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Figures S1 

 
Supplementary Figure S1 | Illustration of micro-aspiration measurement of the bilayer surface tension 
of PC GUV, PC GUV embedded with a triolein LD and PC GUV embedded with squalene LD. Scale bar 
is 10 µm. 
 
Figures S2 

 
 
Supplementary Figure S2 | A) Initial and final states of the LD shape from the Fig. 4A, indicated on 
the phase diagram of Fig.3A. B) Bilayer tension corresponding to the experiment shown in Fig. 4A, 
calculated using the technique describe in supplementary text 2 C) Squalene LD embedded in a GUV. 



External monolayer tension in increased with right micropipette and bilayer tension is kept constant with 
the left micropipette. The LD tends to internalized (arrow). Scale bar is 10 µm. D) Corresponding 
Directional budding factor as a function of the external tension. E) Evolution of the three tensions as the 
external tension is increased. Bilayer tension is kept constant.  
 
 

Figures S3 

 
 

Supplementary Figure S3 | A) Full frame view of the experiment shown in (Fig. 5A).  Scale bar is 10 
µm B) Corresponding angles alpha and theta plotted as a function of the bilayer tension. 
 
 
 
Figures S4 

 
 
Supplementary Figure S4 |  A) PLA2 enzyme is added to the external medium of a PC/PA (70/30) 
GUV embedding a triolein LD. (PA: dioleoylphosphatidic acid) PA was added to increase the bilayer 
tension and obtain droplets that were not readily budded, which often occurred with pure PC. The 
evolution of the droplet is observed over time. Scale bar is 10 µm. B) Decreasing directional budding 
factor showing a asymetrization of the LD position. 
  



Supplementary text 1 | Determination of the shape and position of an LD in a GUV bilayer.  

 
Considering that the lipid droplet’s shape is driven by the equilibrium of the three surface tensions 
(bilayer 𝛾", external monolayer 𝛾#$% and internal monolayer 𝛾&'%) (Eq. 1), can be projected on the bilayer 
axis and lead to (Eq. 2). 
 

𝛾" 		+	𝛾*'% +		𝛾#$%		=	 0             (1) 
 
 

𝛾" = 	−	𝛾&'%	cos(𝛼)	−		𝛾#$% cos 𝜃 	 
       (2) 

𝛾#$% 	sin(𝜃) 	= 	𝛾&'% 	sin(𝛼)	 
 
Moreover, the conserved volume of the LD and the GUV gives two other equations (Eq. 3,4): 
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(4) 
In order to determine the shape of the droplet, we only need three parameters: alpha, theta and delta, 
as a function of the tensions 𝛾", 𝛾&'% and 𝛾#$%.  
 
Rearranging these equations leads to a set of 3 equations (Eq. 5,6,7) that can be solved numerically. 
The following equations (5, 6) Gives alpha and theta:  
 

cos(q) 		= 	
	𝛾&'%C − 	 	𝛾#$%C − 	𝛾"C

2	𝛾"	𝛾#$%
															(5)	 

 
 

cos(a) 		= 	
	𝛾#$%C − 	 	𝛾&'%C − 	𝛾"C

2	𝛾"	𝛾&'%
																(6) 

 
The last parameter delta is determined numerically, keeping the volumes constant (Eq. 7):  
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sin(q − d)= 	+ 		2 − cos a − d = + 3 cos a − d 	

sin(a − d)=
2 − cos d = + 3 cos d 	

sin(d)= 	− 	2 − cos a − d = + 3 cos a − d 	
sin(a − d)=

			 

(7) 
 
The profiles of the embedded LDs displayed in (Fig. 4B) are obtained using this mathematical model. 



Supplementary text 2 | Determination of surface tensions.  

 
Given that the LD shape is driven by surface tension, the following equation describes the link between 
the bilayer tension 𝛾", the external tension 𝛾#$%, and the internal tension 𝛾&'%:  
 

𝛾" = 	−	𝛾&'%	cos(𝛼)	−		𝛾#$% cos(𝜃) (1) 
         

𝛾#$% 	sin(𝜃) 	= 	𝛾&'% 	sin(𝛼) (2) 
 
Measuring one of the tensions and the two angles (𝜃 and 𝛼) allows us to determine the two other 
tensions using the two former equations. For example, knowing alpha, theta, and the external tension 
enable the determination of the bilayer tension by 𝛾" = 	−(	𝛾#$%cotan(𝛼)	sin(𝜃) + cos(𝜃)), and	𝛾&'% 
through equation (2).	
 


