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We present a theoretical study of the interaction between a
protein (diffusing particle) and chromatin (polymer chain).
Each monomer is a trap where a particle can transiently
bind. We derive, to our knowledge, novel formulas for the
transition rate between monomer sites, given a specific poly-
mer configuration, and find that a particle is likely to rapidly
rebind many times to its release site before moving to
another site. The reattachment probability is larger when
the local density around the release site is smaller. Interest-
ingly, for an equilibrated polymer, the transition probability
decays as a power law for close monomer-to-monomer dis-
tances and reaches an asymptotic value for long distances.
By computing the transition rate between monomers, we
show that the problem of facilitated search by a protein
can be mapped to a continuous-time Markov chain, which
we solve. Our findings suggest that proteins may be locally
trapped for a time much longer than their dissociation time,
whereas their overall motion is ergodic. Our results are
corroborated by Brownian simulations.

The interaction of proteins with chromatin regulates many
cellular functions. Most DNA-binding proteins interact both
non-specifically and transiently (1) with many chromatin
sites, as well as specifically and more stably with cognate
binding sites. These interactions and chromatin structure
are important in governing protein dynamics (2,3). However,
the effect of these transient interactions on protein motion
and distribution has not yet been shown from a first
principle.

Some aspects of protein interactions with DNA have been
studied in the context of the search of a gene promoter site
by a transcription factor (TF) (4). It was first noted (5) that
the search for a promoter site by a TF would be faster if it
involves three-dimensional excursions, as well as sliding
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of the protein along DNA (6), as was shown in prokaryotes
(7). These different types of motion were observed experi-
mentally, leading to massive interest in models of facilitated
diffusion (8–15), and in the impact of a regulating site’s po-
sition on transcription (16,17). In current microscopy exper-
iments, it is impossible to examine the search process to its
fullest (18). Thus, we concentrate here on modeling the
experimentally observed dynamics of the protein as a
diffusing and interacting particle.

We will show that proteins are likely to stay in the prox-
imity of a site for a time much longer than their dissociation
time from DNA due to reattachment. Moreover, we find that
reattachment depends on the local density around the
release site, and that the precise configuration of the poly-
mer impacts the interacting particle’s dynamics. We further
find the rates associated with the transition between
different monomer sites. Finally, we show that the process
as a whole is ergodic; it has no long-time power-law distri-
bution of the residence time at a site as has been previously
suggested (19).

We consider a point particle (protein) placed at a distance
a from monomer n (locus), part of a long flexible polymer
(20,21) (chromatin) (Fig. 1 a). The particle diffuses until
it encounters monomer l. Absorption occurs at capture
radius e<a from l (Fig. 1 b), where the particle remains
bound for characteristic time T. Upon dissociation, the par-
ticle is placed at a distance a from the monomer l position
(Fig. 1 b), with a uniform angular distribution, and starts
diffusing again. Although we postulate here two radii,
release (a) and capture (e), the effective behavior is equiva-
lent to a model with one release radius and a partially re-
flecting boundary condition on it. In a partially reflecting
model, the particle has a probability of re-absorbing imme-
diately after release. Small re-absorption probability corre-
sponds to e � a. Thus, when the release and capture
radii are comparable, the particle spends much time around
one monomer cluster, then jumps to another, only to come
back to the first (Fig. 1 c).
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FIGURE 1 Transition between monomer

sites. (a) A particle (dark blue) representing

a protein interacts with a monomer site

(cyan) that serves as a chromatin locus. It

detaches from an initial monomer n

(magenta) and reattaches to site lwith prob-

ability ul ðnÞ without touching other sites

along the way. The polymer is inside a

confining domain (yellow) of radius A. b is

the mean-square displacement of a bond.

(b) The particle is released at distance a

from the initial site, with uniform angular

distribution. It attaches to a site once it is

at distance e from it. We depict chromatin

as a coarse-grained chain of beads. Each

bead is of characteristic size b, represent-

ing 3.2 kb and of size 30 nm (41). For

the rest of the paper, the characteristic

length in our system is b. Hence, for

e ¼ 0:03b ¼ 0:9 and a ¼ 0:3b ¼ 9nm, the

release and capture radii are of the order of the size of a protein and the interaction distance. (c) Trajectory of the particle interacting

with the monomer sites (cyan). The trajectory color changes with time from red to green. The black dots are attachment points at the

monomer site (a ¼ 0:5b,e ¼ 0:49b, N ¼ 100, and A ¼ 6b). To see this figure in color, go online.
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The probability of the particle arriving at a certain mono-
mer site before another via three-dimensional diffusion de-
pends on their respective initial distance from each other
(22). The probability ulðxÞ that a particle starting from x ar-
rives at monomer l before encountering any other monomer
(see Supporting Material) is

ulðxÞ ¼ 1

N
þ 4pe

2
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where N is the polymer length, Ri is the position of mono-

mer i, Gðx; yÞ is the Neumann Green’s function of the Lap-
lacian in a sphere of radius A, cl is a constant that depends
on the monomers’ positions but not on the initial position, x.
In writing Eq. 1, we assume that the trapping monomers are
well separated. When the e neighborhoods of two monomers
merge, the equation can be modified (23).

Proteins move much faster in the nucleus than chromatin.
The diffusion coefficient of a chromatin locus can be esti-
mated by inserting a fluorescent tag and following its trajec-
tory (24). Assuming a coarse-grained model of chromatin, it
was found that a locus of size 3kb has a diffusion coefficient
of about D ¼ 10�2 mm2/s (21), whereas proteins move three
orders of magnitude faster. for example, 13.5 mm2/s for the
c-Myc protein (25). We thus assume that the polymer is
fixed at an equilibrium configuration inside the domain
while the particle is diffusing.

Assuming that the polymer is equilibrated in the domain,
we found the transition probability ulðnÞ, that a particle
starting in the proximity of site n finds site l first before
encountering other monomers, by averaging Eq. 1 with
the equilibrium distribution of the polymer in bulk (see
the Supporting Material):
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where 2<n; l <N, b is the standard deviation of a bond length
(Fig. 1 a), and we assume eðN1=2=bþ Ca�1Þ � 1, with C a
numerical factor of order 1. The expression for the end mono-
mers is different (see Supporting Material, Section S4).
Although we did not explicitly include a sliding state of
the protein along DNA (6), it could be included by modi-
fying the nearest-neighbors transition probability, ðun�1ðnÞ;
unþ1ðnÞÞ, and will not qualitatively change our results.

