω|
(
x2 + y2

)
− 7

10πA
, (7)

where r′ = |x′ − y|, x′ = xA2

|x|2 , |Ω| is the volume of the domain and

χl = −4πCl
NC̄

[
(GC)l −

1

N
CTGC

]
, (8)

where

Gi,j =

Qi i = j,

Gij, i 6= j,
(9)

where Gi,j = G(Ri(t),Rj(t)) and Qi(Ri(t)) is the regular part of the Green’s function (self

interacting term). The monomers capacity vector is

CT = (C1, C2, ..., CN) (10)

We take the monomer traps to be spherical. For spherical traps (eq.3) we have Ci = ε. Thus

χl = −4πCl
NC̄

[∑
i 6=l

CiGli + ClQl −
1

NC̄

(∑
ij,i6=j

CiCjGij +
∑
i

C2
iQi

)]
. (11)

We shall take Ci = C for i = 1..N , thus

χl = −4πC

N

[∑
i 6=l

Gli +Ql −
1

N

(∑
ij,i6=j

Gij +
∑
i

Qi

)]
. (12)

From now on will work with spherical traps for which C = 1.

To facilitate the calculation we estimate Gij using the equilibrium distribution of the

monomers positions.

Peq (R) =

(
2π

κ

)3(N−1)/2

exp

[
−κ

2

N∑
n=2

(Rn −Rn−1)2

]
, (13)

where we used the harmonic bead potential (eq.1). This pdf is that of a flexible polymer

in bulk (free domain). When the size of the domain is of the order of the polymer radius

of gyration (Rg =
√
Nb/6) [1], the polymer configurations are affected by the domain wall.
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Thus, we consider the limit A � Rg (Rg =
√
Nb/6) where of Peq is valid. Additionally, to

simplify the calculations we shall anchor the first monomer n = 1 at the origin.

Next we compute the stationary Green’s function

G̃ij =

∫
ΩN

G(Ri,Rj)Peq (R) dR. (14)

We now estimate the different terms for the average Green’s function

I1 =

∫
ΩN

1

4π|Ri −Rj|
Peq (R) dR =

1

b3

[
3

2π|i− j|

]3/2 ∫
1

4π|r|
e
− 3r2

2|i−j|b2 dr (15)

=
1

b3

[
3

2π|i− j|

]3/2 ∫ ∞
0

re
− 3r2

2|i−j|b2 dr, (16)

where we use the marginal pdf

P (Ri,Rj) =
1

b3

[
3

2π|i− j|

]3/2

e
−

3(Ri−Rj)
2

2|i−j|b2 . (17)

Solving the integral, we get

I1 =
31/2

(2π)3/2|i− j|1/2b
. (18)

We assumed here that ε is small with respect to the distance between monomers: |Ri−Rj| =
√
i− jb � ε. When ε is larger, this assumption breaks and the expression for the distance

between the initial release site and the surface of the capture ball on the target monomer is

more complicated. We further assume that we are in the limit A� Rg where〈
A

4π|x|r′

〉
≈ 1

4πA
, (19)

and

1

4πA

〈
log

[
2A2

A2 − |x||y| cos θ + xr′

]〉
≈ 1

4πA
log(1) = 0. (20)

Finally

〈R2
n〉 = nb2. (21)

Substituting all the terms we find the average Green’s function

G̃ij =
31/2

(2π)3/2|i− j|1/2b
+

b2

6|Ω|
(i+ j)− 3A2

5|Ω|
. (22)

The regular part of the Green’s function is

Q̃i =
2b2i

6|Ω|
− 3A2

5|Ω|
. (23)
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3. Estimating χl

First, we will approximate the double series sum in eq.(12)

N∑
i 6=j,i=1

G̃ij. (24)

We will calculate each term separately. First

Sj =
N∑

i 6=j,i=1

1

|i− j|1/2
=

j−1∑
i=1

1

(j − i)1/2
+

N∑
i=j+1

1

(i− j)1/2
= Sj1 + Sj2. (25)

We will approximate this series sum using the Euler-Maclaurin (EM) formula

b∑
i=a

f(i, c) ≈
∫ b

a

f(i, c)di+
f(a, c) + f(b, c)

2
+

1

12
(f
′
(b, c)− f ′(a, c)), (26)

where

f(i, c) =
1

(c− i)1/2
. (27)

