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Open Linear Framework Models

Graphs G representing open linear framework models are obtained by adding a vertex v∅ denoting

the environment to a core graph G (akin to closed models, the core graph is composed of all

non-synthesis and non-degradation reactions) and by introducing directed edges from v∅ to the

synthesized species in G with labels si and edges labeled di from the degraded species to v∅. The

dynamics of open linear framework models are defined in general form as:

dx

dt
= L(G)x−∆x+ S,

where L(G) is the Laplacian matrix of the core graph, ∆ is a diagonal matrix with ∆ii = δi the

degradation rate constants of the species with index i, and S is a vector Si = si comprising the

synthesis rate constants for all species. If a species does not have a degradation or a synthesis

reaction then si = 0 or δi = 0, respectively. In open models, the total amount of matter is

not conserved but the rates at which matter enters and leaves the system determine the final

distribution of steady-state concentrations. In particular, synthesis and degradation at steady-

state are balanced: δ1x1 + . . . + δnxn = s1 + . . . + sn. Similarly to closed models, but assuring

that the steady-state concentration at v∅ is always 1, the unique stable steady-state for vertex vi

(vi 6= v∅) can be symbolically derived.

The general form of the steady-state concentration xSSi for open systems and a vertex vi

(vi 6= v∅) is given by:

xSSi =
κvi(G)

κv∅(G)
.

For more details, proofs, and derivations on open linear framework models we refer to (1, 2).
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In open models, the q species eliciting the response are associated with a set of output vertices

O(G). Then the general expression for the steady-state response of open models using Kirchhoff

polynomials reads:

RO(G) =

∑
vi∈O(G) aiκvi(G)

κv∅(G)
,

where ai ≥ 0 is the weight given to the steady-state concentration associated with vertex vi.

The denominator in the steady-state expression of open strongly connected models contains the

strongly connected G rooted at the environment vertex v∅ which can yield graphs with factorisable

Kirchhoff polynomials. Hence, the Kirchhoff polynomial corresponding to rtv∅(G) is non-trivially

factorisable when any synthesis reaction si is a prime bridge during the sequential deletion of si

resulting from the rooting operation at v∅ (s1 might not be a prime bridge in G but in G \ s2 . . . \

sn). Likewise, the numerator of the steady-state expression for open models consists of the linear

combination of rooted polynomials, each of which could be factorisable. In this case, there could

exist prime factors shared between the numerator and the denominator which can be canceled out.

Thereby, in open systems there exist equivalence classes of models with different graphs G but the

same steady-state expressions. A necessary and sufficient condition for a reaction to take part in

the steady-state expression is that it is part of a prime component that does not get canceled.

Applying the deletion-contraction property from Eq. 5 to express the steady-state response R

as a function of the dose variable d, we obtain the general form of dose-response expression for

open models with a graph G:

RO(d) =
k1 + k2d

k3 + k4d
, (1)

with steady-state coefficients:

k1 =
∑

vi∈O(G) aviκvi(G\ed),
k2 = g(p)

∑
vi∈O(G) aviκvi(G/ed),

k3 = κv∅(G\ed),
k4 = g(p)κv∅(G/ed).

Fig. S1 shows the tree scheme for generating the steady-state coefficients of open models.

Formalizing Differential Responses

Here we give details about the proposed procedure for quantifying the differential response, i.e. how

a reference dose-response curve transforms into a perturbed one. Our definition of the differential

employs established concepts for comparisons between monotone dose-response curves to generalise

comparisons between non-monotone curves. Note that other definitions could be more appropriate
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Figure S1: Tree scheme for a general graph G for obtaining the relevant graphs participating in
the coefficients ki of the dose-response relationship in open models (for reference and perturbed
systems) through the graph operations rooting, deletion, and contraction. Note that there are also
additional terms contained in the coefficients.
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Figure S2: Definition of the differential response as the length of displacement of a reference dose-
response curve (red, dashed, marked with the α superscript) to a perturbed curve (blue, solid,
marked with the β superscript), generated by functions Rα(d) and Rβ(d), respectively, both with

n critical points ε
{α,β}
1...n . The curves are subdivided along their critical points to obtain monotone

segments. The resulting segments are related through a mapM that preserves the order of critical
points and segments. Points on a pair of mapped segments with the same proportion of response
h ∈ [0, 1] between the minimum and the maximum are related to each other (corresponding points
indicated by black arrows). Distances in the dose and the response dimensions between corre-
sponding points are called the dose differential and the response differential, and denoted as πd(h)
and πR(h) (green), respectively.

when specific knowledge on the curve transformation contradicts the assumptions we make.

Let dose-response curves be generated by functions R : R≥0 → R≥0, that are continuous,

smooth, and bounded (unbounded responses are not biologically feasible). We denote the functions

generating the reference and the perturbed curve as Rα(d) and Rβ(d), respectively, where d is the

dose variable. A point on a dose-response curve, (d, R), consists of a dose component d and a

response component R such that R = R(d).

We express the differential through distances between corresponding points on Rα(d) and
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Rβ(d). To find the correspondence between points and quantify the distance between corresponding

points we follow the procedure (also see Fig. S2):

(i) Subdivide the curves into monotone segments.

We subdivide the dose-response curves at their critical points (suprema, infima, extrema,

and stationary points of inflection that are identified by the functions’ first derivatives) to

obtain monotone segments for further comparison.

Assume that Rα(d) and Rβ(d) have, respectively, n and m critical points and denote them

by εi ∈ E , where E is the set of all critical points for the relevant dose-response curve and i

is their index (i ∈ {1, . . . , n} for εαi and i ∈ {1, . . . ,m} for εβi ). Due to the functional relation

between dose and response and by considering any two or more identical critical points as a

single one, the critical points follow a strict total order in their dose component dεi (e.g. for

Rα(d), dεα1 < . . . < dεαn), which we use to define a strict total order of the critical points

(e.g. for Rα(d), εα1 < . . . < εαn).