The reattachment probability unðnÞ at the release site is
larger than the probability of attaching to faraway sites
(Fig. 2 a; Eq. 2), suggesting that once released, the particle
is likely to rebind at the same site. For a longer polymer
strand, the ratio between the reattachment probability and
probability to attachment to a faraway site is larger than for
a short polymer (Fig. 2 b). This result is contrary to previous
studies that assumed that the transition probability and the kon
for rebinding were equal among all monomers (13,26–32), or
were related to a L�evy type diffusion of the particle (30).
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FIGURE 2 Transition between monomer

sites. (a) The transition probability starting

from sites 1 (turquoise), 5 (orange), or 10

(purple). The polymer has 20 monomer

sites (N ¼ 20), and a ¼ 0:3b, e ¼ 0:03b,

and A ¼ 10b. The solid lines are the result

of Brownian simulations, whereas the

dashed lines are computed using the

analytical formula (Eq. 2). (b) The site tran-

sition probability when the polymer is

longer (N ¼ 100 sites). (c) The polymer is

of length N ¼ 20. It is crowded into a small

domain, A ¼ 2b, and the capture radius is

e ¼ 0:12b. (d) The mean first-transition

time, tl ðnÞ, from site n to site lwithout inter-

acting with any other site along the way.

The full lines are the result of Brownian

simulation and the dashed lines are

computed using Eq. 5 with the same param-

eters as in (a). A single time unit is equal

to1 t:u ¼ 10b2=D, where D is the diffusion

coefficient of the particle. To see this figure

in color, go online.
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Interestingly, we find that the reattachment probability is
minimal for the middle monomer (Eq. 2). To clarify this ef-
fect, we estimated the expected number of monomers in a
ball around the release monomer, for different monomers
along the chain (see Fig. S1). This quantity is akin to the
local density around the release site. The monomer density
is highest around the middle monomer, which is closest to
the polymer center of mass. Thus, the reattachment proba-
bility is sensitive to the local density around the release
site and not just to the average monomer density in the
domain.

Segregation of chromosomes in the nucleus may be the
result of self-avoiding interaction (SAI) between them
(33). To study how SAI between monomers would modify
the behavior of ulðnÞ, we performed Brownian simulation
(BS) where the monomers interacted through the Lennard-
Jones potential (34) in addition to engaging in nearest-
neighbors spring interactions (see Supporting Material).
The separation of monomers due to SAI decreases the local
monomer density around the release point, leading to a
larger reattachment probability, unðnÞ, compared to that of
a phantom chain (see Fig. S2 a).

The root mean-square distance between monomers
scales with their distance along the chain (rmsd ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðRn � RlÞ2i
q

� jn� l j n). This results in the power-law

scaling ulðnÞ � jn� l j �1=2 for proximal sites of a phantom
polymer (Eq. 2), for which n ¼ 1=2. To study the behavior
for an SA polymer, we computed ulðnÞ between proximal
sites from the BS, averaged over all release sites n, and

fitted it: hujl�n j ðnÞi � Ajl� n j �a þ C. We found the fitted

exponent to be a ¼ 0:59 (see Fig. S2 b), as would be ex-
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pected from the rmsd of an SA polymer, for which
n ¼ 0:6 is the Flory exponent (35). When a and e are
larger, a increases (see Fig. S2 c). This behavior may be
explained by studying high-order expansions of ulðxÞ in
the parameter e.

Computing ulðnÞ, we assumed that the polymer configu-
ration is not much affected by confinement (the ratio of gy-
ration radius to domain radius: Rg=A ¼ b

ffiffiffiffiffiffiffiffiffi
N=6

p
=A ¼ 0:18

and Rg=A ¼ 0:4 for Fig. 2, a and b, respectively). Thus, its
equilibrium distribution was well approximated by the equi-
librium distribution of a flexible chain in bulk. Since one
end of the polymer is anchored at the origin of the domain,
when the end-to-end distance (Re2e ¼ b

ffiffiffiffi
N

p
) is of the order

of the domain radius, the polymer feels the effect of confine-
ment.

In the nucleus, chromosomes are tightly packed and are
not in the dilute regime. We thus simulated a polymer in a
smaller domain for which Rg=A ¼ 0:91 and Re2e=A ¼ 2:23
and computed ulðnÞ (Fig. 2 c). Interestingly, Eq. 2 still
matches the transition probability, even for this moderately
crowded polymer. Indeed, when the target monomer l is
close by, its distance distribution from the release monomer
is not affected much by the presence of confinement. At the
same time, the transition probability to faraway monomers
weakly depends on the distance between the release site
and the target. Thus, it is not much affected by confinement.
The validity of Eq. 2 is expected to break for extreme pack-
ing (A � Rg).

To understand the rates involved in the encounters be-
tween proteins and chromatin, we computed the conditional
mean first-passage time (MFPT), tlðxÞ, of a particle from
position x to site l without encountering other monomers
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along the way. The conditional dynamics of the particle
obeys the Langevin equation (36),

dx ¼ aðxÞdt þ
ffiffiffiffiffiffi
2D

p
du; (3)

where du is a white Gaussian noise, the drift is
aðxÞ ¼ 2DVulðxÞ=ulðxÞ, and ulðxÞ is given by Eq. 2. Since
uðxÞ approaches zero when x approaches any monomer
other than l (see Eq. S5 in the Supporting Material), the drift
aðxÞ will diverge for x/Ri (isl). Thus, moving according
to Eq. 3, the particle experiences a drift pushing it away
from all monomers except for its final destination, l.

tlðxÞ can be found by solving a boundary value problem
(see Eq. S73). It has the approximate solution
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where l0;e is the eigenvalue of an associated eigenvalue
problem (see Supporting Material, Section S5).

Averaging Eq. 4 with the equilibrium polymer configura-
tion, we find an asymptotic formula for the mean conditional
transition time starting from monomer n,
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where ~Gnl is the Green’s function between monomer n and
j positions, averaged over the equilibrium distribution.