Taking a = 1, b = c− 1, the boundary terms are

f(a, c) + f(b, c)

2
=

1

2

(
1

|c− 1|1/2
+ 1

)
. (28)

The first derivative of (27) is

f ′(i, c) =
1

2

1

(c− i)3/2
. (29)

Hence, the boundary derivative terms are

1

12
(f
′
(i, c)− f ′(i, c)) =

1

12

(
1

2
− 1

2|c− 1|3/2

)
(30)

and the integral ∫ c−1

1

1

(c− i)1/2
di = −2(c− i)1/2|c−1

1 = 2(c− 1)1/2 − 2. (31)

Combining all the terms:

Sj1 =

j−1∑
i=1

1

(j − i)1/2
= 2(j − 1)1/2 − 2 +

1

2

(
Sj1 =

1

|j − 1|1/2
+ 1

)
+

1

12

(
1

2
− 1

2|j − 1|3/2

)
, (32)
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while

Sj2 =
N∑

i=j+1

1

(i− j)1/2
= 2(N − j)1/2 − 2 +

1

2

(
1

|N − j|1/2
+ 1

)
+

1

12

(
1

2
− 1

2|N − j|3/2

)
. (33)

Thus

Sj =
N∑

i 6=j,i=1

1

|i− j|1/2
= 2((N − j)1/2 + (j − 1)1/2) +

1

2

(
1

|N − j|1/2
+

1

|j − 1|1/2

)
− 1

12

(
1

2|N − j|3/2
+

1

2|j − 1|3/2

)
− 35

12
, for j = 2..N − 1, (34)

while

SN =
N−1∑
i=1

1

|N − i|1/2
= 2(N − 1)1/2 +

1

2

1

|N − 1|1/2
− 1

24

1

|N − 1|3/2
− 35

24
. (35)

and

S1 =
N∑
i=2

1

(i− j)1/2
= 2(N − 1)1/2 +

1

2

1

|N − 1|1/2
− 1

24

1

|N − 1|3/2
− 35

24
. (36)

We now sum Sj over all the monomers:

S = S1 + SN +
N−1∑
j=2

Sj = 2

(
N−1∑
j=1

(N − j)1/2 +
N∑
j=2

(j − 1)1/2

)
+

1

2

(
N−1∑
j=1

1

|N − j|1/2
+

N∑
j=2

1

|j − 1|1/2

)

− 1

12

(
N−1∑
j=1

1

2|N − j|3/2
+

N∑
j=2

1

2|j − 1|3/2

)
− 35

12
−

N−1∑
j=2

(
35

12

)
. (37)

Again, we use EM formula to estimate the series terms in S (eq.37)

s1 =
N−1∑
j=1

(N − j)1/2 ≈ 2

3
(N − 1)3/2 +

1

2

(
(N − 1)1/2 + 1

)
+

1

24

(
(N − 1)−1/2 − 1

)
, (38)

s2 =
N∑
j=2

(j − 1)1/2 ≈ 2

3
(N − 1)3/2 +

1

2

(
(N − 1)1/2 + 1

)
+

1

24

(
(N − 1)−1/2 − 1

)
, (39)

s3 ≈
N−1∑
j=1

1

(N − j)1/2
≈ 2− 2(N − 1)1/2, (40)

s4 ≈
N∑
j=2

1

(j − 1)1/2
≈ 2(N − 1)1/2 − 2, (41)



8

s5 ≈
N−1∑
j=1

1

(N − j)3/2
≈ −2(N − 1)−1/2 + 2, (42)

s6 ≈
N−1∑
j=1

1

(N − j)3/2
≈ −2(N − 1)−1/2 + 2, (43)

Introducing back into eq.(37)

S = 2(s1 + s2) +
1

2
(s3 + s4)− 1

24
(s5 + s6)− 35(N − 1)

12

=
8

3
(N − 1)3/2 + 2(N − 1)1/2 +

1

3
(N − 1)−1/2 − 55

12
− 35N

12
. (44)

For large N , we take only terms of O(1) or higher in S:

S ≈ 8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12
. (45)

Now we use

N∑
1

i =
N(N + 1)

2
. (46)

Thus, the N−2 term in χl (eq.12), when substituting eqs.23, 45 and 46∑
ij;j 6=i

Gij +
∑
i

Qi =
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)
+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|
. (47)