From the boundedness requirement onR(d) it follows that the first and the last critical points

are reached when the dose goes to zero and infinity, respectively. The intermediate critical

points are defined by doses for which the first derivative of f is zero. Thus the critical points

of Rα(d) are:

εα1 :=

(
0, lim
d→0
Rα(d)

)
, εαi := {(dεi ,Rα(dεi))|DdRα(dεi) = 0} ,

and εαn :=

(
∞, lim

d→∞
Rα(d)

)
,

where i ∈ {2, . . . , n − 1} indexes the intermediate critical points and Dd denotes the first

derivative with respect to the dose variable d.

The critical points of Rα(d) partition its domain into n − 1 monotone segments σj , j ∈

{1, . . . , n− 1}. Each segment is defined by two consecutive critical points:

σαj : Rα(d), for d ∈
[
dεαj , dεαj+1

]
,

where the domain of the segment is semi-open for the last critical point since it has a dose

component at infinity. Let us denote the set of all segments as Σα. The definitions of critical

points and segments for Rβ(d) are analogous.

(ii) Decide which segments to compare.
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A map M defines the correspondence between the monotone segments from the reference

curve and the monotone segments from the perturbed curve. The definition of the map can

be application-specific. Here, in the absence of specific knowledge on the transformation

between the curves, we propose that M preserves the order (and succession, i.e. no critical

point is missed out) of critical points and segments. Let us assume, w.l.o.g., that Rα(d) has

less or equal number of critical points than Rβ(d) (n ≤ m). Then, we define M to map all

consecutive segments of Rα(.) to all possible n consecutive segments of Rβ(.),namely:

M(i; Σα,Σβ) :



σα1 → σβi

σα2 → σβi+1

...

σαn−1 → σβi+n−2

,

where i ∈ {1, 2, . . . , 1 +m−n}. Notice that in the case when n = m the map is bijective and

it does not depend on the index i = 1.

(iii) Determine corresponding points in compared pairs of segments.

In each pair of mapped segments σαi 7→ σβj we relate the points having the same proportion

h (h ∈ [0, 1]) of response between the minimal and maximal response, as is customary for

monotone dose-response curves. The minimal and maximal responses in each segment are

determined by the response components of the critical points enclosing it. Let ζ(h;x, y) be

the proportional response function which gives the response for a proportion h and response

components x and y of the critical points enclosing the segment of interest. Then, we can

obtain the response components of the related points within the segments:

Rσαi ,h 7→ R
σβj ,h

,

where Rσαi ,h = ζ
(
h; Rεαi , Rεαi+1

)
and R

σβj ,h
= ζ

(
h; R

εβj
, R
εβj+1

)
.

We recover the dose components of the related points from the dose-response function:

dσαi ,h 7→ d
σβj ,h

,

where dσαi ,h = Rα−1
(
ζ
(
h; Rεαi , Rεαi+1

))
, Rα−1

(.) is the inverse function of Rα in the interval[
dεαi , dεαi+1

]
(the interval is semi-open for the last critical point since it has a dose component
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at infinity). The inverse exists due to continuity and monotonicity of the segment σαi .

The following two definitions can serve as a proportional response function:

ζ1(h;x, y) :=


hx+ (1− h)y, if x 6= y

x, when x = y

, and

ζ2(h;x, y) :=


hx+ (1− h)y, if x > y

(1− h)x+ hy, if x < y

x, when x = y

,

which are simplifications, respectively, of:

ζ1(h;x, y) :=
1

2

((
1 +

x− y
|x− y|

)
h+

(
1− x− y
|x− y|

)
(1− h)

)
|x− y|+ min (x, y) and

ζ2(h;x, y) := h |x− y|+ min (x, y) ,

where, again, h ∈ [0, 1] is the proportion of response and x and y are the response coordinates

(corresponding to dose coordinates dx and dy, dx < dy) defining a segment σ. Note also that

we are not interested in the case when x = y in a segment since it leads to a trivial differential

expression.

The differences between these very similar definitions become evident when one of the com-

pared segments is monotonically increasing and the other one is monotonically decreasing;

otherwise the definitions are identical up to the parametrisation of h. We choose to use ζ1,

hence, calling it only ζ, due to the simpler expressions it yields in our subsequent derivations.

Note that ζ1(0;x, y) = y and ζ1(1;x, y) = x, which means that for h = 1 the response coordi-

nates of smaller dose coordinates correspond to each other while for h = 0 the correspondence

is between the response coordinates of larger dose coordinates.

(iv) Quantify the displacement of corresponding points.

The last step to derive the differential is to quantify the displacement between corresponding

points on the reference and perturbed curves for all mapped segments. For each pair of points

we derive the displacement in dose, what we call the dose differential, and the displacement in

response – the response differential. Formally, to identify fold differences in the dose variable,

we define the dose differential as the difference of logarithms of the dose components of
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corresponding points:

πd(h;σαi , σ
β
j ) := log10

dσαi ,h

d
σβj ,h

and the response differential as the difference in response between corresponding points:

πR(h;σαi , σ
β
j ) := Rσαi ,h − R

σβj ,h
.

The set of all these displacements constitutes the differential between the curves.

Note that for monotone dose-response curves the differential reduces to the established com-

parison of points with the same percentage of response. For non-monotone curves each segment is

compared to another one at least once allowing to quantify the relative difference between dose-

response curves. Note that even when dose-response curves can be derived in closed form, the

differential can be symbolically derived only when the critical points and dose-response functions’

inverses can be found symbolically.