Compared to BS, this formula (Eq. 5) matches the simu-
lation, where the difference is up to�20% of the MFPT (see
Fig. 2 d). Interestingly, tlðnÞ to the release site (l ¼ n) is
much faster than to other sites, and the MFPT converges
asymptotically when the target monomer is far from the
release site (jl� n j [ 0). When e/a, the recapture time
is faster with respect to transition time to another site.
Indeed, when an interacting protein starts from the boundary
layer of the release site, the characteristic recapture rate is
significantly higher than the travel time to other sites.
Hence, we suggest that when a protein is released from a
chromatin site, it would quickly rebind to it with high prob-
ability.

We find that the addition of SAI reduces tlðnÞ compared
to a phantom polymer (Fig. S2 d). The addition of SAI in-
creases the average distance between monomers. Conse-
quently, the eigenvalue l0;e is larger (see Eq. S87),
resulting in a smaller MFPT (Eq. 5). Therefore, the mono-
mers of an SA polymer fill the domain more optimally
than those of a phantom polymer, resulting in a rapid
capture.
Since the reattachment rate at a site is larger, we expect
that when SAIs are dominant, proteins will spend a larger
fraction of their time bound at monomer sites. Heterochro-
matin is considered to be denser than euchromatin (37).
However, the nature of interaction of proteins with hetero-
chromatin is still unclear. We would expect unðnÞ to be
smaller in heterochromatin domains and that a protein
would ‘‘forget’’ faster its release position. Alternatively, if
reattachment occurs with higher probability (e/a) in het-
erochromatin, unðnÞ will be larger in these domains.

Proteins in the nucleus can be either bound to chromatin
or other nuclear compartments, or can stochastically move
between association events. We denote the unbound state
as ‘‘in transit’’ from one monomer site to another. We as-
sume that at site n, the particle remains bound for a charac-
teristic time, Tn, and leaves with a Poissonian rate. We thus
formulated the transition between the different states using a
continuous-time Markov chain (CTMC) (Fig. 3 a). We con-
structed the rate matrix Q between bound states and transit
states that depend on ulðnÞ, tlðnÞ, and Tn (see the Supporting
Material). We used Q to find the time evolution of the prob-
ability distribution function of the particle,

pðS; tÞ ¼ eQtpðS; 0Þ; (6)

where S is the state vector of the CTMC and pðS; 0Þ is the
initial particle distribution.

We performed BS and estimated numerically the ulðnÞ
and tlðnÞ values, taking Tn ¼ T (n ¼ 1.N); we estimated
pðS; tÞ starting from site n using Eq. 6. When the reattach-
ment probability is high, the particle remains in proximity
to its initial site for a long time (Fig. 3, b and c) compared
with T. Thus, the equilibration time of the protein in the
domain is much longer than its disassociation rate from a
site (koff ¼ 1=T). When the reattachment probability is
smaller, the particle diffuses farther from its initial site
(Fig. 3 c). Interestingly, the residence probability at the orig-
inal site is not uniform along the chain. Since the middle
monomer resides where monomer density is highest, its re-
attachment probability, uN=2ðN=2Þ, is minimal (Eq. 2).

Using the long-time behavior of pðS; tÞ, we estimated
fraction f of bound particles. For high reattachment proba-
bility, f e¼0:49b;a¼0:5bz0:93, whereas the rest of the probabil-
ity is in the unbound (in-transit) states. For smaller
reattachment probability, f e¼0:3b;a¼0:5bz0:6. In the Support-
ing Material, we plotted f for different values of e (see
Fig. S3). f estimated using Eq. 6 corresponds to the bound
fraction estimated directly with BS.

A naive estimate for the bound fraction, which does not
take into account reattachment, can be found through the ra-
tio of the off rate, koff , and on rate starting from the bulk
(kon ¼ 4peND=jU j (38)): fbulk ¼ kon=ðkon þ koffÞ. We found
that the bulk estimate greatly underestimates the bound frac-
tion found from the BS or using the CTMC formalism (see
Fig. S3). Thus, starting at the boundary layer of the initial
Biophysical Journal 114, 766–771, February 27, 2018 769
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FIGURE 3 Site-site transition time and

particle distribution in the domain. (a)

Formulating the behavior of a particle (pro-

tein) that interacts with the polymer (chro-

matin), inside a domain (nucleus) as a

continuous-time Markov chain. We illus-

trate it for the case of two bindingmonomer

sites. The particle can be bound at site 1 or

2 and is released with Poissonian dissocia-

tion rates T�1
1 andT�1

2 . While diffusing to

bind to a site, it is ‘‘in transit’’ and arrives

at its destination with probability 1 and

rate tl ðnÞ�1. (b and c) The monomer is

bound at a site for a characteristic time

T ¼ 1 t:u: The probability, p, of the particle

being in a bound state at the monomer

site after 1T (b) or 10T (c) is computed by

solving numerically Eq. 6. The monomer

starts at a distance a from either monomer

2, 50, or 99. ul ðnÞ and tl ðnÞ were estimated

from Brownian simulation: N ¼ 100,

a ¼ 0:5b, A ¼ 10b, and e ¼ 0:49 (orange) or

e ¼ 0:3b (purple). For N ¼ 100, there are

100 bound states and 104 in-transit states.

To see this figure in color, go online.
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monomer site can impact significantly the fraction of bound
proteins. This may be the origin of the observed non-uni-
form distribution (39) and protein clusters (40) in the nu-
cleus.

To conclude, there is a finite probability, after each release,
that the protein diffuses away to another remote site, given
that there is a trajectory between them. Thus, the process is
ergodic. When the e-neighborhoods of many traps overlap
around the released site, such that the particle cannot find a
path out, it will be quenched in this area.

Our findings can explain the long residence-time distribu-
tions that are observed experimentally (19) without the need
for a power-law waiting-time distribution as assumed in a
continuous-time random-walk model. As we have shown,
escaping a binding site involves several dissociation and as-
sociation events, with different characteristic rates. Hence,
the localization time distribution may not appear to have
exponential distribution in experiments.

