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ABSTRACT In pharmacology and systems biology, it is a fundamental problem to determine how biological systems change
their dose-response behavior upon perturbations. In particular, it is unclear how topologies, reactions, and parameters (differ-
entially) affect the dose response. Because parameters are often unknown, systematic approaches should directly relate
network structure and function. Here, we outline a procedure to compare general non-monotone dose-response curves and sub-
sequently develop a comprehensive theory for differential dose responses of biochemical networks captured by non-equilibrium
steady-state linear framework models. Although these models are amenable to analytical derivations of non-equilibrium steady
states in principle, their size frequently increases (super) exponentially with model size. We extract general principles of differ-
ential responses based on a model’s graph structure and thereby alleviate the combinatorial explosion. This allows us, for
example, to determine reactions that affect differential responses, to identify classes of networks with equivalent differential,
and to reject hypothetical models reliably without needing to know parameter values. We exemplify such applications for models
of insulin signaling.
INTRODUCTION
Dose-response curves are a classical tool for relating the
dose of a biochemically active agent, such as a ligand,
enzyme, drug, or toxicant, to its biochemical (e.g., receptor
activation in a cell), physiological (concentration of a chem-
ical in a body compartment), or even population-level (mor-
tality) effect (1). Experimentally obtained dose-response
curves frequently associate a given dose with its time-inde-
pendent, steady-state effect and they often have a sigmoid
shape when the dose is plotted in log scale (see Fig. 1). Their
standard analysis aims to retrieve important characteristics
such as the baseline and maximal responses as well as the
dose that produces a response halfway between baseline
and maximum as a measure of the agent’s potency, alterna-
tively denoted as effective concentration ðEC50Þ, inhibitory
concentration ðIC50Þ, or infectious dose ðID50Þ. Such mea-
sures allow one to analyze relative differences between a
reference and a perturbed dose-response curve, which we
call a ‘‘differential response’’ (or ‘‘differential’’ for short).
One can, for example, compare how dose affects different
system responses to find an optimal trade-off between ther-
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apeutic efficiency and toxicity via the therapeutic index (2).
Natural systems also exploit differential responses. For
example, insulin receptors recognize various natural
ligands, such as insulin and insulin-like growth factor 1
(IGF-1), that have different binding affinities to the receptor
to trigger appropriate differential (metabolic or mitogenic)
responses (3).

More generally, it is often of interest to understand how
perturbations such as mutations, drugs, or natural variations
affect dose-response relations. Shifts in quantities such as
the EC50 easily capture the differential between sigmoid
dose-response curves. However, biphasic dose-response
curves with low-dose stimulation and high-dose inhibition,
so-called hormetic curves, have received renewed attention
(4–6), and non-monotonic dose-response curves with
several peaks have been experimentally obtained (7). A
recent study of drug responses in cancer cells illustrates
that ‘‘non-standard’’ dose-response relations occur in
substantial numbers: among 11,650 experimental dose-
response curves, 28% were best described by a non-mono-
tonic model, and 12% required two inflection points (6).
However, it is unclear how to compare dose-response curves
of (potentially) any shape with each other (see Fig. 1).

Like any perturbation experiment, differential analysis
can probe the functioning of a biological system to identify
the underlying mechanisms of the system’s (steady-state)
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FIGURE 1 Relations between sigmoid reference (red, dashed line), per-

turbed sigmoid (blue, solid line), and hormetic (orange, dash-dotted line)

dose-response curves and hypothetical experimental data (circles) and fitted

empirical models (lines). When perturbations preserve the shape of the

dose-response curve (blue, solid line versus red, dashed line), the effect

of a perturbation can be quantified by the shifts in baseline response and

maximal response, and by the difference in the dose required for half-

maximal response, as indicated by blue arrows. Analogously, we quantify

the differential in the dose (pd , green) and the response ðpRÞ components

via the distance between points on a reference curve and points on a per-

turbed curve that have the same proportion of response between the mini-

mum ðh ¼ 1Þ and maximum (h ¼ 0; correspondence indicated by blue

arrows). As indicated by the question mark, such a quantification is not

straightforward for dose-response curves with different shapes. To see

this figure in color, go online.
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behavior. However, relating the observed effects to
biochemical mechanisms is a key open challenge. Mathe-
matical models in dose-response analysis are frequently
empirical (for data interpolation to estimate the characteris-
tics described above), and not mechanistic in the sense
of incorporating (hypothesized) relationships between
biochemical entities that give rise to the experimental
data. There exists no comprehensive mechanistic model-
based theory to describe differential responses, despite their
fundamental nature and importance in all fields of biology.
This is not surprising: many relevant biological network
models are non-linear and cannot be analyzed symbolically
for non-trivial network sizes to derive design principles.
Thus, the characterization of differential responses has to
resort to numerical simulations that depend on often un-
known network structures and parameter values. Current
parameter-free methods such as chemical reaction network
theory, which uses the network (model) structure to obtain
a qualitative understanding of biological systems by deter-
mining their capabilities in terms of number of steady states
(8,9), are not directly applicable to differential responses,
because we are interested in quantitative features (e.g., shifts
in EC50).

To tackle such limitations, and to extract general princi-
ples of biological systems, we concentrate on models in
the graph-theoretical ‘‘linear framework’’ introduced in
724 Biophysical Journal 114, 723–736, February 6, 2018
(10), which we call ‘‘linear framework models’’. These
models represent linear molecular-state transitions but can
also explicitly account for certain non-linear kinetics (10).
They can be interpreted as deterministic (linear ordinary dif-
ferential equation (ODE), or linear algebraic for the steady
state) or stochastic (master equations of Markov processes)
models of biochemical systems (11). The ‘‘linear frame-
work’’ has provided multiple promising applications
(12–14) and it unifies results across many biological areas
such as enzyme kinetics, G-protein-coupled receptors, and
gene regulation (10). Importantly, the framework connects
the symbolic derivation of steady-state expressions to
combinatorial objects on graphs (10). This relation between
network function and structure makes the framework
appealing to analyze principles of differential responses.

Linear framework models result from demonstrated or,
more frequently, assumed timescale separation, where a
part of a biochemical system reaches a steady state because
it operates much faster than the rest of the system (15).
Dose-response analysis with mechanistic models, for
instance in pharmacology, often assumes that the system
is at thermodynamic equilibrium (1). There, the principle
of detailed balance imposes structural (all reactions must
be microscopically reversible) and parametric (the so-called
‘‘cycle condition’’) constraints on linear framework models.
It leads to simple ‘‘history-independent’’ equilibrium deriva-
tions that contain only products of equilibrium constants
along any path in the model graph (10). However, for sys-
tems that dissipate energy, such as cell signaling pathways
and eukaryotic gene regulation, this formalism does not
apply. Energy dissipation keeps systems away from equilib-
rium, thus abolishing detailed balance. As a result, non-
equilibrium steady states become ‘‘history dependent’’ and
algebraically substantially more complex (14). A paramount
challenge in working with non-equilibrium steady states of
linear framework models symbolically is their frequently
(super)exponentially growing size with model size—mak-
ing even apparently ‘‘small’’ systems practically intractable.

Here, we develop a comprehensive theory and practically
scalable computational methods for studying non-equilib-
rium steady-state differential dose-response relationships
to pinpoint the mechanisms leading to experimentally
observed behaviors. We extend the classic comparison of
sigmoid dose-response curves and formally define a general
notion of the differential. We then exploit connectivity prop-
erties of directed graphs representing linear framework
models to address challenges such as determining the reac-
tions that affect differential responses, identifying equiva-
lence classes of networks according to their differential,
and reliably rejecting hypothetical models without needing
to know parameter values. Specifically, the theory helps
determine which reactions take part in the differential and
how perturbations such as variation of parameter values, de-
letions and additions of states and reactions affect the differ-
ential. In our approach, realistic practical applications are
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possible, because we do not actually need to derive com-
plete steady-state expressions for quantitative and qualita-
tive symbolic analysis. Our computationally efficient
graph algorithms (16; unpublished data) yield compact, fac-
torized steady-state expressions. We illustrate the applica-
tion of the framework for insulin signaling, covering
aspects such as model building and analysis, model rejec-
tion, experimental design, and (numerical) bounds on differ-
ential dose-response relations.
MATERIALS AND METHODS

Linear framework models

We focus on the deterministic interpretation of linear framework models,

that is, on biochemical reaction networks governed by Laplacian dynamics

and modeled by systems of linear ODEs. Consider the example network in

Fig. 2 A, in which all reactions follow first-order mass-action kinetics. It

comprises three species and four reactions: a receptor, R, can transition

to (from) its ligand-bound state, RL, with rate constant r1 ðr2Þ, or the recep-
tor can become irreversibly phosphorylated as RLp with rate constant r3,

and RLp can transition to R with rate constant r4. This system is a simple

model of insulin receptor activation, and its dynamics can be expressed as

the ODE system

d

dt

0@ xR
xRL
xRLp

1A ¼
0@�r1 r2 r4

r1 �ðr2 þ r3Þ 0

0 r3 �r4

1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L

0@ xR
xRL
xRLp

1A;

(1)

where x denotes the concentration of the respective species in the subscript

and L is called the Laplacian matrix of the system.

The dynamics of linear framework models can be represented as a

diffusion process on directed graphs corresponding to their reaction

schemes. Formally, a simple directed graph, G ¼ ðV;EÞ, consists of a

set of vertices, VðGÞ, and a set of edges (ordered pairs of distinct
A

B

C

D E F
vertices), EðGÞ; it has no self loops and no multiple parallel edges. For

conciseness, we use ‘‘graph’’ as shorthand for ‘‘directed graph’’

throughout. Here, we concentrate on linear framework models of biolog-

ical networks corresponding to ‘‘strongly connected’’ graphs, that is,

graphs G in which, for any two distinct vertices u; v˛VðGÞ, there exists

a directed path from u to v and from v to u. For example, the graph in

Fig. 2 A is strongly connected (whereas the graph in Fig. 2 D is not).

Strong connectivity is not a restrictive assumption for our theory, but

rather mirrors the cell signaling models we consider. Note that non-

strongly-connected graphs could emerge during the analysis procedures,

but these are not linear framework models.

We consider the reaction scheme in Fig. 2 A as a labeled graph, G, with

VðGÞ ¼ fvR; vRL; vRLpg, where v denotes the vertex corresponding to the

species in the subscript, and EðGÞ ¼ fvRvRL; vRLvRLp; vRLvR; vRLpvRg.
The reaction rate constants are labels of the corresponding edges in

G. In such a labeled graph G, we can associate each vertex, vi˛VðGÞ,
to a non-negative species concentration xi and each edge to a mass-ac-

tion reaction. Hence, we obtain a dynamical system in which species

concentrations hosted on the vertices of G flow in the direction of the

edges at rates proportional to the concentrations on the edges’ source

vertices.

Proportionality of reaction rates is defined by edge labels, which have

units of inverse time. We denote the label of an edge uv˛EðGÞ by

‘ðuvÞ. For example, ‘ðvRvRLÞ ¼ r1. Edge labels can also host complex

algebraic expressions of species concentrations and kinetic parameters.

They can exactly account for non-linearities, for example, by containing

concentrations of slow species resulting from timescale separation, pro-

vided that the uncoupling condition holds that prohibits concentrations

corresponding to species from VðGÞ in the edge labels (10). Note that

here we mostly take the labels ‘ðeÞ as uninterpreted symbols, that is, we

ignore the algebraic expressions to which they correspond and regard

them as unique edge names. The only exceptions are edges affected by

the dose (of a ligand), because we need explicit dose dependencies to

determine differentials.

Linear framework models can be ‘‘closed,’’ not exchanging matter with

the environment (as in the illustrative example), or ‘‘open,’’ when synthesis

and degradation reactions are present. In general, the dynamics of closed

models can be expressed in the form:

dx

dt
¼ LðGÞx; (2)
FIGURE 2 Example model of insulin receptor

activation. (A) Graph (kinetic scheme) G. (B) All

spanning trees of graph G rooted at each vertex.

(C) The corresponding Kirchhoff polynomial.