To estimate the N−1 term in χl (eq.12) we introduce eq.(34), taking only terms of O(1) or

higher. For 2 < l < N , we find∑
i 6=l

Gli +Ql =
31/2

(2π)3/2b

(
2
(
(N − l)1/2 + (l − 1)1/2

)
− 35

12

)
+
N

|Ω|

[
b2(N + 1 + 2l)

12
− 3A2

5

]
, (48)

while ∑
i 6=1

G1i +R1 =
31/2

(2π)3/2b

(
2(N − 1)1/2 − 35

24

)
+
N

|Ω|

[
b2(N + 3)

12
− 3A2

5

]
, (49)

and ∑
i 6=N

GNi +RN =
31/2

(2π)3/2b

(
2(N − 1)1/2 − 35

24

)
+
N

|Ω|

[
b2(3N + 1)

12
− 3A2

5

]
. (50)
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Introducing (48), (49), (50) and (47) into (12):

χl = −4π

N

[
31/2

(2π)3/2b

(
2(N − l)1/2 + 2(l − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

55

12N

)

+
Nb2(2l − (N + 1))

12|Ω|

]
≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − l)1/2 + 2(l − 1)1/2 − 8(N − 1)3/2

3N

)

+
Nb2(2l − (N + 1))

12|Ω|

]
. (51)

We we took terms of order O
(
N1/2

)
or higher

χ1 = −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

35

24
+

55

12N

)
− Nb2(N + 1)

12|Ω|

]

≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8(N − 1)3/2

3N

)
− Nb2(N + 1)

12|Ω|

]
(52)

For the last monomer:

χN = −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

35

24
+

55

12N

)
+
Nb2(N + 1)

12|Ω|

]

≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8(N − 1)3/2

3N

)
+
Nb2(N + 1)

12|Ω|

]
. (53)

4. Computing the transition probability ul(n)

We continue to estimate the site-to-site transition probability ul(n) by averaging over

eq.6. We assume that the particle started at a distance a� b from monomer Rn. We thus

need to estimate

Sx,l =
N∑
j=1

G(x,Rj), (54)

that we write as

Sx,l = G(x,Rn) +
N∑

j=1,j 6=n

G(x,Rj). (55)

Since we take |x−Rn(t)| = a, we estimate the sum over the Green’s function as

N∑
j=1,j 6=n

G(x,Rj) ≈
N∑

j=1,j 6=n

G(Rn,Rj). (56)
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We replace again the Green’s function G(Rn,Rj) by G̃nj:

Sx,n ≈ 〈G(x,Rn)〉+
N∑

j=1,j 6=n

G̃nj. (57)

Introducing expression 48 to eq.(57)

Sx,n ≈
1

4πa
+

31/2

(2π)3/2b

(
2
(
(N − n)1/2 + (n− 1)1/2

)
− 35

12

)
+

N

|Ω|

[
b2(N + 1 + 2n)

12
− 3A2

5

]
, (58)

where we used that 〈
1

4π|r|

〉
=

∫
1

4π|r|
P (r, a)r2 sin(θ)drdθdφ =

1

4πa
, (59)

with r = x−Rn and the probability distribution of the particle is

P (r, a) =
δ(r − a)

4πr2
. (60)

Substituting eqs. (22), (23), (58), (51) all the elements to eq.6, we find that for 2 < n < N

ul(n) =
1

N
+ 4πε

[
G(x,Rl)−

1

N

(
N∑
j=1

G(x,Rj)

)]
+ εχl

=
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|n− l|−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − n)1/2

+ (n− 1)1/2 − 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN

]
, for 2 < l < N , l 6= n (61)

u1(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|n− 1|−1/2 − 2

N

(
2(N − 1)1/2 + (N − n)1/2 + (n− 1)1/2

− 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN
+

b2

6|Ω|

]
. (62)

uN(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|N − n|−1/2 − 2

N

(
2(N − 1)1/2 + (N − n)1/2 + (n− 1)1/2

− 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN
− b2

6|Ω|

]
. (63)
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un(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − n)1/2 + (n− 1)1/2 − 2(N − 1)3/2

3N
− 35

48

))

+
1

4πa

(
1− 1

N

)]
. (64)

For the end monomer (n = 1)

u1(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))
+

1

4πa

(
1− 1

N

)

+
b2

6|Ω|

]
. (65)

For 2 < l < N

ul(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(l − 1)−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − 1)1/2