Since the three-dimensional organization of chromatin
guides search of TFs through transient interactions, the
number of proteins and their interaction strength is not suf-
ficient to understand their collective behavior. To fully
model protein behavior at chromatin loci, one has to study
the nature of the local interactions around the site of interest.
Based on our model, we can extract directly from micro-
scopy data the interaction parameters of proteins at specific
chromatin domains. Thus, we can understand how different
proteins ‘‘see’’ chromatin differently.
SUPPORTING MATERIAL

Supporting Materials and Methods and three figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(18)30057-2.
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MODELING THE INTERACTION OF A PROTEIN WITH CHROMATIN

We study here the following dynamical process. A protein (point particle) starts from a

distance a from monomer, part of a long polymer. The protein diffuses until encountering

a monomer again. Upon encounter, it binds for a certain amount of time and finally disas-

sociates and diffuses until encountering another monomer to which it can bind (main text

Fig.1a,b).

Our goal is to estimate the overall protein dynamics and the time it takes for the protein

to find a specific monomer. Chromatin is represented by flexible chain polymer [1], which

describes a linear chain of beads (monomers) connected with the following potential:

φ(R) =
κ

2

N∑
n=2

(Rn −Rn−1)2 , (1)

where R = (R1,R2, ...,RN), the spring constant κ = dkBT/b
2 is related to the standard-

deviation b of the distance between adjacent monomers [1], with kB is the Boltzmann co-

efficient, T the temperature and d the dimensionality (dim 3). Since a chromatin locus

(monomer) moves 3 orders of magnitude slower than a protein, we shall assume that the

particle is moving while the monomer positions are drawn from the polymer equilibrium

distribution in a domain Ω, which we will take to be a sphere of radius A representing the

nucleus.

1. The monomer site are traps of size ε

The protein starts at t = 0 at a distance a from monomer n, whose position is given

by Rn (main text Fig.1b). The protein diffuses until being absorbed on another monomer.

Absorption occurs at a distance ε from the monomer (main text Fig.1b). The pdf of the

protein position (p(x, t)) satisfies the Forward-Fokker-Planck equation with mixed boundary

conditions

1

D

∂p(x, t)

∂t
= ∆p(x, t), x ∈ Ω̃ε,N , (2)

P (x, 0) = δ(x− (Rn + a)),

∂p

∂ni

= 0 for x ∈ ∂Ω,

p(x, t) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi ,
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where D is the diffusion coefficient of the particle, Ω̃ε,N = Ω \ Ωa = ∪Ni=1Ωεi , ∂Ωεi is the

surface of a ball centered around monomer i

Ωεi := B(Ri(t), ε). (3)

Finding the MFPT τ(x) for the protein to find any of the traps (monomers), starting from

position x is equivalent to solving the following boundary value problem (b.v.p) [2]

∆τ(x) = − 1

D
, x ∈ Ω̃ε,N , (4)

∂nτ = 0 for x ∈ ∂Ω,

τ(x) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi .

2. The transition probability depends on the Neumann Green’s in the spherical

domain with traps

We first find the probability that the protein finds monomer l before finding any other

monomer, which we denote the transition probability. Finding this probability is equivalent

to solving the following b.v.p [3]

∆ul(x) = 0, x ∈ Ω̃ε,N , (5)

∂nul = 0 for x ∈ ∂Ω,

ul(x) = 0 for x ∈ ∂Ωa = ∪Ni=1,i 6=l∂Ωεi ,

ul(x) = 1 for x ∈ ∂Ωεl .

Starting from position x, the probability ul to find monomer l is given by [3]

ul(x) =
Cl
NC̄

+ 4πεCl

[
G(x,Rl)−

1

NC̄

(
N∑
j=1

CjG(x,Rj)

)]
+ εχl, (6)

where Cl is the capacity of monomer l in units of ε and C̄ is the average capacity. Indeed,

the absorbing monomers can be thought of as capacitors with certain boundary condition

on their surface. The higher their capacity is, the larger is the probability that the particle

will be captured by them. If we were to take non-spherical traps, that would change the

capacity by some numerical constant (O(1)) and thus, the capture time and probability.
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G(x,y) is the Neumann Green’s function of the Laplacian in a sphere of radius A, which

is given by [3]

G(x,y) =
1

4π|x− y|
+

A

4π|x|r′
+

1

4πA
log

[
2A2

A2 − |x||y| cos θ + xr′

]
+

1

6|Ω|
(
x2 + y2

)
− 7

10πA
, (7)

where r′ = |x′ − y|, x′ = xA2

|x|2 , |Ω| is the volume of the domain and

χl = −4πCl
NC̄

[
(GC)l −

1

N
CTGC

]
, (8)

where

Gi,j =

Qi i = j,

Gij, i 6= j,
(9)

where Gi,j = G(Ri(t),Rj(t)) and Qi(Ri(t)) is the regular part of the Green’s function (self

interacting term). The monomers capacity vector is

CT = (C1, C2, ..., CN) (10)

We take the monomer traps to be spherical. For spherical traps (eq.3) we have Ci = ε. Thus

χl = −4πCl
NC̄

[∑
i 6=l

CiGli + ClQl −
1

NC̄

(∑
ij,i6=j

CiCjGij +
∑
i

C2
iQi

)]
. (11)

We shall take Ci = C for i = 1..N , thus

χl = −4πC

N

[∑
i 6=l

Gli +Ql −
1

N

(∑
ij,i6=j

Gij +
∑
i

Qi

)]
. (12)

From now on will work with spherical traps for which C = 1.

To facilitate the calculation we estimate Gij using the equilibrium distribution of the

monomers positions.

Peq (R) =

(
2π

κ

)3(N−1)/2

exp

[
−κ

2

N∑
n=2

(Rn −Rn−1)2

]
, (13)

where we used the harmonic bead potential (eq.1). This pdf is that of a flexible polymer

in bulk (free domain). When the size of the domain is of the order of the polymer radius

of gyration (Rg =
√
Nb/6) [1], the polymer configurations are affected by the domain wall.



5

Thus, we consider the limit A � Rg (Rg =
√
Nb/6) where of Peq is valid. Additionally, to

simplify the calculations we shall anchor the first monomer n = 1 at the origin.