(D) The graph obtained by rooting G at vRLp. (E)

The edge-deleted graph, GyvRLvR. (F) The

edge-contracted graph, G=vRLvR. Labels on

vertices denote names of species represented by

them and W denotes a vertex obtained after the

application of graph operations. Gray vertices are

roots of the corresponding spanning tree and of

all spanning trees when rooting a graph, respec-

tively.
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where x ¼ ðx1;.; xnÞT is the vector of species concentrations correspond-

ing to each vertex v1;.; vn˛VðGÞ and LðGÞ is the Laplacian matrix of G,

defined as

LðGÞij ¼
� ‘

�
vjvi
�

if isj;

�
X
rsj

‘
�
vjvr
�

if i ¼ j; (3)

and ‘ðvjviÞ ¼ 0 when vjvi;EðGÞ. In closed models, the total amount of

material xt is conserved and there is a single conservation law,

x1 þ/þ xn ¼ xt. The system reaches a unique stable steady state that

can be derived symbolically for any species from xt and the kernel of the

Laplacian matrix. Analogous definitions for open models can be found in

the Supporting Material, and for more details, proofs, and derivations,

see (10,11,17).
Spanning trees

Non-equilibrium steady states of linear framework models can always be

derived in symbolic form, but, in practice, the length of the symbolic

steady-state expressions grows (super) exponentially with the size of

graph G. To cope with this growth, we introduce concepts intimately con-

nected to both the structure of linear framework models and their steady

states. Namely, a certain class of subgraphs, so-called ‘‘rooted directed

spanning trees,’’ can be used to generate Kirchhoff polynomials (see

next section).

Formally, a graph H is a subgraph of a graph G if VðHÞ4VðGÞ and

EðHÞ4EðGÞ, where every edge in G between vertices in H is also an

edge in H. A strongly connected component (SCC) of G is any largest

(w.r.t. vertex inclusion) strongly connected induced subgraph of G. It

can be shown that no two distinct SCCs can share a vertex, and

thus, the SCCs G1;.;Gk of a graph G induce a unique partition,

VðG1Þ;.;VðGkÞ of VðGÞ. Additionally, for two distinct SCCs Gi and Gj ,

there can be a directed path from Gi to Gj , or from Gj to Gi, but not

both. The existence of such paths between SCCs naturally induces a unique

partial order on the SCCs G1;.;Gk .

A rooted directed spanning tree (spanning tree, for short) A is a sub-

graph of G spanning its vertex set such that a root vertex is reachable

from all vertices along a unique directed path. By sptðGÞ we denote

the set of all spanning trees of G, and by sptyðGÞ the set of all spanning

trees rooted at vertex v. All spanning trees of the example graph are

shown in Fig. 2 B: two spanning trees are rooted at vR, one is rooted at

vRL, and another is rooted at vRLp. Let rt be the graph rooting operation

such that rtyðGÞ is the graph constructed from G by removing all edges

outgoing from v (see Fig. 2 D). All spanning trees of rtyðGÞ are neces-

sarily rooted at v. We will say that a graph G is rooted at a vertex v if

v has no outgoing edges and v is reachable from every other vertex

in G. Observe that sptyðGÞ ¼ sptðrtyðGÞÞ. Note also that a spanning

tree of G exists iff the partial order of the SCCs has exactly one maximal

element (no other SCC is reachable from a maximal SCC). Such an SCC

is called a terminal SCC.
Kirchhoff polynomials and steady states of linear
framework models

A spanning tree A of a graph G with n vertices has n� 1 edges,

e1;.; en�1˛EðGÞ (for a concise notation, we denote edges with the symbol

ewhen not referring to the pairs of vertices defining them). A spanning tree

can also be represented as a monomial ‘ðe1Þ‘ðe2Þ/‘ðen�1Þ in the edge la-

bels ‘ðe1Þ; ‘ðe2Þ;.; ‘ðen�1Þ, when the edge labels are taken as uninter-

preted symbols denoting unique edge names. Correspondingly, one can

represent the set of all spanning trees in G by a homogeneous multivariate

polynomial over the variables ‘ðeiÞ, ei˛EðGÞ. This polynomial is called the

Kirchhoff polynomial, kðGÞ:
726 Biophysical Journal 114, 723–736, February 6, 2018
kðGÞ ¼
X

A˛sptðGÞ

Y
ei˛EðAÞ

‘ðeiÞ:

The Kirchhoff polynomial of the example graph is shown in Fig. 2 C.

Observe that if G is disconnected or has more than one terminal SCC,

then kðGÞ ¼ 0, and if G consists of a single vertex, then kðGÞ ¼ 1.

Kirchhoff polynomials establish a direct connection between model

structure, in terms of spanning trees, and function, in terms of steady-state

expressions. Briefly, the steady state of a linear framework model can be

symbolically obtained from initial conditions and the kernel of the Lapla-

cian matrix by employing Tutte’s Matrix-Tree Theorem (18), which links

the minors of the Laplacian matrix to the spanning trees in the model’s

graph and their representation as Kirchhoff polynomials (see (10,11,17)

for details and proofs).

Here, we are interested in the final results, namely that the steady-state

concentration xSSi of species i in a closed system associated to a vertex vi
can be expressed as a fraction of Kirchhoff polynomials:

xSSi ¼ kviðGÞ
kðGÞ xt; (4)

where we denote the Kirchhoff polynomial of all spanning trees rooted at

vertex v by kvðGÞ ðkvðGÞ is a shorter notation for kðrtyðGÞÞÞ. Thus, the
steady-state concentration of species RLp associated to vertex vRLp in our

example system is (see Fig. 2, B–D)

xSSRLp ¼ kvRLpðGÞ
kðGÞ xt ¼ r1r3

r3r4 þ r2r4 þ r1r4 þ r1r3
xt:

Although these expressions look simple, the number of spanning trees in a

graphG often grows (super) exponentially with the size ofG (19). Symbolic

steady-state expressions of linear framework models as expressed by

Kirchhoff polynomials, therefore, face the problem of combinatorial explo-

sion, which makes manipulation and generation of such expressions

challenging.
Manipulation of Kirchhoff polynomials

The manipulation of combinatorially complex Kirchhoff polynomials

is facilitated by establishing a relation between procedures for their

algebraic simplification and operations on their corresponding graphs

(unpublished data). Graph operations such as edge deletion-contrac-

tion and prime decomposition (16) allow a Kirchhoff polynomial to

be written as a sum and a product, respectively, of other Kirchhoff

polynomials without the need of explicit Kirchhoff polynomial

generation.

For a graph G with e˛EðGÞ and v˛VðGÞ we denote edge deletion by

Gye, i.e., the graph obtained from G by deleting e (see Fig. 2 E for an

application to the example graph). Further, for a graph G and an edge

e ¼ vivj˛EðGÞ, we denote by G=e the edge-contracted graph that is

constructed from G by 1) removing the edge vjvi, if it exists, and all out-

going edges from vi, i.e., viu˛EðGÞ, and 2) fusing vertices vi and vj
into a single new vertex, w (see Fig. 2 F). Edge contractions may

yield graphs with multiple parallel edges between two vertices. We

resolve this by replacing m multiple parallel directed edges

e1; e2;.; em going from u to v with a single edge e ¼ uv such that

‘ðeÞ ¼ ‘ðe1Þ þ ‘ðe2Þ þ.þ ‘ðemÞ.
The classic deletion-contraction formula for an edge e˛EðGÞ partitions

sptðGÞ into two sets, one in which e participates in no spanning trees and

one in which e participates in all spanning trees. Equivalently, it decom-

poses kðGÞ into a sum of Kirchhoff polynomials (20):

kðGÞ ¼ kðGyeÞ þ ‘ðeÞkðG=eÞ: (5)
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We call a Kirchhoff polynomial, P, a ‘‘factor’’ of another Kirchhoff polyno-

mial, Q, if there exists a Kirchhoff polynomial R such that Q ¼ PR.

A Kirchhoff polynomial P that cannot be factorized into non-trivial factors

is called ‘‘prime’’. We extend these definitions to graphs by calling G0 a
component (a prime component) of G if kðG0Þ is a factor (a prime factor)

of kðGÞ. The work in (16) provides graph decomposition rules that corre-

spond to factorization steps of the Kirchhoff polynomial and also gives

necessary and sufficient primality conditions of the resulting factors ex-

pressed by connectivity properties of the corresponding decomposed com-

ponents. In particular, the exhaustive application of two decomposition

rules to a graphG yields in linear time graphs whose Kirchhoff polynomials

are prime factors of the Kirchhoff polynomial of the original G:

kðGÞ ¼
Yn
i¼ 1

kðPiÞ;

where Pi are the prime components of G. A prime component Pi can be

either 1) strongly connected or 2) rooted at v such that Piyv is strongly con-

nected and Pi does not have any non-trivial vertex dominators (using the

definition that a vertex u dominates a vertex w if every path from w to

v goes through u). Note that the prime factorization is conditional on label

uniqueness—when the labels are not unique or contain expressions, the

factorization is not guaranteed to be prime. This is why we regard edge la-

bels as unique uninterpreted symbols when defining Kirchhoff polynomials

on linear framework models. Further, we call an edge e˛EðGÞ a ‘‘prime

bridge’’ if the edge deleted graph Gye has more non-trivial prime compo-

nents than the original graph G. To efficiently manipulate and generate

Kirchhoff polynomials we used the Python package KirchPy (unpublished

data).
RESULTS

Formalizing differential responses

Differentials describe how a perturbation transforms a refer-
ence dose-response curve. For monotone curves, we can
simply quantify this transformation by the difference be-
tween points on the reference and the perturbed curve
with identical percentage of response between baseline
and maximum, such as the distance between EC50 values.
However, there exists no established approach for
comparing dose-response curves of different functional
form (sigmoid or multiphasic). Comparisons are particu-
larly ambiguous when they involve non-monotone curves
(see Fig. 1), but they are essential, because non-monotone
curves have been experimentally observed and receive
increasing attention (4,7).

To provide a general formal procedure for comparison,
let RaðdÞ and RbðdÞ be the functions generating the refer-
ence and the perturbed dose-response curves, respectively.
Here and in the following, the superscripts a and b denote
the specific dissimilar (parametric and structural) features
of the systems generating the two curves. Without explic-
itly specifying a or b, we refer to both identifiers at the
same time. To quantify the differential, we propose the
following procedure (see the Supporting Material for
details):

1) Subdivide the curves into monotone segments. To
obtain monotone segments, we subdivide the dose-
response curves along the dose coordinate at their
critical points, that is, at the doses for which RðdÞ’s first
derivative is zero.

2) Decide which segments to compare. If the curves have
equal numbers of segments, it is reasonable to assume
that the perturbation shifts and scales the segments
such that they can be compared in the order defined by
the critical points: the first segment of RaðdÞ maps to
the first segment in RbðdÞ, and so on. When the per-
turbed curve has more or fewer segments than the refer-
ence curve, and without information about which
segments fuse or split, we compare the segments in all
possible ways while preserving their order. For example,
comparing a sigmoid and a biphasic curve amounts to
mapping the sigmoid to each of the two monotone seg-
ments of the biphasic curve.

3) Determine corresponding points in compared pairs of
segments. As for monotone dose-response curves, we
relate the doses that have the same proportion h,
h˛½0; 1�, of response between the minimal and maximal
response in each pair of segments.

4) Quantify the displacement of corresponding points. We
quantify the displacement between points with identical
proportion of response h for all pairs of mapped seg-
ments. In particular, we calculate the dose differential,
pdðhÞ, and the response differential, pRðhÞ, as the differ-
ence in the dose and the response components of corre-
sponding points:

pdðhÞ :¼ log10
da
h

d
b
h

and pRðhÞ :¼ Ra
h � R

b
h ;

with doses d and responses R. The dose differential is ex-
pressed in log scale to easily identify fold differences. These
quantities have clear biological interpretations. For
example, for corresponding segments, pdðh ¼ 0:5Þ is the
difference between EC50 log values and pdðh ¼ 0Þ is the
difference between maximal responses.

Differentials cannot be obtained in closed form in gen-
eral, but we will show next that one can often determine dif-
ferentials analytically when functional relations between
dose and response originate from steady-state expressions
of linear framework models.
Differential systems

To derive general expressions for the dose ðpdÞ and response
ðpRÞ differentials, we need to define dose, response, and
perturbation in linear framework models (see Materials
and Methods for formal concepts), leading to the notion of
differential linear framework models.

Here, we assume that the dose variable affects one or
more reactions proportionally, which can be interpreted as
an input changing the rate constant gradually, or as an input
species with constant concentration binding to the educt of
Biophysical Journal 114, 723–736, February 6, 2018 727
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the reaction; for example, the effect of a ligand with con-
stant external concentration that binds to a receptor incorpo-
rated in this way via the law of mass action. Formally,
the input dose variable, d, partakes in the mathematical
expressions labeling w edges in the model’s graph G,
IðGÞ :¼ fed;1;.; ed;wg. We call members of the set IðGÞ
‘‘dose edges’’ of G and their labels are expressions propor-
tional to the input dose variable, d:

‘ðed;iÞ ¼ giðpÞd;

where giðpÞ are functions that do not contain d (see Fig. 3 A
for the insulin receptor example in which we assume that the
dose affects receptor-ligand binding).