Derivation of the Differential for One Dose Edge

We derive the differential for dose-response curves generated by functions of the form of Eq. 6 using

the procedure outlined in the previous section. We have only fixed to have a single dose edge, all

other features of the reference and perturbed models can be arbitrary.

(i) Subdivide the curves into monotone segments.

The steady-state function RO(d) does not have extrema when varying the dose d since the

first derivative is nowhere zero (apart from infinity and the dose independent case when

k2k3 = k1k4). There are only two critical points and the dose-response curve is a sigmoid in

log scale. The critical points are:

E =

{
ε1 =

(
0,
k1
k3

)
, ε2 =

(
∞, k2

k4

)}
.

In each of the reference and the perturbed curve there exists only one segment defined between

the dose components of ε1 and ε2, which we call σ.

(ii) Decide which segments to compare.
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Since each of the compared curves consists of a single segment the mapping is trivial:

M : σα → σβ.

(iii) Determine corresponding points in compared pairs of segments.

We relate the response coordinates of points on σα and σβ with identical percentage of

response:

ζ

(
h;
kα1
kα3
,
kα2
kα4

)
7→ ζ

(
h;
kβ1

kβ3
,
kβ2

kβ4

)
⇔ h

kα1
kα3

+ (1− h)
kα2
kα4
7→ h

kβ1

kβ3
+ (1− h)

kβ2

kβ4
,

where the superscripts α and β indicate that the coefficients k have been obtained from the

reference or perturbed system, respectively.

To relate the dose components of corresponding points, dσα,h 7→ dσβ ,h, we find the inverse of

the single dose edge dose-response function and plug in the proportional response function:

dσ,h = R−1
(
ζ

(
h;
k1
k3
,
k2
k4

))
=
k1 − ζ

(
h; k1k3 ,

k2
k4

)
k3

ζ
(
h; k1k3 ,

k2
k4

)
k4 − k2

,

which reduces to:

dσ,h =


1−h
h

k3
k4

if k1
k3
6= k2

k4
,

not defined if k1
k3

= k2
k4
.

Ignoring the trivial case when k1
k3

= k2
k4

we obtain the following correspondence between the

dose components of related points:

1− h
h

kα3
kα4
7→ 1− h

h

kβ3

kβ4
.

(iv) Quantify the displacement of corresponding points.

Having determined the correspondence between points, we obtain general expressions for the

dose and response differentials in differential systems D with a single dose edge (also Eq. 7):

πd = log10
kα3 k

β
4

kβ3 k
α
4

and πR (h) = h

(
kα1
kα3
− kβ1

kβ3

)
+ (1− h)

(
kα2
kα4
− kβ2

kβ4

)
.
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Steady-state Expressions for the Investigated Single Dose Edge Models

The steady-state expression (before plugging in the differential parameters) for the example from

Fig. 4 reads:

RO(d) =
r1r3r9 (r5 + r6 + r7) d

(r2 + r3) (r8 + r9) (r4 (r6 + r7) + r5r7) +
+ r1 (r5 (r3r9 + r7 (r3 + r9)) + r9 (r3 + r4) (r6 + r7)) d

xt.

The steady-state expression for the example from Fig. 5B is:

RO(d) =
r1 (r3r5r9r11 + r3 (r6 + r7) r9r11) d

r8r10 (r2 + r3) (r4 (r6 + r7) + r5r7) + r1r3r5r7r10d
.

Applications for Experimental Design

To discriminate between models in the same equivalence class, a logical next question is what

second perturbation to design (or how to change the first perturbation) in order to differentiate

between models in the same equivalence class. In other words, we want to divide the class into

smaller equivalence classes, and ultimately identify a single model that represents the biological

process. More specifically, a second perturbation could change the prime factors, for example, by

adding or deleting new species and reactions, or by changing the input edge. We illustrate the

theory’s capabilities by deciding which reaction rate constant to alter in the perturbed system for

the model from from Fig. 5B. For example, we ask whether to experimentally perturb r8 or r5 to

obtain the largest effect in the dose differential. For the steady-state coefficient k3, we observe that

r8 is alone in a prime component while r5 has three more reaction constants in the same prime

component. This means that, if we perturb r8, we will obtain a factor in the dose differential

corresponding to
kα3
kβ3

=
rα8
rβ8

rα2 +r3

rβ2+r3
where our perturbation will have a multiplicative effect on the

dose differential. On the other hand, if we perturb r5 we obtain
kα3
kβ3

=
r4(r6+r7)+rα5 r7

r4(r6+r7)+r
β
5 r7

rα2 +r3

rβ2+r3
, where

the perturbation is dampened by the other reaction rates—the change in the dose differential upon

this perturbation might become experimentally indistinguishable. Hence, perturbing elements of

smaller factors has a more direct effect on the observed dose differential, and a corresponding

experimental design is more likely to help determining whether the model under consideration is

appropriate.
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General Form of Dose-Response Curves Generated by Two Dose Edge Models

We consider the case in which the input dose acts proportionally and simultaneously on two edges,

i.e. I(G) = {ed,1, ed,2}, `(ed,1) = g1(p)d, and `(ed,2) = g2(p)d.