Next we compute the stationary Green’s function

G̃ij =

∫
ΩN

G(Ri,Rj)Peq (R) dR. (14)

We now estimate the different terms for the average Green’s function

I1 =

∫
ΩN

1

4π|Ri −Rj|
Peq (R) dR =

1

b3

[
3

2π|i− j|

]3/2 ∫
1

4π|r|
e
− 3r2

2|i−j|b2 dr (15)

=
1

b3

[
3

2π|i− j|

]3/2 ∫ ∞
0

re
− 3r2

2|i−j|b2 dr, (16)

where we use the marginal pdf

P (Ri,Rj) =
1

b3

[
3

2π|i− j|

]3/2

e
−

3(Ri−Rj)
2

2|i−j|b2 . (17)

Solving the integral, we get

I1 =
31/2

(2π)3/2|i− j|1/2b
. (18)

We assumed here that ε is small with respect to the distance between monomers: |Ri−Rj| =
√
i− jb � ε. When ε is larger, this assumption breaks and the expression for the distance

between the initial release site and the surface of the capture ball on the target monomer is

more complicated. We further assume that we are in the limit A� Rg where〈
A

4π|x|r′

〉
≈ 1

4πA
, (19)

and

1

4πA

〈
log

[
2A2

A2 − |x||y| cos θ + xr′

]〉
≈ 1

4πA
log(1) = 0. (20)

Finally

〈R2
n〉 = nb2. (21)

Substituting all the terms we find the average Green’s function

G̃ij =
31/2

(2π)3/2|i− j|1/2b
+

b2

6|Ω|
(i+ j)− 3A2

5|Ω|
. (22)

The regular part of the Green’s function is

Q̃i =
2b2i

6|Ω|
− 3A2

5|Ω|
. (23)
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3. Estimating χl

First, we will approximate the double series sum in eq.(12)

N∑
i 6=j,i=1

G̃ij. (24)

We will calculate each term separately. First

Sj =
N∑

i 6=j,i=1

1

|i− j|1/2
=

j−1∑
i=1

1

(j − i)1/2
+

N∑
i=j+1

1

(i− j)1/2
= Sj1 + Sj2. (25)

We will approximate this series sum using the Euler-Maclaurin (EM) formula

b∑
i=a

f(i, c) ≈
∫ b

a

f(i, c)di+
f(a, c) + f(b, c)

2
+

1

12
(f
′
(b, c)− f ′(a, c)), (26)

where

f(i, c) =
1

(c− i)1/2
. (27)

Taking a = 1, b = c− 1, the boundary terms are

f(a, c) + f(b, c)

2
=

1

2

(
1

|c− 1|1/2
+ 1

)
. (28)

The first derivative of (27) is

f ′(i, c) =
1

2

1

(c− i)3/2
. (29)

Hence, the boundary derivative terms are

1

12
(f
′
(i, c)− f ′(i, c)) =

1

12

(
1

2
− 1

2|c− 1|3/2

)
(30)

and the integral ∫ c−1

1

1

(c− i)1/2
di = −2(c− i)1/2|c−1

1 = 2(c− 1)1/2 − 2. (31)

Combining all the terms:

Sj1 =

j−1∑
i=1

1

(j − i)1/2
= 2(j − 1)1/2 − 2 +

1

2

(
Sj1 =

1

|j − 1|1/2
+ 1

)
+

1

12

(
1

2
− 1

2|j − 1|3/2

)
, (32)
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while

Sj2 =
N∑

i=j+1

1

(i− j)1/2
= 2(N − j)1/2 − 2 +

1

2

(
1

|N − j|1/2
+ 1

)
+

1

12

(
1

2
− 1

2|N − j|3/2

)
. (33)

Thus

Sj =
N∑

i 6=j,i=1

1

|i− j|1/2
= 2((N − j)1/2 + (j − 1)1/2) +

1

2

(
1

|N − j|1/2
+

1

|j − 1|1/2

)
− 1

12

(
1

2|N − j|3/2
+

1

2|j − 1|3/2

)
− 35

12
, for j = 2..N − 1, (34)

while

SN =
N−1∑
i=1

1

|N − i|1/2
= 2(N − 1)1/2 +

1

2

1

|N − 1|1/2
− 1

24

1

|N − 1|3/2
− 35

24
. (35)

and

S1 =
N∑
i=2

1

(i− j)1/2
= 2(N − 1)1/2 +

1

2

1

|N − 1|1/2
− 1

24

1

|N − 1|3/2
− 35

24
. (36)

We now sum Sj over all the monomers:

S = S1 + SN +
N−1∑
j=2

Sj = 2

(
N−1∑
j=1

(N − j)1/2 +
N∑
j=2

(j − 1)1/2

)
+

1

2

(
N−1∑
j=1

1

|N − j|1/2
+

N∑
j=2

1

|j − 1|1/2

)

− 1

12

(
N−1∑
j=1

1

2|N − j|3/2
+

N∑
j=2

1

2|j − 1|3/2

)
− 35

12
−

N−1∑
j=2

(
35

12

)
. (37)

Again, we use EM formula to estimate the series terms in S (eq.37)

s1 =
N−1∑
j=1

(N − j)1/2 ≈ 2

3
(N − 1)3/2 +

1

2

(
(N − 1)1/2 + 1

)
+

1

24

(
(N − 1)−1/2 − 1

)
, (38)

s2 =
N∑
j=2

(j − 1)1/2 ≈ 2

3
(N − 1)3/2 +

1

2

(
(N − 1)1/2 + 1

)
+

1

24

(
(N − 1)−1/2 − 1

)
, (39)

s3 ≈
N−1∑
j=1

1

(N − j)1/2
≈ 2− 2(N − 1)1/2, (40)

s4 ≈
N∑
j=2

1

(j − 1)1/2
≈ 2(N − 1)1/2 − 2, (41)



8

s5 ≈
N−1∑
j=1

1

(N − j)3/2
≈ −2(N − 1)−1/2 + 2, (42)

s6 ≈
N−1∑
j=1

1

(N − j)3/2
≈ −2(N − 1)−1/2 + 2, (43)

Introducing back into eq.(37)

S = 2(s1 + s2) +
1

2
(s3 + s4)− 1

24
(s5 + s6)− 35(N − 1)

12

=
8

3
(N − 1)3/2 + 2(N − 1)1/2 +

1

3
(N − 1)−1/2 − 55

12
− 35N

12
. (44)