In our analysis, the response R is a linear combination of
the steady-state concentrations at chosen output vertices
(such as the phosphorylated receptor-ligand complex, RLp,
in Fig. 3 A). The q species eliciting the response are associ-
ated with a set of output vertices OðGÞ :¼ fv1;.; vqg in
closed systems. Then, if we use Eq. 4 to derive a general
expression for the steady-state response of closed models us-
ing Kirchhoff polynomials, kðGÞ, we obtain

ROðGÞ ¼
P

vi˛OðGÞaikviðGÞ
kðGÞ xt;

where aiR0 designates the weight given to the steady-state
concentration associated with vertex vi. The response func-
tion for open models is similar (see the Supporting Mate-
rial). This implies that steady-state dose-response curves
of linear framework models are rational functions of the
dose variable, for example, ROðGÞðdÞ.

Perturbations are any changes in the model structure
(additions and deletions of species and reactions), pa-
rameters (having different values in the reference and
A

B

C
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perturbed model; such parameters we call ‘‘differential
parameters’’), number and position of the edges affected
by the input variable, number and position of the output
vertices, and parametrization of the output function. We
capture these perturbations by defining two linear frame-
work models for a reference (a) and a perturbed (b) con-
dition, each of which consists of a graph, G, a set of
parameters, p (from G’s labels and xt for closed models),
a set of dose edges, I (whose labels contain the dose
variable, d), and a set of output vertices, O, the concen-
trations associated to which are weighted by a to
obtain the observed response R. Formally, a differential
system is then an ordered pair, D ¼ ððGa; pa; Ia;Oa; aaÞ;
ðGb; pb; Ib;Ob; abÞÞ.

We use our example insulin receptor model from Fig. 2 A
to define a first differential system, D (Fig. 3 A). Let the re-
ceptor, R, transition to its ligand-bound state, RL, upon acti-
vation by a ligand with constant concentration d. We
account for the dose variable d in the transition rate by
changing the label of edge vRvRL to r1d. To construct a dif-
ferential Laplacian system, we consider a reference model
with graph topology as the example graph, G, dose edge
ed ¼ vRvRL, i.e., I ¼ fedg with ‘ðedÞ ¼ r1d, a single output
vertex, O ¼ fvRLpg, weighted by 1, and parameters
p ¼ fr1; r2; r3; r4; xtg. The perturbed model is identical to
the reference one, with the exception of the values of param-
eters r1 and r2, which we will denote as ra1 , r

a
2 (rb1 and rb2 ) in

the reference (perturbed) system. These differential param-
eters correspond to stimulation of the system with two
different ligands that have different affinities to the receptor
R, such as insulin and IGF-1. Since reference and perturbed
model are identical except for their differential parameters,
we can illustrate the differential system by a single
graph and highlight the differential parameters as shown
in Fig. 3 A.
FIGURE 3 Differential analysis for the simple

insulin receptor activation model. (A) Graph for

the differential system. The dose edge is marked

by a dashed arrow, red symbols correspond to differ-

ential parameters (those with different values in the

reference and perturbed model), and doubly en-

circled vertices mark the output vertices. (B) Tree

scheme for a general graph G, showing how to

obtain the relevant graphs participating in the coef-

ficients ki of the dose-response relationship in

closed systems (for reference and perturbed models

through the graph operations rooting, deletion, and

contraction). Note that there are also additional

terms contained in the steady-state coefficients.

(C) The tree scheme for decomposition of the insu-

lin receptor activation model. Gray-shaded vertices

denote that the graphs are rooted at them; different

edge colors in the leaves of the tree mark the prime

components (same colormeans same prime compo-

nent also among different graph leaves), and black

edges (when present) are not part of any prime

component. To see this figure in color, go online.
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Symbolic derivation of the differential and its
properties

For tractability, we are first interested in deriving analytical
expressions for the differential of systems with a constant
input that influences exactly one edge proportionally in
both reference and perturbed models, ðIðGÞ ¼ fedg and
‘ðedÞ ¼ gðpÞdÞ, to model, for example, a ligand binding
once to a receptor.

To express the steady-state response, R, explicitly as a
function of the dose variable, d, we apply the deletion-
contraction property from Eq. 5 to partition the set of
spanning trees from the numerator and denominator of the
corresponding rational function into two categories—those
that contain the dose d in one of their labels and those that
do not. This is equivalent to factoring out the edge labels
from the monomials in the corresponding Kirchhoff polyno-
mial that contain the dose variable d. After simplification,
we obtain the general form of dose-response expressions
for models with a graph G:

ROðdÞ ¼ k1 þ k2d

k3 þ k4d
; (6)

where for closed models (see the Supporting Material for
open models),

k1 ¼ xt
X

vi˛OðGÞ
avikviðG\edÞ ;

k2 ¼ xtgðpÞ
X

vi˛OðGÞ
avikviðG=edÞ;

k3 ¼ kðG\edÞ; k4 ¼ gðpÞkðG=edÞ:

We call the ki terms ‘‘steady-state coefficients,’’ although
they are symbolic expressions involving parameters and
Kirchhoff polynomials of specific graphs obtained from G.
The coefficients k might be zero if spanning trees do not
exist in the respective graphs.

How to obtain the relevant graphs participating in the co-
efficients for closed models can be seen in the tree scheme
from Fig. 3 B (see the tree scheme for open models in
Fig. S1), and an application to the example differential sys-
tem can be found in Fig. 3 C. With only one edge containing
the dose d, the numerator and denominator are at most first
degree in d, and thus, the tree schemes in Fig. 3, B and C,
have four leaves. Note that the tree scheme is the same
for the reference and perturbed systems, except for the
differential parameters. The coefficients for the example
are k1 ¼ xtk(rtRLp(G) \ed), k2 ¼ xtr1k(rtRLp(G)/ed), k3 ¼
k(G \ed), and k4 ¼ r1kðG=edÞ. By generating the Kirchhoff
polynomials in the respective graphs, we obtain

k1 ¼ 0; k2 ¼ xtr1r3;

k3 ¼ r4ðr2 þ r3Þ; and k4 ¼ r1ðr3 þ r4Þ:
Following the procedure for deriving the differential expres-
sions pd and pR (for details, see the Supporting Material),
we obtain

pd ¼ log10
ka3 k

b
4

kb3k
a
4

and

pRðhÞ ¼ h

 
ka1
ka3

� kb1
kb3

!
þ ð1� hÞ

�
ka2
ka4

� kb2
kb4

�
:

(7)

When either k1 or k2 is zero, the response differential pR has
a simpler form but the dose differential pd is not affected.
The differential can be degenerate, e.g., when RðdÞ is al-
ways zero, implying that k1 ¼ k2 ¼ 0, or undefined, e.g.,
when RðdÞ is either constant or unbounded, leading to
k3 ¼ 0 or k4 ¼ 0.

The dose differential pd in Eq. 7 depends not on h, k1, and
k2 but on the Kirchhoff polynomials contained in the coeffi-
cients k3 and k4. It is therefore independent of the choice of
output vertices inO, of the vertex weights, a, and of the total
conserved amount, xt, in closed systems (the synthesis reac-
tions, si, in open systems) for the reference and perturbed
models. The dose differential can be simplified to the loga-
rithm of an irreducible fraction by obtaining the prime fac-
torizations of the numerator and denominator and dividing
them by the greatest common divisor, gcdðka3 kb4 ; kb3ka4 Þ.
Then, the necessary and sufficient condition for a reaction
to participate in pd is to be part of a prime component of
the relevant graphs that is different in the reference and per-
turbed models, and not the same in the dose-edge-deleted
and dose-edge-contracted graphs of the same condition.
To illustrate these points, consider pd for closed differential
systems:

pd ¼ log10
k
�
Ga\ead

�
gbðpbÞk�Gb

�
ebd
�

k
�
Gb\ebd

�
gaðpaÞkðGa=eadÞ

:

The polynomials k(G \ed) are factorizable if and only if ed
is a prime bridge. Edge contraction for kðG=edÞ could also
lead to a factorizable Kirchhoff polynomial if any of the
deleted edges during the procedure is a prime bridge. The
factor gðpÞ we assume to be prime as part of the label of a
single edge. Overall, thus, whether the dose differential is
reducible depends exclusively on the perturbation, the con-
nectivity of the dose edge, ed (in Ga and Gb), and the con-
nectivity of the edges in the immediate neighborhood of
ed. Note that the reducibility characterization of pd for
open differential systems is analogous but includes an addi-
tional dependency on the location and connectivity of the
synthesis edges in Ga and Gb.

The response differential, pR, in Eq. 7 is a sum of ratios
dependent on all coefficients ki and includes the conserved
xt in each ratio for closed systems, the synthesis reactions
in open systems, and the mapping variable h. However, it
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does not depend on the dose-edge label function, gðpÞ,
because gðpÞ always cancels in the fraction k2=k4 (for
both reference and perturbed coefficients). To illustrate, let
us focus on the response differential, pR (see Eq. 7), for
closed systems when h ¼ 0. To simplify the expression,
first, the common factors between k2 and k4 are canceled
(keeping in mind that k2 is a linear combination of prime
factorized Kirchhoff polynomials) to obtain k2 and k4.
The response differential can be further reduced if
gcdðk4a; k4bÞs1 by combining the fractions under a com-
mon denominator. Note that the response differential could
be zero due to the minus sign. The characterization of the
response differential in the general case for h not fixed
and for open systems is analogous.

For the example differential system, we find that
pd ¼ log10ðrb1=ra1 Þðra2 þ r3Þ=ðrb2 þ r3Þ and pR ¼ 0; where
the response component of the differential vanishes because
k1 ¼ 0 and because the differential parameters r1 in k2 and
k4 cancel each other. Also, the dose differential is indepen-
dent of the rate constant r4.The example illustrates that by
deriving the general form of the differentials pd and pR,
which are algebraic expressions of Kirchhoff polynomials
in linear framework models, we establish a direct connec-
tion between the structure of the differential system and
its function.
Analyzing the insulin receptor life-cycle

Insulin signaling in response to various ligands determines
differential cellular responses through complex and incom-
pletely understood mechanisms (3,21). To unravel the pro-
cesses at play, it is important to comprehend the role of
reactions and species in the observed cellular functions.
To illustrate applicability of our theory to such an investiga-
tion, we extend the example insulin model stepwise to a
model incorporating insulin receptor binding, recycling,
and phosphorylation. The resulting model is a subsystem
of a more comprehensive insulin receptor signaling model
from (22). This subsystem is appropriate for our analysis,
because it is a linear framework model, it is away from equi-
librium since receptor recycling and phosphorylation dissi-
pate energy (as indicated by irreversible reactions), and the
steady state of phosphorylated insulin receptors determines
insulin signal transduction (23).

Here, we do not explicitly consider the molecular details
of all reactions of this model but adopt a more general struc-
tural analysis approach by equating each reaction rate con-
stant to a unique symbol. Specifically, we take the reaction
rate constants r4, r7, and r16 (see Fig. 6 A) as unique sym-
bols, although they actually depend on the concentration
of protein tyrosine phosphatase (PTP) and are thus coupled.
This still allows us to analyze the role of each reaction in the
differential, but it precludes algebraic simplifications for the
concentration of PTP; if more molecular details are of inter-
est, they have to be explicitly included. Again, we define the
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differential system by assuming that the reference and the
perturbed model differ only in the values of a subset of
parameters—the differential parameters corresponding to li-
gands with different affinity toward the insulin receptor—
and that all other elements are identical.

We extend the example model (Fig. 2) with two states, an
internalized phosphorylated ligand-bound receptor, RLpi,
and an internalized receptor, Ri (Fig. 4). These states can
be reached by reversible reactions from their non-internal-
ized (membrane) counterparts, RLp and R, to represent
endocytosis and receptor recycling, and RLpi can be de-
phosphorylated to R by an irreversible reaction. We regard
the phosphorylated ligand-bound receptors as output spe-
cies, such that OðGÞ ¼ fvRLp; vRLpig, with unit weights
ðaRLp ¼ aRLpi ¼ 1Þ.