We apply the deletion-contraction formula to partition the set of spanning trees from the

numerator and denominator of the response function R into four categories – those containing

no input edges, those containing ed,1 but not ed,2, those containing ed,2 but not ed,1, and those

containing both ed,1 and ed,2. Simplifying, we obtain the general form of dose-response expressions

for closed and open systems:

RO(d) =
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
, (2)

where k23 := k2 + k3 and k67 := k6 + k7, RO(d) is bounded (the degree of the numerator is not

higher than the degree of the denominator) and of second degree, and the steady-state coefficients

are:

for closed models for open models
k1 = xt

∑
vi∈O(G) aviκvi(G\ed,1\ed,2), k1 =

∑
vi∈O(G) aviκvi(G\ed,1\ed,2),

k2 = xtg2(p)
∑

vi∈O(G) aviκvi(G\ed,1/ed,2), k2 = g2(p)
∑

vi∈O(G) aviκvi(G\ed,1/ed,2),
k3 = xtg1(p)

∑
vi∈O(G) aviκvi(G/ed,1\ed,2), k3 = g1(p)

∑
vi∈O(G) aviκvi(G/ed,1\ed,2),

k4 = xtg1(p)g2(p)
∑

vi∈O(G) aviκvi(G/ed,1/ed,2), k4 = g1(p)g2(p)
∑

vi∈O(G) aviκvi(G/ed,1/ed,2),

k5 = κ(G\ed,1\ed,2), k5 = κv∅(G\ed,1\ed,2),
k6 = g2(p)κ(G\ed,1/ed,2), k6 = g2(p)κv∅(G\ed,1/ed,2),
k7 = g1(p)κ(G/ed,1\ed,2), k7 = g1(p)κv∅(G/ed,1\ed,2),
k8 = g1(p)g2(p)κ(G/ed,1/ed,2), k8 = g1(p)g2(p)κv∅(G/ed,1/ed,2).

The spanning tree partitioning determines the graphs contained in the coefficients k, which

can be seen in the tree scheme from Fig. S3. The numerator and denominator polynomials in the

dose variable d can be at most of degree two, where the highest degree corresponds to spanning

trees containing both ed,1 and ed,2. We see that even though the degree of the polynomials grows

by one, the number of graphs to consider grows exponentially. In the general case, for an input

acting on w edges simultaneously, the numerator and denominator are at most of degree w and

the graphs giving rise to the coefficients of the polynomials are 2w and, therefore, the tree scheme

has 2w+1 leaves. Again, it could happen that spanning trees do not exist for some graphs resulting

to simpler, trivial, or unbounded dose-response relationships.
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Derivation of the Differential for Two Dose Edges

We derive the differential for the case when the reference and perturbed dose-response curves are

both generated by functions having the form of Eq. 2.

Hormesis condition. First, we are interested in deriving conditions guaranteeing positivity of

an extremum and thus ensuring that hormesis is present. The steady-state dose-response function

RO(d) could have at most two extrema when varying the dose variable since its first derivative can

become zero for two values of d.

Dd
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
= 0⇔

k5k23 − k1k67 + 2(k4k5 − k1k8)d+ (k4k67 − k8k23)d2
(k5 + k67d+ k8d2)2

= 0.

The denominator of the condition is never zero for positive doses d and ki leading to non-degenerate

systems (not all ki being zero). The doses for which the numerator equals zero are the ones

corresponding to extrema in the dose response, namely:

d(1,2) =
k1k8 − k4k5 ±

√
U

k4k67 − k8k23
,

where U = (k1k8 − k4k5)2 + (k1k67 − k5k23) (k4k67 − k8k23) and k4k67 6= k8k23.

Of interest are only the positive real roots since they are the extrema of the dose response

relationships we study. The two roots can never be positive at the same time for non-negative values

of the coefficients ki, which means that the dose-response curves can be at most biphasic. This

fact becomes clear after employing Vieta’s formulas for second degree polynomials and requiring

that the sum and the product of the roots are positive, namely:

d(1) + d(2) =
−2(k4k5 − k1k8)
k4k67 − k8k23

> 0 ∧ d(1)d(2) =
k5k23 − k1k67
k4k67 − k8k23

> 0,

which is equivalent to:

(
k23
k67

<
k4
k8

<
k1
k5
∨ k1
k5

<
k4
k8

<
k23
k67

)
∧
(
k1
k5

<
k1
k5

<
k4
k8
∨ k4
k8

<
k23
k67

<
k1
k5

)
.

It is evident that for non-negative coefficients ki there exists no solution for the logical expression

of the set of inequalities. More precisely, according to Vietta’s formula sum condition the ratio k4
k8

12



needs to have a value between the ratios k1
k5

and k23
k67

, and according to Vietta’s product condition

k4
k8

has to be either the largest or the smallest among the ratios. The two conditions can not hold

simultaneously and thus the two roots can not be positive at the same time.

Two possibilities to obtain biphasic dose-response remain:

Condition 1: One root is negative and the other one is positive, yielding the condition:

k4k67 6= k8k23 ∧ d(1)d(2) =
k5k23 − k1k67
k4k67 − k8k23

< 0,

which implies U > 0.

Condition 2: One root is positive and the other one is zero, translating to the condition:

k5k23 = k1k67 ∧ k4k5 6= k1k8 ∧ k4k67 6= k8k23 ∧ d =
−2(k4k5 − k1k8)
k4k67 − k8k23

> 0

The dose-response coefficients are non-negative, which means that they could also be zero.

However, to have bounded dose-response curves we require that k5 6= 0 ∧ k8 6= 0.

Let us first examine the case when k67 = 0. Then Condition 1 is satisfied when k5k23
−k8k23 < 0

or equivalently when k23 6= 0, while Condition 2 is never satisfied. In the case when k67 6= 0,

Condition 1 could equivalently be written as:

k23
k67

<
k4
k8
≤ k1
k5
∨ k23
k67

<
k1
k5

<
k4
k8
∨ k4
k8
≤ k1
k5

<
k23
k67
∨ k1
k5

<
k4
k8

<
k23
k67

,

while Condition 2 again never holds.