For large N , we take only terms of O(1) or higher in S:

S ≈ 8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12
. (45)

Now we use

N∑
1

i =
N(N + 1)

2
. (46)

Thus, the N−2 term in χl (eq.12), when substituting eqs.23, 45 and 46∑
ij;j 6=i

Gij +
∑
i

Qi =
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)
+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|
. (47)

To estimate the N−1 term in χl (eq.12) we introduce eq.(34), taking only terms of O(1) or

higher. For 2 < l < N , we find∑
i 6=l

Gli +Ql =
31/2

(2π)3/2b

(
2
(
(N − l)1/2 + (l − 1)1/2

)
− 35

12

)
+
N

|Ω|

[
b2(N + 1 + 2l)

12
− 3A2

5

]
, (48)

while ∑
i 6=1

G1i +R1 =
31/2

(2π)3/2b

(
2(N − 1)1/2 − 35

24

)
+
N

|Ω|

[
b2(N + 3)

12
− 3A2

5

]
, (49)

and ∑
i 6=N

GNi +RN =
31/2

(2π)3/2b

(
2(N − 1)1/2 − 35

24

)
+
N

|Ω|

[
b2(3N + 1)

12
− 3A2

5

]
. (50)
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Introducing (48), (49), (50) and (47) into (12):

χl = −4π

N

[
31/2

(2π)3/2b

(
2(N − l)1/2 + 2(l − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

55

12N

)

+
Nb2(2l − (N + 1))

12|Ω|

]
≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − l)1/2 + 2(l − 1)1/2 − 8(N − 1)3/2

3N

)

+
Nb2(2l − (N + 1))

12|Ω|

]
. (51)

We we took terms of order O
(
N1/2

)
or higher

χ1 = −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

35

24
+

55

12N

)
− Nb2(N + 1)

12|Ω|

]

≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8(N − 1)3/2

3N

)
− Nb2(N + 1)

12|Ω|

]
(52)

For the last monomer:

χN = −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8

3

(N − 1)3/2

N
− 2(N − 1)1/2

N
+

35

24
+

55

12N

)
+
Nb2(N + 1)

12|Ω|

]

≈ −4π

N

[
31/2

(2π)3/2b

(
2(N − 1)1/2 − 8(N − 1)3/2

3N

)
+
Nb2(N + 1)

12|Ω|

]
. (53)

4. Computing the transition probability ul(n)

We continue to estimate the site-to-site transition probability ul(n) by averaging over

eq.6. We assume that the particle started at a distance a� b from monomer Rn. We thus

need to estimate

Sx,l =
N∑
j=1

G(x,Rj), (54)

that we write as

Sx,l = G(x,Rn) +
N∑

j=1,j 6=n

G(x,Rj). (55)

Since we take |x−Rn(t)| = a, we estimate the sum over the Green’s function as

N∑
j=1,j 6=n

G(x,Rj) ≈
N∑

j=1,j 6=n

G(Rn,Rj). (56)
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We replace again the Green’s function G(Rn,Rj) by G̃nj:

Sx,n ≈ 〈G(x,Rn)〉+
N∑

j=1,j 6=n

G̃nj. (57)

Introducing expression 48 to eq.(57)

Sx,n ≈
1

4πa
+

31/2

(2π)3/2b

(
2
(
(N − n)1/2 + (n− 1)1/2

)
− 35

12

)
+

N

|Ω|

[
b2(N + 1 + 2n)

12
− 3A2

5

]
, (58)

where we used that 〈
1

4π|r|

〉
=

∫
1

4π|r|
P (r, a)r2 sin(θ)drdθdφ =

1

4πa
, (59)

with r = x−Rn and the probability distribution of the particle is

P (r, a) =
δ(r − a)

4πr2
. (60)

Substituting eqs. (22), (23), (58), (51) all the elements to eq.6, we find that for 2 < n < N

ul(n) =
1

N
+ 4πε

[
G(x,Rl)−

1

N

(
N∑
j=1

G(x,Rj)

)]
+ εχl

=
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|n− l|−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − n)1/2

+ (n− 1)1/2 − 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN

]
, for 2 < l < N , l 6= n (61)

u1(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|n− 1|−1/2 − 2

N

(
2(N − 1)1/2 + (N − n)1/2 + (n− 1)1/2

− 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN
+

b2

6|Ω|

]
. (62)

uN(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
|N − n|−1/2 − 2

N

(
2(N − 1)1/2 + (N − n)1/2 + (n− 1)1/2

− 4(N − 1)3/2

3N
− 35

24

))
− 1

4πaN
− b2

6|Ω|

]
. (63)
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un(n) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − n)1/2 + (n− 1)1/2 − 2(N − 1)3/2

3N
− 35

48

))

+
1

4πa

(
1− 1

N

)]
. (64)

For the end monomer (n = 1)

u1(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))
+

1

4πa

(
1− 1

N

)

+
b2

6|Ω|

]
. (65)

For 2 < l < N

ul(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(l − 1)−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − 1)1/2

− 4(N − 1)3/2

3N
− 35

48

))
− 1

4πaN

]
, (66)

and for l = N

uN(1) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − 1)−1/2 − 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))

− 1

4πNa
− b2

6|Ω|

]
. (67)

For n = N

uN(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
− 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))
+

1

4πa

(
1− 1

N

)

− b2

6|Ω|

]
. (68)

For 2 < l < N

ul(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − l)−1/2 − 2

N

(
(N − l)1/2 + (l − 1)1/2 + (N − 1)1/2

− 4(N − 1)3/2

3N
− 35

48

))
− 1

4πaN

]
, (69)

and finally

u1(N) =
1

N
+ 4πε

[
31/2

(2π)3/2b

(
(N − 1)−1/2 − 4

N

(
(N − 1)1/2 − 2(N − 1)3/2

3N
− 35

96

))

− 1

4πNa
+

b2

6|Ω|

]
. (70)
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5. Computing the conditional MFPT τl(n) to monomer l starting from monomer n

We next compute the conditional mean first passage time (MFPT) τl(x) of the particle

to a specific monomer site l before encountering any of the other monomers, given it started

at position x. The conditional dynamics of the particle obeys the Langevin equation [4]

dx = a(x)dt+
√

2Ddω, (71)

where

a(x) = 2D
∇ul(x)

ul(x)
, (72)

with ul(x) the transition probability (eq.5). Moving according to this Langevin equation, the

particle experiences a drift pushing it away from all monomers except for its final destination

l. The MFPT to find l is the solution of

∆τl(x) + 2
∇ul(~x)

ul(~x)
· ∇τl(x) = − 1

D
, x ∈ Ω̃ε,N , (73)

P (x, 0) = δ(x− (Rn + a)),

∂nτl = 0 for x ∈ ∂Ω,

τl(x) = 0 for x ∈ ∂Ωa = Ωεl .