The resulting differential system is what we call a ‘‘basic
signaling system.’’ It is a differential system with a closed
graph that contains a reversible reaction for which the for-
ward and reverse rates differ between the reference and per-
turbed model, and for which the forward rate is affected by
the dose variable, d. More precisely, we have a graph G with
IðGÞ ¼ feong, ‘ðeonÞ ¼ gonðpÞd, and ‘ðeoffÞ ¼ goffðpÞ. Also,
the reference and perturbed models have no structural differ-
ences; they differ only by the functions gonðpÞ and goffðpÞ
(and the parameters contained in them). In such basic
signaling models, the dose-edge-contracted graph G=eon is
the same for the reference and perturbed systems; therefore,
its Kirchhoff polynomial always cancels in the dose-differ-
ential fraction. The dose differential for closed systems (re-
sults and definitions are analogous for open systems) is

pd ¼ log10
kðGa\eonÞ
kðGb\eonÞ

gbonðpbÞ
gaonðpaÞ

:

The response component of the differential for h ¼ 0 will
always be zero under the stated assumptions, since
ðka2=ka4 Þ ¼ ðkb2=kb4 Þ. When h ¼ 1, the response component
is not affected by the assumptions for basic signaling
systems.

Although the graph of the extended system contains more
states and reactions and the steady-state expression is more
complicated (see the Supporting Material), the differential is
identical to that of our initial example without endocytosis,
because the newly added reactions take part in prime com-
ponents that do not contain differential parameters and
therefore cancel out (see Fig. 4). We can formally describe
such differential systems giving rise to identical differential
expressions by employing the mathematical concept of
‘‘equivalence classes.’’ LetD be a set of differential systems
and define the equivalence relation, �p, on D such
that D1�pD2, D1;D2˛D, iff pdðD1Þ ¼ pdðD2Þ and
pRðD1Þ ¼ pRðD2Þ. Thus, the initial and extended models
of insulin signaling belong to the same equivalence class
with respect to their differential. The concept of equivalence
classes has direct applications for model selection and



FIGURE 4 Tree scheme for the differential sys-

tem in Fig. 3 extended with internalized species

RLpi and Ri. Note that only graphs belonging to

non-zero coefficients are shown. To see this figure

in color, go online.
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experimental design. For example, assume that we have
experimental evidence that changes in the rate constant of
a reaction such as r4, in both the reference and perturbed
models, affect the dose differential. If this reaction does
not take part in the dose-differential expression of the equiv-
alence class of models we are studying (as for the equiva-
lence class for insulin signaling defined above), we can
directly reject all members of the equivalence class, because
they are incompatible with the experimental observation.
Similarly, we can use the analytic framework to answer
questions such as what second perturbation to design (or
how to change the first perturbation) to differentiate be-
tween models in the same equivalence class (see the Sup-
porting Material).

Next, to analyze long-term effects of insulin receptor
trafficking, we need to account for receptor synthesis
and degradation. This converts the model from a closed
system to an open system. Let us consider a model exten-
sion in which the non-internalized free receptor, R, is syn-
thesized and degraded. Then, however, the differential is
not defined because the steady-state coefficient k4 is
zero. Fig. 5 A shows that the contraction of the dose
edge eliminates the degradation edge er10 and, additionally,
that the rooting at the environment vertex vB eliminates
the synthesis edge er11; this results in a disconnected graph
with no spanning trees in k4. Hence, we can reject this
extension just based on structural considerations. We
therefore add synthesis and degradation reactions for Ri

as a more biologically plausible way to capture receptor
trafficking (Fig. 5 B). The steady-state expression changes
in this case (see the Supporting Material), but the differen-
tial is still identical to that of the initial example model
from Fig. 2; the extended model belongs to the same
equivalence class due to cancellation of prime factors
that do not contain differential parameters in both refer-
ence and perturbed models (see Fig. 5 B). Overall, our
structural analysis predicts that differential responses for
ligands with different affinities always exhibit a zero
response differential and a dose differential dependent on
the ligand affinities. This result is corroborated by the
observation that most natural and modified insulin receptor
ligands shift sigmoid dose-response curves leftward or
rightward (relative to insulin) but have an identical
maximal response (24).
Extension: two dose edges

To extend the framework to cases in which hormesis is
possible, we consider that the input dose acts proportionally
and simultaneously on two edges, i.e., IðGÞ ¼ fed;1; ed;2g,
‘ðed;1Þ ¼ g1ðpÞd, and ‘ðed;2Þ ¼ g2ðpÞd. To derive the gen-
eral form of dose-response expressions for closed and
Biophysical Journal 114, 723–736, February 6, 2018 731
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FIGURE 5 Extended insulin model with recep-

tor degradation (open system). (A) The dose and

response differential for the system with synthesis

and degradation of membrane-bound receptor

R (for reference and perturbed graph) is not

defined, since the steady-state coefficient k4 ¼ 0

(the contained graph is disconnected and therefore

does not contain any spanning trees). (B) Tree

scheme for a differential system containing syn-

thesis and degradation of the internalized receptor,

Ri. Graphs without spanning trees are not shown.

To see this figure in color, go online.
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open systems, we apply the deletion-contraction formula to
partition the set of spanning trees from the numerator and
denominator of the response function, R, into four cate-
gories—those containing no input edges, those containing
ed;1 but not ed;2, those containing ed;2 but not ed;1, and those
containing both ed;1 and ed;2. After simplification, we obtain

ROðdÞ ¼ k1 þ k23d þ k4d
2

k5 þ k67d þ k8d2
; (8)

where k23 :¼ k2 þ k3 and k67 :¼ k6 þ k7 (see the Supporting
Material for all details). For two dose edges, the numerator
and denominator polynomials in the dose d can be at most of
degree two; for an input acting on w edges simultaneously,
the maximal degree is w. However, the spanning tree parti-
tioning determines the graphs contained in the coefficients
k (see, for definitions, the tree scheme in Fig. S3). The expo-
nential increase of the number of relevant graphs with num-
ber of dose edges (2w graphs) makes systems with multiple
inputs complex.

Depending on the coefficients ki, two or three critical
points define a sigmoid or a biphasic/hormetic dose-
response relationship, respectively. A necessary and suffi-
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cient condition for a biphasic dose-response function, which
we call the ‘‘Hormesis condition,’’ is

ðk67 ¼ 0 ^ k23s0Þ n�
k67s0 ^

�
k23
k67

<
k4
k8
%

k1
k5

n
k23
k67

<
k1
k5
<
k4
k8

n

k4
k8
%

k1
k5
<
k23
k67

n
k1
k5
<
k4
k8
<
k23
k67

��
:

Because the values of the coefficients ki are not known in
general, the number of critical points cannot be determined
unambiguously, and we need to distinguish cases depending
on the number of segments in the reference and perturbed
curves that are mapped to each other to derive the differen-
tial pd and pR (see the Supporting Material for details).

The differential expressions have a more complicated
form (for example, they may involve square roots), and mul-
tiple conditions have to be considered, but the expressions
are symbolic and (more involved) symbolic analysis with
efficient methods for the generation and manipulation of
Kirchhoff polynomials is applicable. For example, general
properties of the differentials in systems with two dose
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edges are 1) in contrast to systems with a single dose edge,
the dose differential, pd, depends on the choice of output
vertices and their weights; 2) pd depends on the proportion
variable, h, and the synthesis reactions in open systems, but
not on the conserved xt in closed systems; 3) the response
differential, pR, depends on all eight partitions of the set
of spanning trees of G, and it includes xt in closed systems;
and 4) the differential can also be degenerate or undefined.

To apply the theory to insulin signaling, we consider a
more detailed model for receptor trafficking that includes
binding of a second ligand molecule to the receptor, as
well as the relevant reactions and internalized species shown
in Fig. 6 A. It is a receptor-level subsystem of the more
comprehensive model of insulin signaling from (22). The
motivation for the analysis is twofold. First, designed insulin
analogs that trigger hormetic responses could potentially in-
fluence insulin differential signaling, for example, by allevi-
ating mitogenic effects at high ligand doses. Second,
biphasic dose-response behaviors of insulin receptor phos-
phorylation were experimentally observed in cells stimu-
lated with an insulin analog, the peptide S961 (24). We
therefore asked if there exist sets of species that need to
be active to achieve a robust hormetic response in the model.
We derived the steady-state coefficients for all 127 combi-
nations of output vertices in O and used the hormesis condi-
tion to classify the resulting models into four groups. The
first three groups contain models with robust dose-responses
(same qualitative shape irrespective of parameter values),
namely, 1) constant response for models with output vertex
fvRig; 2) sigmoid for models with output vertices fvRLLpg,
fvRLLpig, and fvRLLp; vRLLpig; and 3) hormetic for models
with output vertices fvRLpg, fvRLpig, and fvRLp; vRLpig (see
Fig. 6 B). The fourth group contains the remaining 120 com-
binations of output vertices; the shapes of dose-response
curves generated by these models depend on parameter
values (see the Supporting Material for examples of analysis
results that account for parameter dependencies). In partic-
ular, outputs producing robust hormetic responses comprise
A B
only phosphorylated receptors bound to a single ligand
molecule, implying that doubly bound phosphorylated
receptors should not signal if we are to obtain a robust hor-
metic dose response. This is consistent with the proposed
mechanism of action of S961 in (24), namely, that the first
binding of S961 cross-links the receptor, leading to agonist
activity, and the second binding results in receptor
inactivation.
Extension: numerical analysis

Numerical methods can augment the symbolic analysis
when quantitative prior knowledge or experimental data
are available. For example, we can directly incorporate
known parameter values (or their ratios) to simplify sym-
bolic expressions. We may also account for prior knowledge
by defining plausible intervals of parameter values and
determining whether the model’s thus bounded differential
is consistent with an experimentally observed differential,
thereby assessing whether the model agrees with the
observations.

Formally, we denote the range of the differential as the in-
terval D ¼ fpðpa; pbÞ˛R 		 pa; pb˛Ig, where I4ðRR0ÞN is
a box in parameter space. Let a and b be the infimum and
supremum of D. We want to determine tight outer bounds
of the differential, finding ba and bb of D over the parameter
box I , where ba%a and bbRb. In systems with a single dose
edge, with edge labels that contain rational expressions, and
regarding all parameters as variables, bounding the differen-
tial translates to finding the global extrema of a multivariate
rational function. This is an NP-hard problem (25), but
several numerical methods give certificates for global opti-
mality or find bounds based on polynomial optimization.
Here, we focus on Bernstein enclosures of rational functions
(26) whose implementation in the Kodiak package, for
example, was shown to produce tighter outer bounds for a
dose differential expression with 12 free variables compared
to the established method of interval arithmetic (27).
FIGURE 6 Extended insulin model with two

dose edges. (A) Model of insulin receptor binding,

recycling, and phosphorylation with notation as in

Fig. 3 A. (B) A hormetic dose-response curve

generated by the model for output vertices

O ¼ fvRLp; vRLpig and all parameters fixed to 0.5.
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To illustrate the approach for the example model from
Fig. 3 A (for a two-dose-edge example, see the Supporting
Material), we analyze how the bounds of the dose differen-
tial change when a parameter is altered; we call the resulting
plots ‘‘profile differential bounds’’. Specifically, we fix each
of the free parameters taking part in the differential, rb2 and
r3, for every value in their interval of definition, and calcu-
late the bounds of the dose differential (Fig. 7 A). This anal-
ysis shows the capacity of individual parameters to control
and constrain the possible magnitude of the differential: in-
dependent of the value of the other free parameter, rb2 can
significantly change the lower bound of the differential for
values smaller than �10�2, and for higher values it starts
decreasing the upper bound. If the observed differential is
outside the calculated bounds, one can reliably reject the
model (and the parameter box I ), because no parametriza-
tion (in I ) can reproduce the observed differential.
Conversely, this analysis can help confine I such that all
considered parameter values are consistent with the experi-
mental observations.