We summarize the derived necessary and sufficient conditions for having a positive extremum

of the dose-response function, which we call the Hormesis condition as:

(k67 = 0 ∧ k23 6= 0) ∨
(
k67 6= 0∧

(
k23
k67

<
k4
k8
≤ k1
k5
∨ k23
k67

<
k1
k5

<
k4
k8
∨ k4
k8
≤ k1
k5

<
k23
k67
∨ k1
k5

<
k4
k8

<
k23
k67

))
.

Note that even when the Hormesis condition is satisfied the biphasic behavior might be weak

and experimentally not evident.

Derivation of the differential. After having derived the Hormesis condition, we can proceed

to derive the differential following the procedure:

13



(i) Subdivide the curves into monotone segments.

Combining the critical points at zero and infinite dose with the positive extremum we obtain

a set of critical points E :

E =

{
ε1 =

(
0,
k1
k5

)
, ε2 =

(
k1k8 − k4k5 ±

√
U

k4k67 − k8k23
,
k23k67 − 2(k1k8 + k4k5)± 2

√
U

k267 − 4k5k8

)
, ε3 =

(
∞, k4

k8

)}
,

where the sign in front of
√
U in ε2 depends on the steady-state coefficients:

k67 = 0 ∧ k23 6= 0∧ : −,

k67 6= 0 ∧
(
k23
k67

< k4
k8
≤ k1

k5
∨ k23

k67
< k1

k5
< k4

k8

)
: +,

k67 6= 0 ∧
(
k4
k8
≤ k1

k5
< k23

k67
∨ k1

k5
< k4

k8
< k23

k67

)
: −.

When the Hormesis condition is satisfied for a dose-response curve all three critical points

are relevant (depending on the conditions, the roots with the appropriate sign have to be

selected), thus the curve has two segments – σ1 (defined by ε1 and ε2) and σ2 (defined by

ε2 and ε3). When the Hormesis condition does not hold, we consider only ε1 and ε3 which

define the single segment σ. In general, the values of the coefficients ki are not known and

the number of critical points cannot be determined unambiguously.

(ii) Decide which segments to compare.

Thus, three cases, depending on the number of segments in the compared reference and

perturbed curves need to be considered (assuming, w.l.o.g., that the reference curve has less

or equal critical points than the perturbed one), namely:

Case 1: The Hormesis condition holds neither for the reference nor for the perturbed curve.

Hence, the single segment σα of the reference is mapped to the single segment σβ of

the perturbed curve, i.e. n = m = 2:

M(i = 1; Σα,Σβ) : σα → σβ.

Case 2: The Hormesis condition does not hold for the reference but holds for the perturbed

curve.

Hence, the single segment σα of the reference curve is mapped to the two segments σβ1

14



and σβ2 of of the perturbed curve, i.e. n = 2 and m = 3:

M(i = 1; Σα,Σβ) : σα1 → σβ1 , M(i = 2; Σα,Σβ) : σα1 → σβ2 .

Case 3: The Hormesis condition holds for both the reference and the perturbed curve.

Hence, the two segments σα1 and σα2 of the reference curve are mapped to the two

segments σβ1 and σβ2 of of the perturbed curve, i.e. n = m = 3:

M(i = 1; Σα,Σβ) :

 σα1 → σβ1

σα2 → σβ2

.

(iii) Determine corresponding points in compared pairs of segments.

The correspondence between points for the three cases is obtained by plugging in the appro-

priate arguments in the proportion function. The derivation of the related dose components

is, however, more involved since the inverses of the segments R(d) have a more complicated

form. In the general case, the parametrised dose component inside a segment (h 6= 0, 1)

reads:

d
(1,2)
σ,h =

k67ζ (h;x, y)− k23 ±
√
W (h;x, y)

2 (k4 − k8ζ (h;x, y))
,

where W (h;x, y) = (k67ζ (h;x, y)− k23)2−4 (k1 − k5ζ (h;x, y)) (k4 − k8ζ (h;x, y)), d
(1)
σ,h is the

solution with +
√
W (h;x, y) and d

(2)
σ,h with −

√
W (h;x, y).

The relevant solution should be positive for all h ∈ (0, 1) and belong to the dose interval of

definition of the desired segment σ (defined by the doses corresponding to x and y) when

W (h;x, y) ≥ 0. Solution positivity leads to:

k23
k67
∓
√
W (h;x, y)

k67
> ζ (h;x, y) >

k4
k8
∨ k23
k67
∓
√
W (h;x, y)

k67
< ζ (h;x, y) <

k4
k8
.

(iv) Quantify the displacement of corresponding points.

Depending on the particular mapped segments σαi and σβj , the differential expressions πd and

πR have the general form:

πd (h) = log10
kβ4 − kβ8 ζ

(
h;xβ, yβ

)
kα4 − kα8 ζ (h;xα, yα)

kα67ζ (h;xα, yα)− kα23 ±
√
W β(h;xα, yα)

kβ67ζ (h;xβ, yβ)− kβ23 ±
√
W β(h;xβ, yβ)

and
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πR (h) = ζ (h;xα, yα)− ζ
(
h;xβ, yβ

)
.

Note that when h = 0 or h = 1 the dose differential is derived by mapping the dose compo-

nents of the respective critical points.

In particular, the differential expressions are different with respect to the number of segments

in each dose-response curve:

Case 1: The condition for positivity of the dose component solutions for all h ∈ (0, 1) when

W (h; k1k5 ,
k4
k8

) ≥ 0 can be reduced to:

k23
k67

+

√
W (h; k1k5 ,

k4
k8

)

k67
> h

k1
k5

+(1−h)
k4
k8

>
k4
k8
∨ k23
k67
−

√
W (h; k1k5 ,

k4
k8

)

k67
< h

k1
k5

+(1−h)
k4
k8

<
k4
k8
,

which corresponds to the non-hormesis conditions k4
k8
≤ k23

k67
≤ k1

k5
and k1

k5
≤ k23

k67
≤ k4

k8
,

and the solutions d
(2)
σ,h and d

(1)
σ,h, respectively.