To estimate τl(x), we define the variable vl = τl(x)ul(x). Hence, vl(x) is the solution of the

b.v.p

D∆vl(x) = −ul(x), x ∈ Ω̃ε,N , (74)

∂nvl = 0 for x ∈ ∂Ω,

vl(x) = 0 for x ∈ ∂Ωa = ∪Ni=1∂Ωεi .

The solution vl(x) can be written as the eigenfunctions expansion

vl(x) =
∞∑
i=0

aiwi,ε(x), (75)

where wi,ε(x) are the eigenfunctions of the Laplacian in the perturbed domain Ω̃ε,N [5],

obeying the equation

∆wi,ε(x) + λi,εwi,ε(x) = 0, (76)

with λi,ε(x) the corresponding eigenvalues of the homogeneous.
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Introducing the expansion to eq.(74), we get

D
∞∑
i=0

aiλi,εwi,ε(x) = ul(x), (77)

To find the coefficients ai we multiply by wj,ε(x) and integrate over the whole domain. Using

the orthonormality of the eigenfunctions

Dajλj,ε =

∫
Ω̃ε,N

wj,ε(x)ul(x)dV, (78)

giving

aj =
〈wj,ε(x)ul(x)〉

Dλj,ε
. (79)

Introducing back to eq.(75)

vl(x) =
∞∑
i=0

〈wj,ε(x)ul(x)〉wi,ε(x)

Dλj,ε
. (80)

We shall approximate vl(x) with the first term

vl(x) ≈ 〈w0,ε(x)ul(x)〉w0,ε(x)

Dλ0,ε

. (81)

The perturbed zero order eigenfunction is given by

w0,ε(x) =
1

|Ω̃ε,N |1/2
− 4πε

|Ω̃ε,N |1/2

N∑
j=1

G(x,Rj) +O(ε2). (82)

The coefficient is

〈w0,ε(x)ul(x)〉 ≈
∫

Ω̃ε,N

[
1

|Ω̃ε,N |1/2
× 1

N
+

1

|Ω̃ε,N |1/2
× 4πε

[
G(x,Rl)

− 1

N

(
N∑
j=1

G(x,Rj)

)]
− 4πε

|Ω̃ε,N |1/2

N∑
i=1

G(x,Rj)×
1

N
+

1

|Ω̃ε,N |1/2
εχl

]

=
|Ω̃ε,N |1/2

N
+ |Ω̃ε,N |1/2εχl +O(ε2), (83)

where we used the definition of ul(x) (eq.6) and took only order O(ε) terms. We also used∫
Ω̃ε,N

G(x,Rj) = 0. (84)

The corresponding eigenvalue is

λ0,ε =
4πεN

|Ω|
− (4πε)2

|Ω|

(∑
i,j;i 6=j

Gij +
∑
i

Qi

)
+O(ε2). (85)
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We recall that∑
ij;j 6=i

Gij +
∑
i

Qi =
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)
+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|
. (86)

Thus

λ0,ε =
4πCεN

|Ω|
− (4πCε)2

|Ω|

(
31/2

(2π)3/2b

(
8

3
(N − 1)3/2 − 35N

12
+ 2(N − 1)1/2 − 55

12

)

+
b2N2(N + 1)

6|Ω|
− 3A2N2

5|Ω|

)
+O(ε2). (87)

We recall that τl = vl/ul

τl(x) ≈ 〈w0,ε(x)ul(x)〉w0,ε(x)

Dλ0,εul(x)
=

1

Dλ0,ε

(
1

N
+ εχl

)[
1

ul(x)
− 4πCε

N∑
j=1

G(x,Rj)

ul(x)

]
. (88)

The particle starts its motion from the a neighborhood of monomer n. We shall use again

the pre-averaging approximation∫ ∫
ΩN

1

ul(x)
Peq (R) δ(|x−Rn| = a)dxdR ≈ 1

ul(n)
, (89)

where x ∈ B(Rn(t), a). For n = l∫ ∫
ΩN

G(x,Rj)

ul(x)
Peq (R) δ(|x−Rl| = a)dxdR

≈ 1

ul(l)

∫
ΩN

G(x,Rj)Peq (R) dR ≈ G̃nj

un(n)
, (90)

and

τn(n) ≈ 1

Dλ0,ε

(
1

N
+ εχn

)[
1

un(n)
− 4πCε

un(n)

N∑
j=1

G̃nj

]
. (91)

When n 6= l, we use the Taylor approximation to expand the encounter probability ul(x)

for small ε∑
j

∫ ∫
ΩN

G(x,Rj)

ul(x)
Peq (R) δ(|x−Rn| = a)dxdR ≈

∑
j

∫ ∫
ΩN

G(x,Rj)

[
N

−4πεN2

(
G(x,Rl)−

1

N

N∑
i=1

G(x,Ri) + χl

)]
Peq (R) δ(|x−Rn| = a)dxdR

≈
∫ ∫

ΩN

G(x,Rn)

[
N − 4πεN2

(
G(x,Rl)−

1

N

N∑
i=1

G(x,Ri) + χl

)]

Peq (R) δ(|x−Rn| = a)dxdR = N
∑
j

G̃nj − 4πεN2G̃nn

[
G̃nl + χl −

1

N

∑
j

G̃nj

]
,(92)
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where, assuming that a� b, we only take one element in the sum over all monomer, where

the singular term scales as a−1. This happens for j = n. Finally, substituting expression

(92) to eq.(88), we find an approximation for the MFPT

τl(n) ≈ N−1 + εχl
Dλ0,ε

[
1

ul(n)
− 4πεN

(∑
j

G̃nj − 4πεNG̃nn

[
G̃nl + χl −

1

N

∑
j

G̃nj

])]
.(93)

We estimated here the MFPT using the first eigenvalue of the Laplacian and the long

time asymptotic of the heat kernel [6]. Since the particle starts close to its target, higher

eigenvalues will contribute to the MFPT [7], and our expression for the MFPT can be

extended to include them by estimate the contribution of higher term eigenvalues.