The non-linear differential expressions’ algebraic struc-
tures also imply that not every differential value is equally
likely when we sample parameter values uniformly from
I . The non-uniformity of the differential can be interpreted
as parametric robustness, because random changes of pa-
rameters may not lead to random magnitudes of the differ-
ential. For our simple model from Fig. 3 A, uniform
sampling of the dose differential yields a few magnitudes
of variability ðdDpd

¼ ½�4;�2�Þ but two small regions of
most probable values with a marginal density peaked at
�2 and �4 (Fig. 7 B). The profile differential distributions
in Fig. 7 A show how the free parameters rb2 (ligand dissoci-
ation rate in the perturbed model) and r3 (receptor phosphor-
ylation) affect not only the bounds but also the peak of the
marginal distribution, revealing their potential to control
the differential. Hence, the differential system induces an
important structural prior on the behavior—system struc-
A B
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tures (and parameter intervals) define what magnitude of
the differential can be expected. This information could be
exploited for more detailed model selection against experi-
mental data.
DISCUSSION

Here, we aimed to develop a theory for steady-state dose-
response relationships in linear framework models of
biochemical reaction networks that is analytic, and therefore
also applicable when parameter values are largely unknown.
We formalized the concept of differential responses to
establish a comprehensive parameter-free framework for
analyzing relative responses. It helps to study system behav-
iors upon perturbations of many features of reaction net-
works, such as network topology, parameters, and choice
and number of inputs and outputs. In particular, the alge-
braic and numerical methods allow us to explore possible
network topologies and perturbations to arrive efficiently
at a set of candidate models that are consistent with prior
knowledge and experimental data. For example, if it is
known from experiments that a particular perturbation leads
to a significant dose differential, we can reliably reject all
potential models for which the differential expression does
not depend on the perturbed variable. Numerical bounding
over a predefined region in parameter space provides us
with limits for all possible differential magnitudes—which
we can use as a certificate to reliably reject models that
can never reproduce quantitative experimental data.
Another application of our methodology is in experimental
design, namely, to determine (optimal) perturbations of a
reference system that lead to a desired differential, to inval-
idate a model, to discriminate between equivalence classes
of networks, or for applications such as finding optimal
(combinations of) drug targets. Note also that the differen-
tial analysis framework extends to applications beyond
the ones we covered: in general, every element of the
FIGURE 7 Numerical analysis of the example

single-dose-edge model from Fig. 3 A. (A) Profile

bounds (blue, upper outer bound; green, lower

outer bound) superimposed on the profile differen-

tial distribution (density) for the free parameters rb2
and r3. (B) Marginal probability distribution of

the dose differential magnitude. Densities were

obtained from uniform samples of the parameter

box I defined by r1; r2; r3; r4˛½10�5; 1� s�1,

assuming xt ¼ 1nM, ra1=r
b
1 ¼ 100, and ra2=r

b
2 ¼

0:01. To see this figure in color, go online.
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differential system can be perturbed and labels for dose
edges can be formulated in a more general form.

The most obvious limitation of our framework is the re-
striction to systems with Laplacian dynamics; it has to
rely on prior, often parameter- and state-dependent simplifi-
cations from higher-order kinetics, such as those obtained
via timescale separation. In terms of scalability, the expo-
nential growth of the number of graphs to be considered
for the analysis and the resulting high-degree polynomials
with increasing number of reactions influenced by the
dose is a challenge. Our examples demonstrate that systems
with up to two dose edges can be analyzed efficiently due to
the linear scaling of the prime factorization algorithm
and the few relevant graphs. General algebraic solutions
for the roots of polynomial equations of degree five or
higher with arbitrary coefficients—corresponding to the
dose acting proportionally on five or more edges—do not
exist. However, depending on the particular graph structure
and form of the label expressions, such cases, or cases with
labels that are non-linear functions of the dose, could be
analytically tractable if the polynomials simplify to a lower
degree. Similarly, obtaining exact bounds might only be
feasible for simple differential expressions with few vari-
ables and convex properties. In practice, therefore, bounding
methods provide us with inner bounds, which do not guar-
antee reliable model rejection. Because bounding ap-
proaches are often employed in control theory (28) and
methods are being continuously improved (27,29), these
limitations may be less pertinent.

Extensions of the framework could further build on the
central insight that prime factors and components (and their
similarity in perturbed graphs) are the units, the very charac-
terization, of the differential response function in steady-
state linear framework models. For example, additions and
deletions of vertices and edges in certain parts of both the
reference and perturbed graph may never have an effect
on the differential if they belong to a prime component
that always cancels in the differential expression. In general,
the positions (connectivity) of additions and deletions
within the graph and the size distribution of the induced
prime components play an important role in the change of
the differential upon structural perturbations. This could
be exploited to develop a notion of ‘‘structural robustness’’
of the differential to random changes of the network topol-
ogy. Finally, many of our graph theoretical notions subsume
graph theoretical concepts such as distributions of sizes of
SCCs, strong bridges, and strong articulation points that
are actively researched in computer science; efficient algo-
rithms for their characterization (30–34) could help to
extend the scope of our framework.

In terms of applications, our analysis of the insulin
signaling network demonstrates first steps in a direction
we believe will become increasingly important: a systematic
analysis of differential dose responses in biochemical reac-
tion networks despite prevailing uncertainties as to the net-
works’ quantitative features. In particular, we showed how
to characterize the dose responses of natural ligands, such
as insulin and IGF-1, where different affinities influence
the dose but not the maximal response component, and we
recovered previously hypothesized modes of action of the
insulin analog S961. We envisage that our framework will
be most useful for the systematic study of mechanisms un-
derlying hormesis, a phenomenon in toxicology and cell
signaling that is receiving increasing attention. For example,
empirical evidence favored hormetic over threshold models
for dose-response relationships in a large-scale yeast anti-
cancer drug screen (35), and hormetic phenomena are
frequently observed in stress responses and their relations
to aging (36). Corresponding theoretical work has only
(re-)started very recently, showing, for example, that non-
monotonic dose-response relationships can arise through
non-obvious pathway interactions, and that network struc-
tures impose fundamental constraints on options for phar-
macological treatment (37).
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Open Linear Framework Models

Graphs G representing open linear framework models are obtained by adding a vertex v∅ denoting

the environment to a core graph G (akin to closed models, the core graph is composed of all

non-synthesis and non-degradation reactions) and by introducing directed edges from v∅ to the

synthesized species in G with labels si and edges labeled di from the degraded species to v∅. The

dynamics of open linear framework models are defined in general form as:

dx

dt
= L(G)x−∆x+ S,

where L(G) is the Laplacian matrix of the core graph, ∆ is a diagonal matrix with ∆ii = δi the

degradation rate constants of the species with index i, and S is a vector Si = si comprising the

synthesis rate constants for all species. If a species does not have a degradation or a synthesis

reaction then si = 0 or δi = 0, respectively. In open models, the total amount of matter is

not conserved but the rates at which matter enters and leaves the system determine the final

distribution of steady-state concentrations. In particular, synthesis and degradation at steady-

state are balanced: δ1x1 + . . . + δnxn = s1 + . . . + sn. Similarly to closed models, but assuring

that the steady-state concentration at v∅ is always 1, the unique stable steady-state for vertex vi

(vi 6= v∅) can be symbolically derived.

The general form of the steady-state concentration xSSi for open systems and a vertex vi

(vi 6= v∅) is given by:

xSSi =
κvi(G)

κv∅(G)
.

For more details, proofs, and derivations on open linear framework models we refer to (1, 2).
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In open models, the q species eliciting the response are associated with a set of output vertices

O(G). Then the general expression for the steady-state response of open models using Kirchhoff

polynomials reads:

RO(G) =

∑
vi∈O(G) aiκvi(G)

κv∅(G)
,

where ai ≥ 0 is the weight given to the steady-state concentration associated with vertex vi.

The denominator in the steady-state expression of open strongly connected models contains the

strongly connected G rooted at the environment vertex v∅ which can yield graphs with factorisable

Kirchhoff polynomials. Hence, the Kirchhoff polynomial corresponding to rtv∅(G) is non-trivially

factorisable when any synthesis reaction si is a prime bridge during the sequential deletion of si

resulting from the rooting operation at v∅ (s1 might not be a prime bridge in G but in G \ s2 . . . \

sn). Likewise, the numerator of the steady-state expression for open models consists of the linear

combination of rooted polynomials, each of which could be factorisable. In this case, there could

exist prime factors shared between the numerator and the denominator which can be canceled out.

Thereby, in open systems there exist equivalence classes of models with different graphs G but the

same steady-state expressions. A necessary and sufficient condition for a reaction to take part in

the steady-state expression is that it is part of a prime component that does not get canceled.

Applying the deletion-contraction property from Eq. 5 to express the steady-state response R

as a function of the dose variable d, we obtain the general form of dose-response expression for

open models with a graph G:

RO(d) =
k1 + k2d

k3 + k4d
, (1)

with steady-state coefficients:

k1 =
∑

vi∈O(G) aviκvi(G\ed),
k2 = g(p)

∑
vi∈O(G) aviκvi(G/ed),

k3 = κv∅(G\ed),
k4 = g(p)κv∅(G/ed).

Fig. S1 shows the tree scheme for generating the steady-state coefficients of open models.

Formalizing Differential Responses

Here we give details about the proposed procedure for quantifying the differential response, i.e. how

a reference dose-response curve transforms into a perturbed one. Our definition of the differential

employs established concepts for comparisons between monotone dose-response curves to generalise

comparisons between non-monotone curves. Note that other definitions could be more appropriate
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G

k1 k2 k3 k4

numerator denominator

rtvi(G)

rtvi(G) \ ed rtvi(G)/ed

rtv∅(G)

rtv∅(G) \ ed rtv∅(G)/ed

Figure S1: Tree scheme for a general graph G for obtaining the relevant graphs participating in
the coefficients ki of the dose-response relationship in open models (for reference and perturbed
systems) through the graph operations rooting, deletion, and contraction. Note that there are also
additional terms contained in the coefficients.

ǫαn

ǫβn

ǫαi+1

ǫαi

ǫα1

ǫβi+1

ǫβi

ǫβ1

πR
πd

h = 1
2

h = 1

h = 0

log10(dose)

Figure S2: Definition of the differential response as the length of displacement of a reference dose-
response curve (red, dashed, marked with the α superscript) to a perturbed curve (blue, solid,
marked with the β superscript), generated by functions Rα(d) and Rβ(d), respectively, both with

n critical points ε
{α,β}
1...n . The curves are subdivided along their critical points to obtain monotone

segments. The resulting segments are related through a mapM that preserves the order of critical
points and segments. Points on a pair of mapped segments with the same proportion of response
h ∈ [0, 1] between the minimum and the maximum are related to each other (corresponding points
indicated by black arrows). Distances in the dose and the response dimensions between corre-
sponding points are called the dose differential and the response differential, and denoted as πd(h)
and πR(h) (green), respectively.

when specific knowledge on the curve transformation contradicts the assumptions we make.

Let dose-response curves be generated by functions R : R≥0 → R≥0, that are continuous,

smooth, and bounded (unbounded responses are not biologically feasible). We denote the functions

generating the reference and the perturbed curve as Rα(d) and Rβ(d), respectively, where d is the

dose variable. A point on a dose-response curve, (d, R), consists of a dose component d and a

response component R such that R = R(d).

We express the differential through distances between corresponding points on Rα(d) and
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Rβ(d). To find the correspondence between points and quantify the distance between corresponding

points we follow the procedure (also see Fig. S2):

(i) Subdivide the curves into monotone segments.

We subdivide the dose-response curves at their critical points (suprema, infima, extrema,

and stationary points of inflection that are identified by the functions’ first derivatives) to

obtain monotone segments for further comparison.

Assume that Rα(d) and Rβ(d) have, respectively, n and m critical points and denote them

by εi ∈ E , where E is the set of all critical points for the relevant dose-response curve and i

is their index (i ∈ {1, . . . , n} for εαi and i ∈ {1, . . . ,m} for εβi ). Due to the functional relation

between dose and response and by considering any two or more identical critical points as a

single one, the critical points follow a strict total order in their dose component dεi (e.g. for

Rα(d), dεα1 < . . . < dεαn), which we use to define a strict total order of the critical points

(e.g. for Rα(d), εα1 < . . . < εαn).

From the boundedness requirement onR(d) it follows that the first and the last critical points

are reached when the dose goes to zero and infinity, respectively. The intermediate critical

points are defined by doses for which the first derivative of f is zero. Thus the critical points

of Rα(d) are:

εα1 :=

(
0, lim
d→0
Rα(d)

)
, εαi := {(dεi ,Rα(dεi))|DdRα(dεi) = 0} ,

and εαn :=

(
∞, lim

d→∞
Rα(d)

)
,

where i ∈ {2, . . . , n − 1} indexes the intermediate critical points and Dd denotes the first

derivative with respect to the dose variable d.

The critical points of Rα(d) partition its domain into n − 1 monotone segments σj , j ∈

{1, . . . , n− 1}. Each segment is defined by two consecutive critical points:

σαj : Rα(d), for d ∈
[
dεαj , dεαj+1

]
,

where the domain of the segment is semi-open for the last critical point since it has a dose

component at infinity. Let us denote the set of all segments as Σα. The definitions of critical

points and segments for Rβ(d) are analogous.

(ii) Decide which segments to compare.
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A map M defines the correspondence between the monotone segments from the reference

curve and the monotone segments from the perturbed curve. The definition of the map can

be application-specific. Here, in the absence of specific knowledge on the transformation

between the curves, we propose that M preserves the order (and succession, i.e. no critical

point is missed out) of critical points and segments. Let us assume, w.l.o.g., that Rα(d) has

less or equal number of critical points than Rβ(d) (n ≤ m). Then, we define M to map all

consecutive segments of Rα(.) to all possible n consecutive segments of Rβ(.),namely:

M(i; Σα,Σβ) :



σα1 → σβi

σα2 → σβi+1

...

