Journal of Nuclear Cardiology | Official Journal of the American Society of Nuclear Cardiology

Quantification of Intramyocardial Blood Volume with ^{99m}Tc-RBC SPECT-CT Imaging – A Preclinical Study

Hassan Mohy-ud-Din, PhD*, Nabil E. Boutagy, PhD, John C. Stendahl, MD, PhD, Zhen W. Zhuang, MD, Albert J. Sinusas, MD, Chi Liu, PhD

Yale University, New Haven, CT, USA

*hassanmohyuddin@skm.org.pk, mohyuddin.engineer@gmail.com

BACKGROUND

- 1 Ischemic heart disease (IHD) has a high mortality rate [1] and can be attributed to obstructive coronary artery disease (CAD) and/or coronary microvascular disease (CMD).
- 2 CMD is characterized by structural and functional impairments of the coronary microcirculation ($< 500 \ \mu m$), while CAD affects the larger diameter epicardial arteries.
- 3 CMD exists in a large proportion of patients with IHD and other cardiovascular diseases (i.e. hypertrophic heart disease, aortic stenosis) and may occur in individuals with and without CAD [2 - 4].
- 4 Many risk factors have been proposed to contribute to CMD, such as chronic inflammation, insulin resistance, obesity, and chemotherapy and radiation therapy [5 - 8].
- 5 LVEF has limited sensitivity [9], late manifestation [10], and large variability [11].
- 6 **Concern:** No established non-invasive imaging approach to directly evaluate myocardial microcirculatory function to diagnose MVD independent of co-existing epicardial disease.
- 7 Prior Knowledge: Microcirculation damage precedes changes in myocardial contraction and deformation (i.e. LVEF drop) [12].
- 8 <u>Proposed Approach</u>: A methodological framework for absolute quantification of intramyocardial blood volume (IMBV) as a novel index of microcirculatory function with SPECT/CT imaging of ^{99m}Tc-RBCs. pringer

Copyright American Society of Nuclear Cardiology

METHODS

Study Type

 Prospective preclinical imaging studies were performed under resting conditions with a dedicated cardiac hybrid SPECT/CT system.

Study Subjects

- Twelve retired female beagle breeders (weight 10.8 ± 1.0 kg) were scanned during this project. ^{99m}Tc-labeled RBCs (18.8 ± 4.3 mCi) were intravenously injected into the animal and allowed to recirculate for 15 minutes before initiation of equilibrium blood pool SPECT imaging (~10 minutes acquisition).

Study Endpoints

- Primary Endpoints:
 - (1) Robust estimation of IMBV in vivo with SPECT-CT imaging, and
 - (2) Validation of *in vivo* estimates of IMBV with those obtained from *ex vivo* microCT imaging following vascular casting under physiological pressures.
- Secondary Endpoint: Impact of various correction schemes on quantification of IMBV.
 Study Variables
 - IMBV in the end-diastolic and end-systolic phases of the cardiac cycle.

RESULTS – I

 Table 1: IMBV at end-diastolic and end-systolic phases using various correction schemes.
 Each approach was compared (paired t test) to the reference fully corrected dataset (**DG** + AC + SC + PVC) presumed to be the best estimate. P < 0.05 was considered statistically significant.

(N = 12)	IMBV	
	End-Diastolic Phase	End-Systolic Phase
CG	$0.25 \pm 0.04 \ (P < 0.002)$	$0.21 \pm 0.04 \ (P < 0.002)$
CG + AC	$0.25 \pm 0.03 \ (P < 0.002)$	$0.21 \pm 0.03 \ (P < 0.002)$
CG + AC + SC	$0.21 \pm 0.03 \ (P < 0.002)$	$0.17 \pm 0.03 \ (P < 0.002)$
DG + AC + SC	$0.21 \pm 0.04 \ (P < 0.002)$	$0.17 \pm 0.03 \ (P < 0.002)$
DG + AC + SC + PVC	0.15 ± 0.03	0.11 ± 0.03
CG – Cardiac gating only with no other physical corrections CG + AC – Cardiac gating with attenuation correction CG + AC + SC – Cardiac gating with attenuation and scatter correction		