6. Site-to-site transition rates as a CTMC

The particle can be either bound to one of the N monomers in the domain or diffuse

between dis-association and capture events. We denote the unbound state as in-transit

from one monomer site to the another. We assume that at site n, the particle remains

bound for a characteristic time Tn, and leaves with a Poissonian rate. We define the process

as a continuous time Markov chain (CTMC) (Fig.3a), where the release rate from site n is

qn,Trnl = T−1
n ul(n), for n = 1...N. (94)

When the destination site l is far, the transition time is well described by a single exponent

(eq.90 and [5]). We assume that the in-transit time until reattachment is Poisson-distributed.

Thereby, the transition rate from the in-transit state Trnl to monomer site l has probability

1 and a rate

qTrnl,l = τl(n)−1. (95)

When the particle is captured rapidly, multiple exponent contribute to the the transi-

tion time, that can be taken into account by defining multiple in-transit states. The

N(N + 1)×N(N + 1) rate matrix Q whose entries are the rates qn,Trnl and qTrnl,l describes

the transitions between all states and can be used to find the time-dependent probability

distribution function P (S, t), with the state vector S = (sb1, sb2, ..., sbN , sit11, sit12, ..., sitNN),

where the first N states are bound state and the next N2, are in-transit states. The proba-

bility distribution function of the particle is given by

p(S, t) = eQtp(S, 0), (96)
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where p(S, 0) is the initial distribution of the particle in the different states.

THE REATTACHMENT PROBABILITY DEPENDS ON THE LOCAL DENSITY

To clarify the effect of monomer density on the reattachment probability, we estimated

the local density around different monomers along the chain. For a given monomer m, the

probability to find the n-th monomer at 3d distance between r and r + dr is

p(r, n,m) =

(
1√

2π|m− n|σ2

)3

e
− r2

2|m−n|σ2 , (97)

where σ2 = b2

3
. The distribution p(r, n) is normalized such that 4π

∫∞
0
p(r, n)r2dr = 1.

The probability to find monomer n within a ball of radius h around m is (σm,n =√
|n−m|σ)

P (h, n,m) = 4π

∫ h

0

p(r, n)r2dr =
2√
2π

∫ h
σn,m

0

e−
x2

2 x2dx =
4√
π

∫ h√
2σn,m

0

e−x
2

x2dx

= Erf(y)− 2√
π
ye−y

2

, (98)

with y = h√
2σn,m

.

The total monomer density around monomer m given that it is part of a polymer of

length N is

ρm =
m−1∑
i=1

P (h, n,m) +
N∑

i=m+1

P (h, n,m). (99)

In SM Fig.1 we plot the reattachment probability un(n) as a function of ρm computed for

different monomers along the chain. Since the middle monomer is closest to the center

of mass of the polymer, the local density there is highest. Thus, the released particle is

easily lost to other monomer and un(n) is minimal. When the ball surrounding the release

monomer m is larger, the average number of monomer within it will be larger (Fig.1a vs. b)

SELF AVOIDING POLYMER

We simulated the particle release and capture process for a self-avoiding polymer. For

the purpose of the simulations, self-avoiding interactions were introduced by adding the
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Lennard-Jones potential [8]

φLJ(R1, ..RN) =
∑
i,j,i6=j

φi,jLJ(ri,j), (100)

with ri,j = Ri −Rj and

φi,jLJ(ri,j) =

 4

[(
σ

ri,j

)12

− 2
(

σ
ri,j

)6

+ 1
4

]
for |ri,j| ≥ 21/6σ

0 for |ri,j| < 21/6σ.

(101)
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a b

FIG. 1. The reattachment probability depends on local monomer density. The reattach-

ment probability un(n) as a function of the average local monomer density ρm estimated using

different monomers along the chain (eq.99). The left most point corresponds to the chain extrem-

ities where the density is lowest, while the rightmost point corresponds to the middle monomer of

the chain where the density is highest. The polymer has 20 monomer sites (N = 20), a = 0.3b,

ε = 0.03b, A = 10b. The surrounding ball (eq.98) is of radius h = 1b (a) or h = 3b (b).
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a

c

b

d

FIG. 2. Transition between monomer sites. (a) The transition probability ul(n) starting

from site 1 (turquoise), 10 (orange) or 20 (purple). The polymer has 40 monomer sites (N = 40),

a = 0.3b, ε = 0.07b, A = 10b. The full lines are the result of Brownian simulations for a self

avoiding polymer, where the LJ distance was taken to be σ = 1b (eq.101). The dashed lines are

the simulation results for a phantom polymer (without the LJ potential- see main text). (b) The

transition probability averaged over all monomers 〈u|l−n|(n)〉 for a phantom polymer (blue full

curve) and a self avoiding polymer (red full curve). Also shown is the result of fitting a function of

the form A|l−n|−α +C to the two curves. (c) ul(n) was estimated from simulations with ε = 0.5b

and a = 0.7b. The same analysis as in b was performed. (d) The mean first transition time τl(n)

from site n to site l without interacting with any other site along the way. The full line lines are

the result of BS for a self avoiding polymer and the dashed line is are the result for a phantom

polymer. The results shown are for the case simulated in a,b.
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FIG. 3. The bound fraction of particles to monomer site. The fraction of bound particles f

at monomer sites as a function of the capture radius ε. f was estimated from the long time behavior

of the probability distribution function p(S, t), by solving the corresponding CTMC (described in

the main text) (blue curve). In the Brownian simulations: N = 100, a = 0.5b, A = 10b. The time

units are 10b2/D, with D the diffusion coefficient of the particle. Also shown is the bulk bound

fraction estimate (red curve) given by fbulk = kon
kon+koff

, with kon = 4πεND
|Ω| . This estimated assumes

that the recapture probability and rate are uniform to all sites independent where the particle was

released.
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