− 4(N − 1)3/2

3N
− 35

48

))
− 1

4πaN

]
, (66)

and for l = N

uN(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − 1)−1/2 − 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))

− 1

4πNa
− b2

6|Ω|

]
. (67)

For n = N

uN(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))
+

1

4πa

(
1− 1

N

)

− b2

6|Ω|

]
. (68)

For 2 < l < N

ul(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − l)−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − 1)1/2

− 4(N − 1)3/2

3N
− 35

48

))
− 1

4πaN

]
, (69)

and finally

u1(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − 1)−1/2 − 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))

− 1

4πNa
+

b2

6|Ω|

]
. (70)
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5. Computing the conditional MFPT τl(n) to monomer l starting from monomer n

We next compute the conditional mean first passage time (MFPT) τl(x) of the particle

to a specific monomer site l before encountering any of the other monomers, given it started

at position x. The conditional dynamics of the particle obeys the Langevin equation [4]

dx = a(x)dt+
√

2Ddω, (71)

where

a(x) = 2D
∇ul(x)

ul(x)
, (72)

with ul(x) the transition probability (eq.5). Moving according to this Langevin equation, the

particle experiences a drift pushing it away from all monomers except for its final destination

l. The MFPT to find l is the solution of

∆τl(x) + 2
∇ul(~x)

ul(~x)
· ∇τl(x) = − 1

D
, x ∈ Ω̃ε,N , (73)

P (x, 0) = δ(x− (Rn + a)),

∂nτl = 0 for x ∈ ∂Ω,

τl(x) = 0 for x ∈ ∂Ωa = Ωεl .

To estimate τl(x), we define the variable vl = τl(x)ul(x). Hence, vl(x) is the solution of the

b.v.p

D∆vl(x) = −ul(x), x ∈ Ω̃ε,N , (74)

∂nvl = 0 for x ∈ ∂Ω,

vl(x) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi .

The solution vl(x) can be written as the eigenfunctions expansion

vl(x) =
∞∑
i=0

aiwi,ε(x), (75)

where wi,ε(x) are the eigenfunctions of the Laplacian in the perturbed domain Ω̃ε,N [5],

obeying the equation

∆wi,ε(x) + λi,εwi,ε(x) = 0, (76)

with λi,ε(x) the corresponding eigenvalues of the homogeneous.
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Introducing the expansion to eq.(74), we get

D
∞∑
i=0

aiλi,εwi,ε(x) = ul(x), (77)

To find the coefficients ai we multiply by wj,ε(x) and integrate over the whole domain. Using

the orthonormality of the eigenfunctions

Dajλj,ε =

∫
Ω̃ε,N

wj,ε(x)ul(x)dV, (78)

giving

aj =
〈wj,ε(x)ul(x)〉

Dλj,ε
. (79)

Introducing back to eq.(75)

vl(x) =
∞∑
i=0

〈wj,ε(x)ul(x)〉wi,ε(x)

Dλj,ε
. (80)

We shall approximate vl(x) with the first term

vl(x) ≈ 〈w0,ε(x)ul(x)〉w0,ε(x)

Dλ0,ε

. (81)

The perturbed zero order eigenfunction is given by

w0,ε(x) =
1

|Ω̃ε,N |1/2
− 4πε

|Ω̃ε,N |1/2

N∑
j=1

G(x,Rj) +O(ε2). (82)

The coefficient is

〈w0,ε(x)ul(x)〉 ≈
∫

Ω̃ε,N

[
1

|Ω̃ε,N |1/2
× 1

N
+

1

|Ω̃ε,N |1/2
× 4πε

[
G(x,Rl)

− 1

N

(
N∑
j=1

G(x,Rj)

)]
− 4πε

|Ω̃ε,N |1/2

N∑
i=1

G(x,Rj)×
1

N
+

1

|Ω̃ε,N |1/2
εχl

]

=
|Ω̃ε,N |1/2

N
+ |Ω̃ε,N |1/2εχl +O(ε2), (83)

where we used the definition of ul(x) (eq.6) and took only order O(ε) terms. We also used∫
Ω̃ε,N

G(x,Rj) = 0. (84)

The corresponding eigenvalue is

λ0,ε =
4πεN

|Ω|
− (4πε)2

|Ω|

(∑
i,j;i 6=j

Gij +
∑
i

Qi

)
+O(ε2). (85)
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We recall that∑
ij;j 6=i

Gij +
∑
i

Qi =
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)
+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|
. (86)