σαn−1 → σβi+n−2

,

where i ∈ {1, 2, . . . , 1 +m−n}. Notice that in the case when n = m the map is bijective and

it does not depend on the index i = 1.

(iii) Determine corresponding points in compared pairs of segments.

In each pair of mapped segments σαi 7→ σβj we relate the points having the same proportion

h (h ∈ [0, 1]) of response between the minimal and maximal response, as is customary for

monotone dose-response curves. The minimal and maximal responses in each segment are

determined by the response components of the critical points enclosing it. Let ζ(h;x, y) be

the proportional response function which gives the response for a proportion h and response

components x and y of the critical points enclosing the segment of interest. Then, we can

obtain the response components of the related points within the segments:

Rσαi ,h 7→ R
σβj ,h

,

where Rσαi ,h = ζ
(
h; Rεαi , Rεαi+1

)
and R

σβj ,h
= ζ

(
h; R

εβj
, R
εβj+1

)
.

We recover the dose components of the related points from the dose-response function:

dσαi ,h 7→ d
σβj ,h

,

where dσαi ,h = Rα−1
(
ζ
(
h; Rεαi , Rεαi+1

))
, Rα−1

(.) is the inverse function of Rα in the interval[
dεαi , dεαi+1

]
(the interval is semi-open for the last critical point since it has a dose component
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at infinity). The inverse exists due to continuity and monotonicity of the segment σαi .

The following two definitions can serve as a proportional response function:

ζ1(h;x, y) :=


hx+ (1− h)y, if x 6= y

x, when x = y

, and

ζ2(h;x, y) :=


hx+ (1− h)y, if x > y

(1− h)x+ hy, if x < y

x, when x = y

,

which are simplifications, respectively, of:

ζ1(h;x, y) :=
1

2

((
1 +

x− y
|x− y|

)
h+

(
1− x− y
|x− y|

)
(1− h)

)
|x− y|+ min (x, y) and

ζ2(h;x, y) := h |x− y|+ min (x, y) ,

where, again, h ∈ [0, 1] is the proportion of response and x and y are the response coordinates

(corresponding to dose coordinates dx and dy, dx < dy) defining a segment σ. Note also that

we are not interested in the case when x = y in a segment since it leads to a trivial differential

expression.

The differences between these very similar definitions become evident when one of the com-

pared segments is monotonically increasing and the other one is monotonically decreasing;

otherwise the definitions are identical up to the parametrisation of h. We choose to use ζ1,

hence, calling it only ζ, due to the simpler expressions it yields in our subsequent derivations.

Note that ζ1(0;x, y) = y and ζ1(1;x, y) = x, which means that for h = 1 the response coordi-

nates of smaller dose coordinates correspond to each other while for h = 0 the correspondence

is between the response coordinates of larger dose coordinates.

(iv) Quantify the displacement of corresponding points.

The last step to derive the differential is to quantify the displacement between corresponding

points on the reference and perturbed curves for all mapped segments. For each pair of points

we derive the displacement in dose, what we call the dose differential, and the displacement in

response – the response differential. Formally, to identify fold differences in the dose variable,

we define the dose differential as the difference of logarithms of the dose components of

6



corresponding points:

πd(h;σαi , σ
β
j ) := log10

dσαi ,h

d
σβj ,h

and the response differential as the difference in response between corresponding points:

πR(h;σαi , σ
β
j ) := Rσαi ,h − R

σβj ,h
.

The set of all these displacements constitutes the differential between the curves.

Note that for monotone dose-response curves the differential reduces to the established com-

parison of points with the same percentage of response. For non-monotone curves each segment is

compared to another one at least once allowing to quantify the relative difference between dose-

response curves. Note that even when dose-response curves can be derived in closed form, the

differential can be symbolically derived only when the critical points and dose-response functions’

inverses can be found symbolically.

Derivation of the Differential for One Dose Edge

We derive the differential for dose-response curves generated by functions of the form of Eq. 6 using

the procedure outlined in the previous section. We have only fixed to have a single dose edge, all

other features of the reference and perturbed models can be arbitrary.

(i) Subdivide the curves into monotone segments.

The steady-state function RO(d) does not have extrema when varying the dose d since the

first derivative is nowhere zero (apart from infinity and the dose independent case when

k2k3 = k1k4). There are only two critical points and the dose-response curve is a sigmoid in

log scale. The critical points are:

E =

{
ε1 =

(
0,
k1
k3

)
, ε2 =

(
∞, k2

k4

)}
.

In each of the reference and the perturbed curve there exists only one segment defined between

the dose components of ε1 and ε2, which we call σ.

(ii) Decide which segments to compare.
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Since each of the compared curves consists of a single segment the mapping is trivial:

M : σα → σβ.

(iii) Determine corresponding points in compared pairs of segments.

We relate the response coordinates of points on σα and σβ with identical percentage of

response:

ζ

(
h;
kα1
kα3
,
kα2
kα4

)
7→ ζ

(
h;
kβ1

kβ3
,
kβ2

kβ4

)
⇔ h

kα1
kα3

+ (1− h)
kα2
kα4
7→ h

kβ1

kβ3
+ (1− h)

kβ2

kβ4
,

where the superscripts α and β indicate that the coefficients k have been obtained from the

reference or perturbed system, respectively.

To relate the dose components of corresponding points, dσα,h 7→ dσβ ,h, we find the inverse of

the single dose edge dose-response function and plug in the proportional response function:

dσ,h = R−1
(
ζ

(
h;
k1
k3
,
k2
k4

))
=
k1 − ζ

(
h; k1k3 ,

k2
k4

)
k3

ζ
(
h; k1k3 ,

k2
k4

)
k4 − k2

,

which reduces to:

dσ,h =


1−h
h

k3
k4

if k1
k3
6= k2

k4
,

not defined if k1
k3

= k2
k4
.

Ignoring the trivial case when k1
k3

= k2
k4

we obtain the following correspondence between the

dose components of related points:

1− h
h

kα3
kα4
7→ 1− h

h

kβ3

kβ4
.

(iv) Quantify the displacement of corresponding points.

Having determined the correspondence between points, we obtain general expressions for the

dose and response differentials in differential systems D with a single dose edge (also Eq. 7):

πd = log10
kα3 k

β
4

kβ3 k
α
4

and πR (h) = h

(
kα1
kα3
− kβ1

kβ3

)
+ (1− h)

(
kα2
kα4
− kβ2

kβ4

)
.
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Steady-state Expressions for the Investigated Single Dose Edge Models

The steady-state expression (before plugging in the differential parameters) for the example from

Fig. 4 reads:

RO(d) =
r1r3r9 (r5 + r6 + r7) d

(r2 + r3) (r8 + r9) (r4 (r6 + r7) + r5r7) +
+ r1 (r5 (r3r9 + r7 (r3 + r9)) + r9 (r3 + r4) (r6 + r7)) d

xt.

The steady-state expression for the example from Fig. 5B is:

RO(d) =
r1 (r3r5r9r11 + r3 (r6 + r7) r9r11) d

r8r10 (r2 + r3) (r4 (r6 + r7) + r5r7) + r1r3r5r7r10d
.

Applications for Experimental Design

To discriminate between models in the same equivalence class, a logical next question is what

second perturbation to design (or how to change the first perturbation) in order to differentiate

between models in the same equivalence class. In other words, we want to divide the class into

smaller equivalence classes, and ultimately identify a single model that represents the biological

process. More specifically, a second perturbation could change the prime factors, for example, by

adding or deleting new species and reactions, or by changing the input edge. We illustrate the

theory’s capabilities by deciding which reaction rate constant to alter in the perturbed system for

the model from from Fig. 5B. For example, we ask whether to experimentally perturb r8 or r5 to

obtain the largest effect in the dose differential. For the steady-state coefficient k3, we observe that

r8 is alone in a prime component while r5 has three more reaction constants in the same prime

component. This means that, if we perturb r8, we will obtain a factor in the dose differential

corresponding to
kα3
kβ3

=
rα8
rβ8

rα2 +r3

rβ2+r3
where our perturbation will have a multiplicative effect on the

dose differential. On the other hand, if we perturb r5 we obtain
kα3
kβ3

=
r4(r6+r7)+rα5 r7

r4(r6+r7)+r
β
5 r7

rα2 +r3

rβ2+r3
, where

the perturbation is dampened by the other reaction rates—the change in the dose differential upon

this perturbation might become experimentally indistinguishable. Hence, perturbing elements of

smaller factors has a more direct effect on the observed dose differential, and a corresponding

experimental design is more likely to help determining whether the model under consideration is

appropriate.
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General Form of Dose-Response Curves Generated by Two Dose Edge Models

We consider the case in which the input dose acts proportionally and simultaneously on two edges,

i.e. I(G) = {ed,1, ed,2}, `(ed,1) = g1(p)d, and `(ed,2) = g2(p)d.

We apply the deletion-contraction formula to partition the set of spanning trees from the

numerator and denominator of the response function R into four categories – those containing

no input edges, those containing ed,1 but not ed,2, those containing ed,2 but not ed,1, and those

containing both ed,1 and ed,2. Simplifying, we obtain the general form of dose-response expressions

for closed and open systems:

RO(d) =
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
, (2)

where k23 := k2 + k3 and k67 := k6 + k7, RO(d) is bounded (the degree of the numerator is not

higher than the degree of the denominator) and of second degree, and the steady-state coefficients

are:

for closed models for open models
k1 = xt

∑
vi∈O(G) aviκvi(G\ed,1\ed,2), k1 =

∑
vi∈O(G) aviκvi(G\ed,1\ed,2),

k2 = xtg2(p)
∑

vi∈O(G) aviκvi(G\ed,1/ed,2), k2 = g2(p)
∑

vi∈O(G) aviκvi(G\ed,1/ed,2),
k3 = xtg1(p)

∑
vi∈O(G) aviκvi(G/ed,1\ed,2), k3 = g1(p)

∑
vi∈O(G) aviκvi(G/ed,1\ed,2),

k4 = xtg1(p)g2(p)
∑

vi∈O(G) aviκvi(G/ed,1/ed,2), k4 = g1(p)g2(p)
∑

vi∈O(G) aviκvi(G/ed,1/ed,2),

k5 = κ(G\ed,1\ed,2), k5 = κv∅(G\ed,1\ed,2),
k6 = g2(p)κ(G\ed,1/ed,2), k6 = g2(p)κv∅(G\ed,1/ed,2),
k7 = g1(p)κ(G/ed,1\ed,2), k7 = g1(p)κv∅(G/ed,1\ed,2),
k8 = g1(p)g2(p)κ(G/ed,1/ed,2), k8 = g1(p)g2(p)κv∅(G/ed,1/ed,2).

The spanning tree partitioning determines the graphs contained in the coefficients k, which

can be seen in the tree scheme from Fig. S3. The numerator and denominator polynomials in the

dose variable d can be at most of degree two, where the highest degree corresponds to spanning

trees containing both ed,1 and ed,2. We see that even though the degree of the polynomials grows

by one, the number of graphs to consider grows exponentially. In the general case, for an input

acting on w edges simultaneously, the numerator and denominator are at most of degree w and

the graphs giving rise to the coefficients of the polynomials are 2w and, therefore, the tree scheme

has 2w+1 leaves. Again, it could happen that spanning trees do not exist for some graphs resulting

to simpler, trivial, or unbounded dose-response relationships.
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Derivation of the Differential for Two Dose Edges

We derive the differential for the case when the reference and perturbed dose-response curves are

both generated by functions having the form of Eq. 2.

Hormesis condition. First, we are interested in deriving conditions guaranteeing positivity of

an extremum and thus ensuring that hormesis is present. The steady-state dose-response function

RO(d) could have at most two extrema when varying the dose variable since its first derivative can

become zero for two values of d.

Dd
k1 + k23d+ k4d

2

k5 + k67d+ k8d2
= 0⇔

k5k23 − k1k67 + 2(k4k5 − k1k8)d+ (k4k67 − k8k23)d2
(k5 + k67d+ k8d2)2

= 0.

The denominator of the condition is never zero for positive doses d and ki leading to non-degenerate

systems (not all ki being zero). The doses for which the numerator equals zero are the ones

corresponding to extrema in the dose response, namely:

d(1,2) =
k1k8 − k4k5 ±

√
U

k4k67 − k8k23
,

where U = (k1k8 − k4k5)2 + (k1k67 − k5k23) (k4k67 − k8k23) and k4k67 6= k8k23.