To see why, let us show that k23
k67
−
√
W (h;

k1
k5
,
k4
k8

)

k67
> ζ

(
h; k1k5 ,

k4
k8

)
> k4

k8
never holds. We

rearrange the inequality to:

k23
k67
−ζ
(
h;
k1
k5
,
k4
k8

)
>

√√√√(k23
k67
− ζ

(
h;
k1
k5
,
k4
k8

))2

− 4

(
k1 − k5ζ

(
h; k1k5 ,

k4
k8

))(
k4 − k8ζ

(
h; k1k5 ,

k4
k8

))
k267

,

and notice that due to the non-hormesis, k4
k8

< ζ
(
h; k1k5 ,

k4
k8

)
< k1

k5
, which means the

inequality never holds since

(
k1 − k5ζ

(
h;
k1
k5
,
k4
k8

))(
k4 − k8ζ

(
h;
k1
k5
,
k4
k8

))
< 0.

The considerations are analogous for the other inequality in the positivity condition.

This simplification shows that, depending on which positivity condition is met after α

and β specifics are applied, only one solution dσ,h is relevant for the differential.

Now, ignoring the trivial case when k1
k5

= k4
k8

for any differential structure and value of

the differential parameters, the dose and the response component mappings read:

d
(1,2),α
σ,h 7→ d

(1,2),β
σ,h and h

kα1
kα5

+ (1− h)
kα4
kα8
7→ h

kβ1

kβ5
+ (1− h)

kβ4

kβ8
.

In this case, we have already expressed the relevant critical points through the dose-
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response coefficients. Thus we can write the differential as:

πd (h) = log10
kβ8
kα8

kβ4 k
β
5 − kβ1 kβ8

kα4 k
α
5 − kα1 kα8

kα5 k
α
8

(
−kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)
)

+ kα67 (hkα1 k
α
8 + (1− h)kα4 k

α
5 )

kβ5 k
β
8

(
−kβ23 ±

√
W (h;

kβ1
kβ5
,
kβ4
kβ8

)

)
+ kβ67

(
hkβ1 k

β
8 + (1− h)kβ4 k

β
5

)
and

πR (h) = h

(
kα1
kα5
− kβ1

kβ5

)
+ (1− h)

(
kα4
kα8
− kβ4

kβ8

)
.

Note that the sign in front of the square root can be determined only by the positivity

conditions, i.e. if it is not known which one is satisfied for the reference and perturbed

curve all combinations have to be considered.

Case 2: The dose and response differential for the different segment mappings in this case

are:

πd (h; i = 1) = log10

kβ4 − kβ8 ζ
(
h;

kβ1
kβ5
, Rβε2

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

) kα67ζ
(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ

(
h;

kβ1
kβ5
, Rβε2

)
− kβ23 ±

√
W (h;

kβ1
kβ5
, Rβε2)

and

πR (h; i = 1) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h;
kβ1

kβ5
, Rβε2

)
,

πd (h; i = 2) = log10

kβ4 − kβ8 ζ
(
h; Rβε2 ,

kβ4
kβ8

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

) kα67ζ
(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ

(
h; Rβε2 ,

kβ4
kβ8

)
− kβ23 ±

√
W (h; Rβε2 ,

kβ4
kβ8

)

and

πR (h, i = 2) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h; Rβε2 ,

kβ4

kβ8

)
.

Choosing the relevant solution from d
(1,2)
σ,h when deriving the dose differential depends

on the Hormesis condition and the particular segment (the solution needs to be in the

dose domain of the segment).
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Case 3: The dose and response differential for the corresponding segments are:

πd (h) =



log10

kβ4−k
β
8 ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
kα4−kα8 ζ

(
h;
kα1
kα5
,Rαε2

) kα67ζ

(
h;
kα1
kα5
,Rαε2

)
−kα23±

√
W (h;

kα1
kα5
,Rαε2 )

kβ67ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
−kβ23±

√
W (h;

k
β
1

k
β
5

,Rβε2 )

log10

kβ4−k
β
8 ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
kα4−kα8 ζ

(
h;Rαε2 ,

kα4
kα8

) kα67ζ

(
h;Rαε2 ,

kα4
kα8

)
−kα23±

√
W (h;Rαε2 ,

kα4
kα8

)

kβ67ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
−kβ23±

√
W (h;Rβε2 ,

k
β
4

k
β
8

)

,

and

πR (h) =


ζ
(
h;

kα1
kα5
, Rαε2

)
− ζ

(
h;

kβ1
kβ5
, Rβε2

)
ζ
(
h; Rαε2 ,

kα4
kα8

)
− ζ

(
h; Rβε2 ,

kβ4
kβ8

) .

Again, the choice of an appropriate solution from d
(1,2)
σ,h has to comply with the Hormesis

condition and the relevant segment.

It is evident that the obtained differential expressions have a more complicated form than in

the case for a single dose edge. Also, multiple conditions depending on the ratios between the dose-

response coefficients have to be considered. However, the expressions are symbolic and symbolic

analysis can be applied.

Two Dose Edge Example: Insulin Receptor Life-Cycle Model

Robust Hormetic Response

For active species corresponding to the vertices O = {vRLp, vRLpi} in the more detailed insulin

receptor life-cycle model from Fig 6A we obtain the steady-state coefficients (in polynomial form):

k1 = 0,

k23 = r1r3(r5 + r6 + r7)r9r11(r13(r15 + r16) + r14r16),

k4 = 0,

k5 = (r2 + r3)r8r10(r4(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k67 = r10((r2 + r3)(r6 + r7)r8r12r14r16 + r1r3r5r7(r13(r15 + r16) + r14r16)),

k8 = r1r3(r6 + r7)r10r12r14r16.