Thus

λ0,ε =
4πCεN

|Ω|
− (4πCε)2

|Ω|

(
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)

+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|

)
+O(ε2). (87)

We recall that τl = vl/ul

τl(x) ≈ 〈w0,ε(x)ul(x)〉w0,ε(x)

Dλ0,εul(x)
=

1

Dλ0,ε

(
1

N
+ εχl

)[
1

ul(x)
− 4πCε

N∑
j=1

G(x,Rj)

ul(x)

]
. (88)

The particle starts its motion from the a neighborhood of monomer n. We shall use again

the pre-averaging approximation∫ ∫
ΩN

1

ul(x)
Peq (R) δ(|x−Rn| = a)dxdR ≈ 1

ul(n)
, (89)

where x ∈ B(Rn(t), a). For n = l∫ ∫
ΩN

G(x,Rj)

ul(x)
Peq (R) δ(|x−Rl| = a)dxdR

≈ 1

ul(l)

∫
ΩN

G(x,Rj)Peq (R) dR ≈ G̃nj

un(n)
, (90)

and

τn(n) ≈ 1

Dλ0,ε

(
1

N
+ εχn

)[
1

un(n)
− 4πCε

un(n)

N∑
j=1

G̃nj

]
. (91)

When n 6= l, we use the Taylor approximation to expand the encounter probability ul(x)

for small ε∑
j

∫ ∫
ΩN

G(x,Rj)

ul(x)
Peq (R) δ(|x−Rn| = a)dxdR ≈

∑
j

∫ ∫
ΩN

G(x,Rj)

[
N

−4πεN2

(
G(x,Rl)−

1

N

N∑
i=1

G(x,Ri) + χl

)]
Peq (R) δ(|x−Rn| = a)dxdR

≈
∫ ∫

ΩN

G(x,Rn)

[
N − 4πεN2

(
G(x,Rl)−

1

N

N∑
i=1

G(x,Ri) + χl

)]

Peq (R) δ(|x−Rn| = a)dxdR = N
∑
j

G̃nj − 4πεN2G̃nn

[
G̃nl + χl −

1

N

∑
j

G̃nj

]
,(92)
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where, assuming that a� b, we only take one element in the sum over all monomer, where

the singular term scales as a−1. This happens for j = n. Finally, substituting expression

(92) to eq.(88), we find an approximation for the MFPT

τl(n) ≈ N−1 + εχl
Dλ0,ε

[
1

ul(n)
− 4πεN

(∑
j

G̃nj − 4πεNG̃nn

[
G̃nl + χl −

1

N

∑
j

G̃nj

])]
.(93)

We estimated here the MFPT using the first eigenvalue of the Laplacian and the long

time asymptotic of the heat kernel [6]. Since the particle starts close to its target, higher

eigenvalues will contribute to the MFPT [7], and our expression for the MFPT can be

extended to include them by estimate the contribution of higher term eigenvalues.

6. Site-to-site transition rates as a CTMC

The particle can be either bound to one of the N monomers in the domain or diffuse

between dis-association and capture events. We denote the unbound state as in-transit

from one monomer site to the another. We assume that at site n, the particle remains

bound for a characteristic time Tn, and leaves with a Poissonian rate. We define the process

as a continuous time Markov chain (CTMC) (Fig.3a), where the release rate from site n is

qn,Trnl = T−1
n ul(n), for n = 1...N. (94)

When the destination site l is far, the transition time is well described by a single exponent

(eq.90 and [5]). We assume that the in-transit time until reattachment is Poisson-distributed.

Thereby, the transition rate from the in-transit state Trnl to monomer site l has probability

1 and a rate

qTrnl,l = τl(n)−1. (95)

When the particle is captured rapidly, multiple exponent contribute to the the transi-

tion time, that can be taken into account by defining multiple in-transit states. The

N(N + 1)×N(N + 1) rate matrix Q whose entries are the rates qn,Trnl and qTrnl,l describes

the transitions between all states and can be used to find the time-dependent probability

distribution function P (S, t), with the state vector S = (sb1, sb2, ..., sbN , sit11, sit12, ..., sitNN),

where the first N states are bound state and the next N2, are in-transit states. The proba-

bility distribution function of the particle is given by

p(S, t) = eQtp(S, 0), (96)
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where p(S, 0) is the initial distribution of the particle in the different states.