Of interest are only the positive real roots since they are the extrema of the dose response

relationships we study. The two roots can never be positive at the same time for non-negative values

of the coefficients ki, which means that the dose-response curves can be at most biphasic. This

fact becomes clear after employing Vieta’s formulas for second degree polynomials and requiring

that the sum and the product of the roots are positive, namely:

d(1) + d(2) =
−2(k4k5 − k1k8)
k4k67 − k8k23

> 0 ∧ d(1)d(2) =
k5k23 − k1k67
k4k67 − k8k23

> 0,

which is equivalent to:

(
k23
k67

<
k4
k8

<
k1
k5
∨ k1
k5

<
k4
k8

<
k23
k67

)
∧
(
k1
k5

<
k1
k5

<
k4
k8
∨ k4
k8

<
k23
k67

<
k1
k5

)
.

It is evident that for non-negative coefficients ki there exists no solution for the logical expression

of the set of inequalities. More precisely, according to Vietta’s formula sum condition the ratio k4
k8
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needs to have a value between the ratios k1
k5

and k23
k67

, and according to Vietta’s product condition

k4
k8

has to be either the largest or the smallest among the ratios. The two conditions can not hold

simultaneously and thus the two roots can not be positive at the same time.

Two possibilities to obtain biphasic dose-response remain:

Condition 1: One root is negative and the other one is positive, yielding the condition:

k4k67 6= k8k23 ∧ d(1)d(2) =
k5k23 − k1k67
k4k67 − k8k23

< 0,

which implies U > 0.

Condition 2: One root is positive and the other one is zero, translating to the condition:

k5k23 = k1k67 ∧ k4k5 6= k1k8 ∧ k4k67 6= k8k23 ∧ d =
−2(k4k5 − k1k8)
k4k67 − k8k23

> 0

The dose-response coefficients are non-negative, which means that they could also be zero.

However, to have bounded dose-response curves we require that k5 6= 0 ∧ k8 6= 0.

Let us first examine the case when k67 = 0. Then Condition 1 is satisfied when k5k23
−k8k23 < 0

or equivalently when k23 6= 0, while Condition 2 is never satisfied. In the case when k67 6= 0,

Condition 1 could equivalently be written as:

k23
k67

<
k4
k8
≤ k1
k5
∨ k23
k67

<
k1
k5

<
k4
k8
∨ k4
k8
≤ k1
k5

<
k23
k67
∨ k1
k5

<
k4
k8

<
k23
k67

,

while Condition 2 again never holds.

We summarize the derived necessary and sufficient conditions for having a positive extremum

of the dose-response function, which we call the Hormesis condition as:

(k67 = 0 ∧ k23 6= 0) ∨
(
k67 6= 0∧

(
k23
k67

<
k4
k8
≤ k1
k5
∨ k23
k67

<
k1
k5

<
k4
k8
∨ k4
k8
≤ k1
k5

<
k23
k67
∨ k1
k5

<
k4
k8

<
k23
k67

))
.

Note that even when the Hormesis condition is satisfied the biphasic behavior might be weak

and experimentally not evident.

Derivation of the differential. After having derived the Hormesis condition, we can proceed

to derive the differential following the procedure:
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(i) Subdivide the curves into monotone segments.

Combining the critical points at zero and infinite dose with the positive extremum we obtain

a set of critical points E :

E =

{
ε1 =

(
0,
k1
k5

)
, ε2 =

(
k1k8 − k4k5 ±

√
U

k4k67 − k8k23
,
k23k67 − 2(k1k8 + k4k5)± 2

√
U

k267 − 4k5k8

)
, ε3 =

(
∞, k4

k8

)}
,

where the sign in front of
√
U in ε2 depends on the steady-state coefficients:

k67 = 0 ∧ k23 6= 0∧ : −,

k67 6= 0 ∧
(
k23
k67

< k4
k8
≤ k1

k5
∨ k23

k67
< k1

k5
< k4

k8

)
: +,

k67 6= 0 ∧
(
k4
k8
≤ k1

k5
< k23

k67
∨ k1

k5
< k4

k8
< k23

k67

)
: −.

When the Hormesis condition is satisfied for a dose-response curve all three critical points

are relevant (depending on the conditions, the roots with the appropriate sign have to be

selected), thus the curve has two segments – σ1 (defined by ε1 and ε2) and σ2 (defined by

ε2 and ε3). When the Hormesis condition does not hold, we consider only ε1 and ε3 which

define the single segment σ. In general, the values of the coefficients ki are not known and

the number of critical points cannot be determined unambiguously.

(ii) Decide which segments to compare.

Thus, three cases, depending on the number of segments in the compared reference and

perturbed curves need to be considered (assuming, w.l.o.g., that the reference curve has less

or equal critical points than the perturbed one), namely:

Case 1: The Hormesis condition holds neither for the reference nor for the perturbed curve.

Hence, the single segment σα of the reference is mapped to the single segment σβ of

the perturbed curve, i.e. n = m = 2:

M(i = 1; Σα,Σβ) : σα → σβ.

Case 2: The Hormesis condition does not hold for the reference but holds for the perturbed

curve.

Hence, the single segment σα of the reference curve is mapped to the two segments σβ1
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and σβ2 of of the perturbed curve, i.e. n = 2 and m = 3:

M(i = 1; Σα,Σβ) : σα1 → σβ1 , M(i = 2; Σα,Σβ) : σα1 → σβ2 .

Case 3: The Hormesis condition holds for both the reference and the perturbed curve.

Hence, the two segments σα1 and σα2 of the reference curve are mapped to the two

segments σβ1 and σβ2 of of the perturbed curve, i.e. n = m = 3:

M(i = 1; Σα,Σβ) :

 σα1 → σβ1

σα2 → σβ2

.

(iii) Determine corresponding points in compared pairs of segments.

The correspondence between points for the three cases is obtained by plugging in the appro-

priate arguments in the proportion function. The derivation of the related dose components

is, however, more involved since the inverses of the segments R(d) have a more complicated

form. In the general case, the parametrised dose component inside a segment (h 6= 0, 1)

reads:

d
(1,2)
σ,h =

k67ζ (h;x, y)− k23 ±
√
W (h;x, y)

2 (k4 − k8ζ (h;x, y))
,

where W (h;x, y) = (k67ζ (h;x, y)− k23)2−4 (k1 − k5ζ (h;x, y)) (k4 − k8ζ (h;x, y)), d
(1)
σ,h is the

solution with +
√
W (h;x, y) and d

(2)
σ,h with −

√
W (h;x, y).

The relevant solution should be positive for all h ∈ (0, 1) and belong to the dose interval of

definition of the desired segment σ (defined by the doses corresponding to x and y) when

W (h;x, y) ≥ 0. Solution positivity leads to:

k23
k67
∓
√
W (h;x, y)

k67
> ζ (h;x, y) >

k4
k8
∨ k23
k67
∓
√
W (h;x, y)

k67
< ζ (h;x, y) <

k4
k8
.

(iv) Quantify the displacement of corresponding points.

Depending on the particular mapped segments σαi and σβj , the differential expressions πd and

πR have the general form:

πd (h) = log10
kβ4 − kβ8 ζ

(
h;xβ, yβ

)
kα4 − kα8 ζ (h;xα, yα)

kα67ζ (h;xα, yα)− kα23 ±
√
W β(h;xα, yα)

kβ67ζ (h;xβ, yβ)− kβ23 ±
√
W β(h;xβ, yβ)

and
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πR (h) = ζ (h;xα, yα)− ζ
(
h;xβ, yβ

)
.

Note that when h = 0 or h = 1 the dose differential is derived by mapping the dose compo-

nents of the respective critical points.

In particular, the differential expressions are different with respect to the number of segments

in each dose-response curve:

Case 1: The condition for positivity of the dose component solutions for all h ∈ (0, 1) when

W (h; k1k5 ,
k4
k8

) ≥ 0 can be reduced to:

k23
k67

+

√
W (h; k1k5 ,

k4
k8

)

k67
> h

k1
k5

+(1−h)
k4
k8

>
k4
k8
∨ k23
k67
−

√
W (h; k1k5 ,

k4
k8

)

k67
< h

k1
k5

+(1−h)
k4
k8

<
k4
k8
,

which corresponds to the non-hormesis conditions k4
k8
≤ k23

k67
≤ k1

k5
and k1

k5
≤ k23

k67
≤ k4

k8
,

and the solutions d
(2)
σ,h and d

(1)
σ,h, respectively.

To see why, let us show that k23
k67
−
√
W (h;

k1
k5
,
k4
k8

)

k67
> ζ

(
h; k1k5 ,

k4
k8

)
> k4

k8
never holds. We

rearrange the inequality to:

k23
k67
−ζ
(
h;
k1
k5
,
k4
k8

)
>

√√√√(k23
k67
− ζ

(
h;
k1
k5
,
k4
k8

))2

− 4

(
k1 − k5ζ

(
h; k1k5 ,

k4
k8

))(
k4 − k8ζ

(
h; k1k5 ,

k4
k8

))
k267

,

and notice that due to the non-hormesis, k4
k8

< ζ
(
h; k1k5 ,

k4
k8

)
< k1

k5
, which means the

inequality never holds since

(
k1 − k5ζ

(
h;
k1
k5
,
k4
k8

))(
k4 − k8ζ

(
h;
k1
k5
,
k4
k8

))
< 0.

The considerations are analogous for the other inequality in the positivity condition.

This simplification shows that, depending on which positivity condition is met after α

and β specifics are applied, only one solution dσ,h is relevant for the differential.

Now, ignoring the trivial case when k1
k5

= k4
k8

for any differential structure and value of

the differential parameters, the dose and the response component mappings read:

d
(1,2),α
σ,h 7→ d

(1,2),β
σ,h and h

kα1
kα5

+ (1− h)
kα4
kα8
7→ h

kβ1

kβ5
+ (1− h)

kβ4

kβ8
.

In this case, we have already expressed the relevant critical points through the dose-
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response coefficients. Thus we can write the differential as:

πd (h) = log10
kβ8
kα8

kβ4 k
β
5 − kβ1 kβ8

kα4 k
α
5 − kα1 kα8

kα5 k
α
8

(
−kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)
)

+ kα67 (hkα1 k
α
8 + (1− h)kα4 k

α
5 )

kβ5 k
β
8

(
−kβ23 ±

√
W (h;

kβ1
kβ5
,
kβ4
kβ8

)

)
+ kβ67

(
hkβ1 k

β
8 + (1− h)kβ4 k

β
5

)
and

πR (h) = h

(
kα1
kα5
− kβ1

kβ5

)
+ (1− h)

(
kα4
kα8
− kβ4

kβ8

)
.

Note that the sign in front of the square root can be determined only by the positivity

conditions, i.e. if it is not known which one is satisfied for the reference and perturbed

curve all combinations have to be considered.

Case 2: The dose and response differential for the different segment mappings in this case

are:

πd (h; i = 1) = log10

kβ4 − kβ8 ζ
(
h;

kβ1
kβ5
, Rβε2

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

) kα67ζ
(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ

(
h;

kβ1
kβ5
, Rβε2

)
− kβ23 ±

√
W (h;

kβ1
kβ5
, Rβε2)

and

πR (h; i = 1) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h;
kβ1

kβ5
, Rβε2

)
,

πd (h; i = 2) = log10

kβ4 − kβ8 ζ
(
h; Rβε2 ,

kβ4
kβ8

)
kα4 − kα8 ζ

(
h;

kα1
kα5
,
kα4
kα8

) kα67ζ
(
h;

kα1
kα5
,
kα4
kα8

)
− kα23 ±

√
W (h;

kα1
kα5
,
kα4
kα8

)

kβ67ζ

(
h; Rβε2 ,

kβ4
kβ8

)
− kβ23 ±

√
W (h; Rβε2 ,

kβ4
kβ8

)

and

πR (h, i = 2) = ζ

(
h;
kα1
kα5
,
kα4
kα8

)
− ζ

(
h; Rβε2 ,

kβ4

kβ8

)
.

Choosing the relevant solution from d
(1,2)
σ,h when deriving the dose differential depends

on the Hormesis condition and the particular segment (the solution needs to be in the

dose domain of the segment).
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Case 3: The dose and response differential for the corresponding segments are:

πd (h) =



log10

kβ4−k
β
8 ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
kα4−kα8 ζ

(
h;
kα1
kα5
,Rαε2

) kα67ζ

(
h;
kα1
kα5
,Rαε2

)
−kα23±

√
W (h;

kα1
kα5
,Rαε2 )

kβ67ζ

(
h;
k
β
1

k
β
5

,Rβε2

)
−kβ23±

√
W (h;

k
β
1

k
β
5

,Rβε2 )

log10

kβ4−k
β
8 ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
kα4−kα8 ζ

(
h;Rαε2 ,

kα4
kα8

) kα67ζ

(
h;Rαε2 ,

kα4
kα8

)
−kα23±

√
W (h;Rαε2 ,

kα4
kα8

)

kβ67ζ

(
h;Rβε2 ,

k
β
4

k
β
8

)
−kβ23±

√
W (h;Rβε2 ,

k
β
4

k
β
8

)

,

and

πR (h) =


ζ
(
h;

kα1
kα5
, Rαε2

)
− ζ

(
h;

kβ1
kβ5
, Rβε2

)
ζ
(
h; Rαε2 ,

kα4
kα8

)
− ζ

(
h; Rβε2 ,

kβ4
kβ8

) .