We can see that the Hormesis condition k67 6= 0 ∧ k4
k8
≤ k1

k5
< k23

k67
(k67 6= 0 ∧ 0 ≤ 0 < k23

k67
) holds

for all possible positive values of the reaction rate constants. Thus the model generates a robust
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Figure S4: The extended insulin model with two dose edges with output vertices O = {vRL, vRLp}
exhibits parameter-dependent hormetic dose-response. (A) Graph corresponding to the subsystem
of insulin receptor binding, recycling, and phosphorylation from (3) with notation as in Fig. 3A;
differential parameters are shown in red. (B) Sigmoid reference (dashed red) and hormetic per-

turbed (blue) dose-response curves. The half-maximal response points (h = 0.5) for which the dose
differential was analyzed are marked with a red and a blue dot on the reference and the first segment
of the perturbed curve, respectively. The differential parameters were fixed to rα1 = 0.03nM−1s−1,

rα12 = 0.1nM−1s−1, rα2 = 0.1 s−1, rα13 = 0.001 s−1, rβ1 = 0.002nM−1s−1, rβ12 = 0.001nM−1s−1,

rβ2 = rβ13 = 0.01 s−1. Other parameters were fixed to r9 = 0.5 s−1, r4 = r6 = r14 = 0.2 s−1,
r3 = r7 = r8 = r15 = r10 = r11 = r16 = 0.1 s−1, and r5 = 0.01 s−1.

hormetic response.

Parameter-dependent Hormetic Response

Here, we demonstrate how to analyze the differential of models generating dose-response curves

with shapes depending on parameter values. Let us consider the more detailed model for insulin

receptor trafficking (Fig. S4A). We assume that we measure the singly ligand-bound receptor

species on the cell surface, RL and RLp, thus O = {vRL, vRLp}, and obtain two dose-response

curves by stimulating the system with two ligands that differ in their affinity to the receptor—

ligand α with reaction rate constants rα1 , rα2 , rα12, r
α
13, and ligand β with rβ1 , rβ2 , rβ12, r

β
13. Suppose

that the dose-response curve for α (reference) is sigmoidal and the curve for β (perturbed) is

hormetic (biphasic) (differential as in Case 2 ). We aim to derive the dose differential between the

reference curve and the first segment of the perturbed curve at h = 0.5 as well as the response

differential between the reference curve and the second segment of the perturbed curve at d→∞,

i.e. h = 0.

Steady-state coefficients. For conciseness, we analyze the steady-state coefficients in polyno-

mial form instead of graph form:
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k1 = 0,

k23 = r1r9r11((r3 + r4)(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k4 = r1(r6 + r7)r9r11 r12 r14r16,

k5 = (r2 + r3)r8r10(r4(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k67 = r10((r2 + r3)(r6 + r7)r8 r12 r14r16 + r1r3r5r7(r13(r15 + r16) + r14r16)),

k8 = r1r3(r6 + r7)r10 r12 r14r16,

where the differential parameters are marked in red.

We can use the Hormesis condition to find parametrizations such that the reference dose-

response curve is sigmoidal, whereas the perturbed curve is hormetic (Fig. S4B). Due to k1 = 0,

the only non-hormesis condition holding for the reference curve α is k1
k5

= 0 ≤ kα23
kα67
≤ kα4

kα8
and the only

Hormesis condition holding for the perturbed curve β is k1
k5

= 0 <
kβ4
kβ8
<

kβ23
kβ67

. This indicates that the

perturbation should flip the inequality sign between the non-zero steady-state coefficient ratios.

Also noting that
kα4
kα8

=
kβ4
kβ8

, these conditions enforce the following condition on the parameters:

rα1 r3((r3 + r4)(r6 + r7) + r5r7)(r
α
13(r15 + r16) + r14r16)

(rα2 + r3)(r6 + r7)r8rα12r14r16 + rα1 r3r5r7(r
α
13(r15 + r16) + r14r16)

≤ 1

<
rβ1 r3((r3 + r4)(r6 + r7) + r5r7)(r

β
13(r15 + r16) + r14r16)

(rβ2 + r3)(r6 + r7)r8r
β
12r14r16 + rβ1 r3r5r7(r

β
13(r15 + r16) + r14r16)

. (3)

This implies that the values of r9, r10, and r11 (free receptor externalisation, degradation, and

synthesis, respectively) do not affect whether or not the response is hormetic.

Derivation of the differential.

(i) Subdivide the curves into monotone segments.

We derive the two critical points of the non-hormetic reference curve as:

Eα =

{
εα1 = (0, 0) , εα2 =

(
∞, r9r11

r3r10

)}
.

When deriving the second critical point of the perturbed hormetic curve we comply with the
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Hormesis condition by choosing the solution that contains −
√
Uβ, leading to:

Eβ =

{
εβ1 = (0, 0) ,

εβ2 =


rβ13(r15 + r16) + r14r16

rβ12r14r16(r6 + r7)

rβ12r14r16r8(r
β
2 + r3)(r4(r6 + r7) + r5r7) +

√
Uβ

rβ1 r3(r3 + r4)(r
β
13(r15 + r16) + r14r16)− rβ12r14r16r8(rβ2 + r3)

,

r11r
β
1 r9(r

β
13(r15 + r16) + r14r16)

r10

(r7(r3 + r4 + r5) + r6(r3 + r4))
(
rβ12r14r16r8(r

β
2 + r3)(r6 + r7)

+ rβ1 r3r5r7(r
β
13(r15 + r16) + r14r16)

)
− 2(r6 + r7)