THE REATTACHMENT PROBABILITY DEPENDS ON THE LOCAL DENSITY

To clarify the effect of monomer density on the reattachment probability, we estimated

the local density around different monomers along the chain. For a given monomer m, the

probability to find the n-th monomer at 3d distance between r and r + dr is

p(r, n,m) =

(
1√

2π|m− n|σ2

)3

e
− r2

2|m−n|σ2 , (97)

where σ2 = b2

3
. The distribution p(r, n) is normalized such that 4π

∫∞
0
p(r, n)r2dr = 1.

The probability to find monomer n within a ball of radius h around m is (σm,n =√
|n−m|σ)

P (h, n,m) = 4π

∫ h

0

p(r, n)r2dr =
2√
2π

∫ h
σn,m

0

e−
x2

2 x2dx =
4√
π

∫ h√
2σn,m

0

e−x
2

x2dx

= Erf(y)− 2√
π
ye−y

2

, (98)

with y = h√
2σn,m

.

The total monomer density around monomer m given that it is part of a polymer of

length N is

ρm =
m−1∑
i=1

P (h, n,m) +
N∑

i=m+1

P (h, n,m). (99)

In SM Fig.1 we plot the reattachment probability un(n) as a function of ρm computed for

different monomers along the chain. Since the middle monomer is closest to the center

of mass of the polymer, the local density there is highest. Thus, the released particle is

easily lost to other monomer and un(n) is minimal. When the ball surrounding the release

monomer m is larger, the average number of monomer within it will be larger (Fig.1a vs. b)

SELF AVOIDING POLYMER

We simulated the particle release and capture process for a self-avoiding polymer. For

the purpose of the simulations, self-avoiding interactions were introduced by adding the
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Lennard-Jones potential [8]

φLJ(R1, ..RN) =
∑
i,j,i6=j

φi,jLJ(ri,j), (100)

with ri,j = Ri −Rj and

φi,jLJ(ri,j) =

 4

[(
σ

ri,j

)12

− 2
(

σ
ri,j

)6

+ 1
4

]
for |ri,j| ≥ 21/6σ

0 for |ri,j| < 21/6σ.

(101)
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a b

FIG. 1. The reattachment probability depends on local monomer density. The reattach-

ment probability un(n) as a function of the average local monomer density ρm estimated using

different monomers along the chain (eq.99). The left most point corresponds to the chain extrem-

ities where the density is lowest, while the rightmost point corresponds to the middle monomer of

the chain where the density is highest. The polymer has 20 monomer sites (N = 20), a = 0.3b,

ε = 0.03b, A = 10b. The surrounding ball (eq.98) is of radius h = 1b (a) or h = 3b (b).
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a

c

b

d

FIG. 2. Transition between monomer sites. (a) The transition probability ul(n) starting

from site 1 (turquoise), 10 (orange) or 20 (purple). The polymer has 40 monomer sites (N = 40),

a = 0.3b, ε = 0.07b, A = 10b. The full lines are the result of Brownian simulations for a self

avoiding polymer, where the LJ distance was taken to be σ = 1b (eq.101). The dashed lines are

the simulation results for a phantom polymer (without the LJ potential- see main text). (b) The

transition probability averaged over all monomers 〈u|l−n|(n)〉 for a phantom polymer (blue full

curve) and a self avoiding polymer (red full curve). Also shown is the result of fitting a function of

the form A|l−n|−α +C to the two curves. (c) ul(n) was estimated from simulations with ε = 0.5b

and a = 0.7b. The same analysis as in b was performed. (d) The mean first transition time τl(n)

from site n to site l without interacting with any other site along the way. The full line lines are

the result of BS for a self avoiding polymer and the dashed line is are the result for a phantom

polymer. The results shown are for the case simulated in a,b.
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FIG. 3. The bound fraction of particles to monomer site. The fraction of bound particles f

at monomer sites as a function of the capture radius ε. f was estimated from the long time behavior

of the probability distribution function p(S, t), by solving the corresponding CTMC (described in

the main text) (blue curve). In the Brownian simulations: N = 100, a = 0.5b, A = 10b. The time

units are 10b2/D, with D the diffusion coefficient of the particle. Also shown is the bulk bound

fraction estimate (red curve) given by fbulk = kon
kon+koff

, with kon = 4πεND
|Ω| . This estimated assumes

that the recapture probability and rate are uniform to all sites independent where the particle was

released.