Again, the choice of an appropriate solution from d
(1,2)
σ,h has to comply with the Hormesis

condition and the relevant segment.

It is evident that the obtained differential expressions have a more complicated form than in

the case for a single dose edge. Also, multiple conditions depending on the ratios between the dose-

response coefficients have to be considered. However, the expressions are symbolic and symbolic

analysis can be applied.

Two Dose Edge Example: Insulin Receptor Life-Cycle Model

Robust Hormetic Response

For active species corresponding to the vertices O = {vRLp, vRLpi} in the more detailed insulin

receptor life-cycle model from Fig 6A we obtain the steady-state coefficients (in polynomial form):

k1 = 0,

k23 = r1r3(r5 + r6 + r7)r9r11(r13(r15 + r16) + r14r16),

k4 = 0,

k5 = (r2 + r3)r8r10(r4(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k67 = r10((r2 + r3)(r6 + r7)r8r12r14r16 + r1r3r5r7(r13(r15 + r16) + r14r16)),

k8 = r1r3(r6 + r7)r10r12r14r16.

We can see that the Hormesis condition k67 6= 0 ∧ k4
k8
≤ k1

k5
< k23

k67
(k67 6= 0 ∧ 0 ≤ 0 < k23

k67
) holds

for all possible positive values of the reaction rate constants. Thus the model generates a robust
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Figure S4: The extended insulin model with two dose edges with output vertices O = {vRL, vRLp}
exhibits parameter-dependent hormetic dose-response. (A) Graph corresponding to the subsystem
of insulin receptor binding, recycling, and phosphorylation from (3) with notation as in Fig. 3A;
differential parameters are shown in red. (B) Sigmoid reference (dashed red) and hormetic per-

turbed (blue) dose-response curves. The half-maximal response points (h = 0.5) for which the dose
differential was analyzed are marked with a red and a blue dot on the reference and the first segment
of the perturbed curve, respectively. The differential parameters were fixed to rα1 = 0.03nM−1s−1,

rα12 = 0.1nM−1s−1, rα2 = 0.1 s−1, rα13 = 0.001 s−1, rβ1 = 0.002nM−1s−1, rβ12 = 0.001nM−1s−1,

rβ2 = rβ13 = 0.01 s−1. Other parameters were fixed to r9 = 0.5 s−1, r4 = r6 = r14 = 0.2 s−1,
r3 = r7 = r8 = r15 = r10 = r11 = r16 = 0.1 s−1, and r5 = 0.01 s−1.

hormetic response.

Parameter-dependent Hormetic Response

Here, we demonstrate how to analyze the differential of models generating dose-response curves

with shapes depending on parameter values. Let us consider the more detailed model for insulin

receptor trafficking (Fig. S4A). We assume that we measure the singly ligand-bound receptor

species on the cell surface, RL and RLp, thus O = {vRL, vRLp}, and obtain two dose-response

curves by stimulating the system with two ligands that differ in their affinity to the receptor—

ligand α with reaction rate constants rα1 , rα2 , rα12, r
α
13, and ligand β with rβ1 , rβ2 , rβ12, r

β
13. Suppose

that the dose-response curve for α (reference) is sigmoidal and the curve for β (perturbed) is

hormetic (biphasic) (differential as in Case 2 ). We aim to derive the dose differential between the

reference curve and the first segment of the perturbed curve at h = 0.5 as well as the response

differential between the reference curve and the second segment of the perturbed curve at d→∞,

i.e. h = 0.

Steady-state coefficients. For conciseness, we analyze the steady-state coefficients in polyno-

mial form instead of graph form:
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k1 = 0,

k23 = r1r9r11((r3 + r4)(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k4 = r1(r6 + r7)r9r11 r12 r14r16,

k5 = (r2 + r3)r8r10(r4(r6 + r7) + r5r7)(r13(r15 + r16) + r14r16),

k67 = r10((r2 + r3)(r6 + r7)r8 r12 r14r16 + r1r3r5r7(r13(r15 + r16) + r14r16)),

k8 = r1r3(r6 + r7)r10 r12 r14r16,

where the differential parameters are marked in red.

We can use the Hormesis condition to find parametrizations such that the reference dose-

response curve is sigmoidal, whereas the perturbed curve is hormetic (Fig. S4B). Due to k1 = 0,

the only non-hormesis condition holding for the reference curve α is k1
k5

= 0 ≤ kα23
kα67
≤ kα4

kα8
and the only

Hormesis condition holding for the perturbed curve β is k1
k5

= 0 <
kβ4
kβ8
<

kβ23
kβ67

. This indicates that the

perturbation should flip the inequality sign between the non-zero steady-state coefficient ratios.

Also noting that
kα4
kα8

=
kβ4
kβ8

, these conditions enforce the following condition on the parameters:

rα1 r3((r3 + r4)(r6 + r7) + r5r7)(r
α
13(r15 + r16) + r14r16)

(rα2 + r3)(r6 + r7)r8rα12r14r16 + rα1 r3r5r7(r
α
13(r15 + r16) + r14r16)

≤ 1

<
rβ1 r3((r3 + r4)(r6 + r7) + r5r7)(r

β
13(r15 + r16) + r14r16)

(rβ2 + r3)(r6 + r7)r8r
β
12r14r16 + rβ1 r3r5r7(r

β
13(r15 + r16) + r14r16)

. (3)

This implies that the values of r9, r10, and r11 (free receptor externalisation, degradation, and

synthesis, respectively) do not affect whether or not the response is hormetic.

Derivation of the differential.

(i) Subdivide the curves into monotone segments.

We derive the two critical points of the non-hormetic reference curve as:

Eα =

{
εα1 = (0, 0) , εα2 =

(
∞, r9r11

r3r10

)}
.

When deriving the second critical point of the perturbed hormetic curve we comply with the
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Hormesis condition by choosing the solution that contains −
√
Uβ, leading to:

Eβ =

{
εβ1 = (0, 0) ,

εβ2 =


rβ13(r15 + r16) + r14r16

rβ12r14r16(r6 + r7)

rβ12r14r16r8(r
β
2 + r3)(r4(r6 + r7) + r5r7) +

√
Uβ

rβ1 r3(r3 + r4)(r
β
13(r15 + r16) + r14r16)− rβ12r14r16r8(rβ2 + r3)

,

r11r
β
1 r9(r

β
13(r15 + r16) + r14r16)

r10

(r7(r3 + r4 + r5) + r6(r3 + r4))
(
rβ12r14r16r8(r

β
2 + r3)(r6 + r7)

+ rβ1 r3r5r7(r
β
13(r15 + r16) + r14r16)

)
− 2(r6 + r7)

√
Uβ

− 2rβ12r14r16r8(r
β
2 + r3)(r6 + r7)(r4(r6 + r7) + r5r7)(

rβ12r14r16r8(r
β
2 + r3)(r6 + r7) + rβ1 r3r5r7

(
rβ13(r15 + r16)

+r14r16
))2
− 4rβ12r14r16r

β
1 r3r8(r

β
2 + r3)(r6 + r7)

(
rβ13(r15 + r16)

+ r14r16
)
(r4(r6 + r7) + r5r7)


,

εβ3 =

(
∞, r9r11

r3r10

)}
,

where Uβ denotes Uβ with squared factors taken out of the square root and has the form:

Uβ = rβ12r14r16r3r8(r
β
2 + r3)(r4(r6 + r7) + r5r7)

(
− rβ12r14r16r8(rβ2 + r3)(r6 + r7)

+ rβ1 (r3 + r4)(r
β
13(r15 + r16) + r14r16)(r7(r3 + r4 + r5) + r6(r3 + r4))

)
.

This leads to the following observations: (i) the first and last critical points of the reference

and perturbed curves are identical; (ii) the last critical points depend only on the four reaction

rates r3, r9, r10, and r11; and (iii) the dose component of the second critical point of the

perturbed system εβ2 does not depend on r9, r10, and r11.

(ii) Decide which segments to compare.

See Case 2 of the two dose edge differential derivations.

(iii) Determine corresponding points in compared pairs of segments.

See the general two dose edge differential derivations.

(iv) Quantify the displacement of corresponding points.

It is straightforward to see that the response differential between the reference curve and

the second segment of the perturbed curve at d → ∞ is always zero, independent of the
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magnitude of the perturbation and of the reaction constants’ values:

πR (h = 0, i = 2) = ζ

(
h = 0; 0,

kα4
kα8

)
− ζ

(
h = 0; Rβε2 ,

kβ4

kβ8

)
=
r9r11
r3r10

− r9r11
r3r10

= 0.

The expressions in the previous section also allow us to identify feasible perturbations to alter

the dose-response behavior. For example, if we were to design a new perturbation, different

from applying a ligand with modified affinity, that again leads to a hormetic perturbed dose-

response, but to a non-zero response differential, it has to target parameters r9, r11,r3, or

r10. However, since hormesis is not affected by r9, r11, and r10, r3 need to be perturbed.

To find the dose differential between the reference curve and the first segment of the per-

turbed curve with h = 0.5, we need to select the appropriate solution from d
(1,2)
σ,h . The

relevant solution for the reference curve is d
(1)
σ,h since it corresponds to the non-hormesis con-

dition k1
k5
≤ k23

k67
≤ k4

k8
. Furthermore, when choosing the relevant solution, there are two

cases of interest: (i) when the solutions have different signs we take the larger (positive)

solution, and (ii) when the two solutions are positive we consider the smaller solution, which

corresponds to the first segment of the hormetic curve. According to Vietta’s formulas, the so-

lutions have different signs when
−kβ5 ζ(h;x,y)
kβ4−k

β
8 ζ(h;x,y)

< 0, which translates to kβ4 − kβ8 ζ (h;x, y) > 0,

indicating that the relevant larger solution is d
(1)
σ,h. Accordingly, both solutions are posi-

tive when −kβ23−k
β
67ζ(h;x,y)

kβ4−k
β
8 ζ(h;x,y)

> 0 and
−kβ5 ζ(h;x,y)
kβ4−k

β
8 ζ(h;x,y)

> 0, implying kβ4 − kβ8 ζ (h;x, y) < 0 and

kβ23− kβ67ζ (h;x, y) > 0. This satisfies the Hormesis condition and settles the smaller positive

solution to be d
(1)
σ,h again.

Thus, we select the solution d
(1)
σ,h for the reference and the perturbed curve, which gives:

πd

(
h =

1

2
; i = 1

)
= log10

2kβ4 − kβ8 Rβε2
kα4 k

α
8

kα4 k
α
67 − 2kα23k

α
8 + 2kα8

√
W (12 ; 0,

kα4
kα8

)

kβ67R
β
ε2 − 2kβ23 + 2

√
W (12 ; 0, Rβε2)

,

with W (12 ; 0, y) =
(
k67y
2 − k23

)2
+ k5y (2k4 − k8y).

After substituting the steady-state coefficients, we find the symbolic expression for the dose

differential. By looking at the greatest common divisor of the separate terms in the numerator

and denominator of the expression, again the reaction rate constants r9, r10, and r11 cross

out. Therefore, both the dose and the response differential are invariant with respect to these

parameters.
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Figure S5: Numerical analysis of the two dose edge insulin model from Fig. S4A. (A) Profile bounds
(blue – upper inner bound, green – lower inner bound) superimposed on the profile differential
distribution (density) for the free parameters r3 and r4. (B) Marginal probability distribution
of the dose differential magnitude. Densities were obtained using the values for the differential
parameters from Fig. S4B and uniformly sampling the remaining n parameters from the parameter
box I = [10−5, 1]n; note that n = 12 in (B) and n = 11 in (A) since one additional parameter is
fixed at a time.

Numerical analysis. For the insulin model with two dose edges (Fig. S4A), if we assume only the

affinities of the two ligands to be known parameters, uniform sampling of the dose differential yields

a few magnitudes of variability (D̂πd = [−2.8, 3.1]) but a small region of most probable values with a

marginal density peaked around −0.25 (Fig. S5B). The profile differential distributions in Fig. S5A

show how the free parameters r3 (receptor phosphorylation) and r4 (receptor dephosphorylation)

affect the bounds as well as the peak of the marginal distribution, revealing their potential to

control the differential.
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