√
Uβ

− 2rβ12r14r16r8(r
β
2 + r3)(r6 + r7)(r4(r6 + r7) + r5r7)(

rβ12r14r16r8(r
β
2 + r3)(r6 + r7) + rβ1 r3r5r7

(
rβ13(r15 + r16)

+r14r16
))2
− 4rβ12r14r16r

β
1 r3r8(r

β
2 + r3)(r6 + r7)

(
rβ13(r15 + r16)

+ r14r16
)
(r4(r6 + r7) + r5r7)


,

εβ3 =

(
∞, r9r11

r3r10

)}
,

where Uβ denotes Uβ with squared factors taken out of the square root and has the form:

Uβ = rβ12r14r16r3r8(r
β
2 + r3)(r4(r6 + r7) + r5r7)

(
− rβ12r14r16r8(rβ2 + r3)(r6 + r7)

+ rβ1 (r3 + r4)(r
β
13(r15 + r16) + r14r16)(r7(r3 + r4 + r5) + r6(r3 + r4))

)
.

This leads to the following observations: (i) the first and last critical points of the reference

and perturbed curves are identical; (ii) the last critical points depend only on the four reaction

rates r3, r9, r10, and r11; and (iii) the dose component of the second critical point of the

perturbed system εβ2 does not depend on r9, r10, and r11.

(ii) Decide which segments to compare.

See Case 2 of the two dose edge differential derivations.

(iii) Determine corresponding points in compared pairs of segments.

See the general two dose edge differential derivations.

(iv) Quantify the displacement of corresponding points.

It is straightforward to see that the response differential between the reference curve and

the second segment of the perturbed curve at d → ∞ is always zero, independent of the
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magnitude of the perturbation and of the reaction constants’ values:

πR (h = 0, i = 2) = ζ

(
h = 0; 0,

kα4
kα8

)
− ζ

(
h = 0; Rβε2 ,

kβ4

kβ8

)
=
r9r11
r3r10

− r9r11
r3r10

= 0.

The expressions in the previous section also allow us to identify feasible perturbations to alter

the dose-response behavior. For example, if we were to design a new perturbation, different

from applying a ligand with modified affinity, that again leads to a hormetic perturbed dose-

response, but to a non-zero response differential, it has to target parameters r9, r11,r3, or

r10. However, since hormesis is not affected by r9, r11, and r10, r3 need to be perturbed.

To find the dose differential between the reference curve and the first segment of the per-

turbed curve with h = 0.5, we need to select the appropriate solution from d
(1,2)
σ,h . The

relevant solution for the reference curve is d
(1)
σ,h since it corresponds to the non-hormesis con-

dition k1
k5
≤ k23

k67
≤ k4

k8
. Furthermore, when choosing the relevant solution, there are two

cases of interest: (i) when the solutions have different signs we take the larger (positive)

solution, and (ii) when the two solutions are positive we consider the smaller solution, which

corresponds to the first segment of the hormetic curve. According to Vietta’s formulas, the so-

lutions have different signs when
−kβ5 ζ(h;x,y)
kβ4−k

β
8 ζ(h;x,y)

< 0, which translates to kβ4 − kβ8 ζ (h;x, y) > 0,

indicating that the relevant larger solution is d
(1)
σ,h. Accordingly, both solutions are posi-

tive when −kβ23−k
β
67ζ(h;x,y)

kβ4−k
β
8 ζ(h;x,y)

> 0 and
−kβ5 ζ(h;x,y)
kβ4−k

β
8 ζ(h;x,y)

> 0, implying kβ4 − kβ8 ζ (h;x, y) < 0 and

kβ23− kβ67ζ (h;x, y) > 0. This satisfies the Hormesis condition and settles the smaller positive

solution to be d
(1)
σ,h again.

Thus, we select the solution d
(1)
σ,h for the reference and the perturbed curve, which gives:

πd

(
h =

1

2
; i = 1

)
= log10

2kβ4 − kβ8 Rβε2
kα4 k

α
8

kα4 k
α
67 − 2kα23k

α
8 + 2kα8

√
W (12 ; 0,

kα4
kα8

)

kβ67R
β
ε2 − 2kβ23 + 2

√
W (12 ; 0, Rβε2)

,

with W (12 ; 0, y) =
(
k67y
2 − k23

)2
+ k5y (2k4 − k8y).

After substituting the steady-state coefficients, we find the symbolic expression for the dose

differential. By looking at the greatest common divisor of the separate terms in the numerator

and denominator of the expression, again the reaction rate constants r9, r10, and r11 cross

out. Therefore, both the dose and the response differential are invariant with respect to these

parameters.
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Figure S5: Numerical analysis of the two dose edge insulin model from Fig. S4A. (A) Profile bounds
(blue – upper inner bound, green – lower inner bound) superimposed on the profile differential
distribution (density) for the free parameters r3 and r4. (B) Marginal probability distribution
of the dose differential magnitude. Densities were obtained using the values for the differential
parameters from Fig. S4B and uniformly sampling the remaining n parameters from the parameter
box I = [10−5, 1]n; note that n = 12 in (B) and n = 11 in (A) since one additional parameter is
fixed at a time.

Numerical analysis. For the insulin model with two dose edges (Fig. S4A), if we assume only the

affinities of the two ligands to be known parameters, uniform sampling of the dose differential yields

a few magnitudes of variability (D̂πd = [−2.8, 3.1]) but a small region of most probable values with a

marginal density peaked around −0.25 (Fig. S5B). The profile differential distributions in Fig. S5A

show how the free parameters r3 (receptor phosphorylation) and r4 (receptor dephosphorylation)

affect the bounds as well as the peak of the marginal distribution, revealing their potential to

control the differential.
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