DG + AC + SC – Dual cardiac and respiratory gating, attenuation and scatter correction

DG + AC + SC + PVC – Dual-gating, attenuation, scatter, and partial volume correction

IMBV – Intramyocardial blood volume

Data is represented as $\mu \pm \sigma (P - value)$

Journal of Nuclear Cardiology | Official Journal of the American Society of Nuclear Cardiology

RESULTS – II

Figure 1: Correlation plots between IMBV values derived from in vivo SPECT and ex vivo microCT imaging for various correction schemes. Plots also display Pearson correlation-value squared (R^2), and the slope/intercept of linear regression fit. Green line is the line of identity. Fully corrected dataset (**DG + AC + SC + PVC**) resulted in the least overestimation (minimum bias) compared to no correction or partial correction schemes.

CONCLUSIONS

- 1 Full correction scheme resulted in an IMBV of 0.15 ± 0.03 in the end-diastolic phase. Literature reports values in the range 0.06 - 0.20 for *in vivo* imaging studies [13 - 15] and 0.05 - 0.14 for *ex vivo* validation assays [15 - 19].
- 2 Cycle-dependent changes in IMBV (~23%) are consistent with what is reported in the literature (i.e. 20 25%) [13, 20].
- 3 Schemes that applied no correction or partial correction resulted in significant overestimation of IMBV (P < 0.002).
- 4 In vivo SPECT estimates of IMBV strongly correlated ($R^2 \ge 0.70$) with *ex vivo* measures for various correction schemes, while the **fully corrected scheme** yielded the smallest bias.
- 5 While the correlations are high, SPECT derived IMBV values are generally higher than microCT derived values. This discrepancy may be caused by the resolution limit of the microCT scan (~25 μm), leading to smaller vessels being excluded from segmentation and a potential underestimation of IMBV.
- 6 Accurate quantification of IMBV requires the use of anatomical information from adjunctive contrast CT imaging and corrections for cardiorespiratory motion, attenuation, scatter, and partial volume effects.

REFERENCES

- [1] Association AH. Heart Disease and Stroke Statistics At-a-Glance; 2015.
- [2] Qian, J. et al., Herz 1999; 24:548-57.
- [3] Fearon WF. Letter by Fearon regarding article, Circulation 2011;123:e212; author reply e3.
- [4] Lanza, G.A. et al., Circulation 2010; 121:2317-25.
- [5] Recio-Mayoral, A. et al., European Heart Journal 2009: ehp205.
- [6] Camici, P.G. et al., The new England journal of medicine 2007; 356:830-40.
- [7] Selthofer-Relatić, K. et al., Cardiology research and practice 2016; 2016.
- [8] Gallucci, G. et al., Tumori 2008; 94:129-33.
- [9] Ewer, M.S., et al., Journal of Clinical Oncology, 1984. 2(2): p. 112-117.
- [10] Jiji, R.S., et al., Journal of Nuclear Cardiology, 2012. 19(2): p. 377-388.
- [11] Galema, T.W., et al. European Heart Journal-Cardiovascular Imaging 9.2 (2008): 250-254.
- [12] Daher, I.N. et al., Nature Clin. Practice Cardiovascular Medicine, 2008. 5(12): p. 797-805.
- [13] Liu Y, et al., Am J Physiol-Heart C 1992; 263:H963-H7.
- [14] Wu X, et al., Circulation 1992; 85:730-7.
- [15] McCommis K.S., et al., Journal of the Society for CMR 2007; 9:785-92.
- [16] Morgenstern C, et al., Pflügers Archiv 1973; 340:101-11.
- [17] Kassab G.S., et al., Am J Physiol-Heart C 1994; 267:H2100-H13.
- [18] Hoffman E, et al., Activation, metabolism and perfusion of the heart; 1987. p. 421-32.
- [19] Spaan J. Circulation research 1985; 56:293-309.
- [20] Pascotto M, et al., Heart 2007; 93:438-43.

